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Abstract—In recent years, Artificial Neural Networks (ANNs)
pruning has become the focal point of many researches, due to
the extreme overparametrization of such models. This has urged
the scientific world to investigate methods for the simplification
of the structure of weights in ANNs, mainly in an effort to reduce
time for both training and inference. Frankle and Carbin [1], and
later Renda, Frankle, and Carbin [2] introduced and refined an
iterative pruning method which is able to effectively prune the
network of a great portion of its parameters with little to no
loss in performance. On the downside, this method requires a
large amount of time for its application, since, for each iteration,
the network has to be trained for (almost) the same amount of
epochs of the unpruned network. In this work, we show that,
for a limited setting, if targeting high overall sparsity rates, this
time can be effectively reduced for each iteration, save for the
last one, by more than 50%, while yielding a final product (i.e.,
final pruned network) whose performance is comparable to the
ANN obtained using the existing method.

Index Terms—Artificial Neural Network, Convolutional Neural
Network, Neural Network Pruning, Magnitude Pruning, Lottery
Ticket Hypothesis.

I. INTRODUCTION

Starting from the 2010s, ANNs have revolutionized the
world of machine learning, from computer vision to computa-
tional linguistics and reinforcement learning. These models,
though, are known to rely on a very large number of pa-
rameters: for instance, a rather simple Convolutional Neural
Network (CNN) like VGG19 [3] for ImageNet [4] employs
around 144 million parameters; BERT [5], a state-of-the-art
ANN-based model for computational linguistics, employs up
to 340 million parameters.

Various techniques have been thought of for reducing the
number of parameters while still preserving (or improving)
its performance, pruning being one of them. In 2015, Han
et al. [6] has introduced the concept of Iterative Magnitude
Pruning (IMP), i.e., the removal, at the end of training, of the
smallest ANN parameters, followed by a re-training phase
to recover the performance lost with pruning. The process
may be repeated for multiple iterations, each time obtaining
an increasingly pruned network with respect to the original
one. More recently, Frankle and Carbin [1] and Frankle et
al. [7] have refined the procedure, introducing a rewinding
policy according to which, before the re-training phase, the
pruned network is brought to a configuration close to the
original network initialization. The network is then re-trained

for a similar number of epochs the unpruned ANN was trained
for. The resulting algorithm, called IMP with Weight Rewind
(WR), will be described in detail in Section III-A. Even more
recently, Renda, Frankle, and Carbin [2] introduced a different
policy for the retraining phase of ANNs, called Learning
Rate Rewind (LRR), which does not require the weights to
be rewound after each iteration, but requires the training to
continue with the same weights (except the pruned ones) of the
previous iteration, while resetting the learning rate schedule of
the optimizer to its initial state.

Those algorithms, despite being able to produce well-
performing ANNs with sparsity rates hovering around 99 %,
require considerable time and resources, thus motivating some
speed-up strategies. Our work is driven by the idea that the
parameters to be pruned may be known before the network has
been fully trained. We show that, within the settings of our
experiments, the number of epochs for the re-training phase
can be reduced by more than 50 %, for all but the last iterations
of IMP, with no performance loss. We call our method AIMP:
Accelerated Iterative Magnitude Pruning.

II. RELATED WORK

The literature distinguishes between two main categories of
pruning techniques: (a) Unstructured Pruning: “unstructured
pruning prunes individual weights without consideration for
where they occur within each tensor” ([2]); IMP belongs to this
category. (b) Structured Pruning: pruning operates on neurons
or groups of units (e.g., full convolutional filters); an example
is [8]. Note that iterative procedures akin to IMP may be
designed also for structured pruning techniques, as done, for
example, in [2].

With the recent introduction of many pruning techniques
for ANNs, there has been a number of new works trying
to characterize the pruned network: for instance, [9]–[11]
debate, with somehow conflicting results, about the robustness
of pruned ANNs; Ansuini et al. [12] analyzed the similarity
between layers of pruned and unpruned CNNs, showing that
pruned networks might be forced to learn high-level features
differently from the unpruned ones.

More recent work dealt with: (a) the strategies for re-train-
ing a pruned network originating from a pre-trained one; and
(b) the differences in effectiveness between structured and
unstructured techniques. In particular, Paganini and Forde [13]



analyzed the latter, providing similarities between unstructured
and structured pruning techniques. Renda, Frankle, and Carbin
[2], instead, focused on both. They compared two re-training
policies: full re-training with Weight Rewind (WR), introduced
by Frankle et al. [7], and fine-tuning, introduced by Liu et
al. [14]. The former is implemented by (i) rewinding the
pruned weights to a situation close to the initial one and
(ii) re-training the network for the same amount of epochs of
the unpruned one, keeping the same learning rate schedule.
The latter, instead, (i) does not rewind weights (i.e., the
parameters surviving the pruning keep the same value they
had before pruning) and (ii) re-trains the pruned network for a
smaller number of epochs, keeping the learning rate constant at
the last value it had before pruning. The authors of [2] showed
that, in many scenarios of unstructured and structured pruning,
WR seems to behave better than fine-tuning; moreover, they
introduce a third strategy, Learning Rate Rewind (LRR), that
empirically outperforms both in the majority of tasks. It is a
compromise between WR and fine-tuning: it consists in re-
training starting with the same parameters obtained from the
previous iteration, for the same amount of epochs as the first
training, while re-utilizing the same learning rate schedule
as done in the first training. Moreover, they showed that
unstructured techniques produce pruned networks achieving
better test-set accuracy with respect to those obtained with
structured techniques.

In the same work, the authors debated over another open
issue of ANN pruning: the long time which is required for the
re-training of the pruned networks. Proven the ineffectiveness
of fine-tuning, which constituted de facto a strategy to reduce
re-training time, they tried to lower the number of epochs
for the re-training for the various iterations of WR and LRR,
though achieving a smaller final accuracy, despite noticing
that “accuracy saturates after re-training for about half of the
original training time”.

There exist works trying to speed-up network pruning, for
instance by pruning as soon as the unpruned network is being
trained, such as in [15], thus eliminating the need for a pre-
trained overparametrized ANN.

In our work, instead, inspired by [2], we aim at reducing
the re-training epochs for some iterations of IMP. We show
that, if the final sparsity of the pruned network is sufficiently
high, we can effectively reduce the time to execute IMP by
truncating the training of such iterations when using either
WR and LRR.

III. BACKGROUND

Hereby we will present the two main iterative pruning
techniques used in this work: IMP+WR and IMP+LRR. In the
following schemes, we denote with retrain() the re-training
algorithm for IMP. It takes as input an ANN, the number
of epochs for retraining, the vector of initial parameters, a
pruning mask, and a learning rate schedule. The pruning
mask (which we denote with the letter m) is the binary
vector identifying which parameter (a) survives the pruning
(corresponding entry value 1) or (b) has been pruned from

the network (value 0); the learning rate schedule identifies
at which epochs the learning rate gets annealed. The routine
retrain() outputs the performance of the re-trained network
and the vector of parameters after the training is finished. The
re-training is carried out like a standard ANN training, with
the only difference that the gradient is not propagated back to
parameters having a corresponding 0 entry in the mask (i.e.,
they have been pruned from the network).

A. IMP+WR

IMP+WR was introduced in [1] and refined in [7]. At
each iteration, IMP+WR prunes parameters and rewinds the
surviving parameters at the value they had at an epoch t of
their original training. As of [7], t is called late resetting epoch
and is usually taken between 1 and 7 % of the total training.

The procedure is the following (� denotes the element-by-
element matrix multiplication):

Algorithm 1: IMP+WR.
input : A dense ANN N fully trained for T epochs

with learning rate schedule Λ; a late resetting
epoch t defined as before; θ(0)T ,θ

(0)
t ∈ RK ,

vectors holding the parameters of N at epoch
T and t, respectively; fixed pruning rate
p ∈ (0, 1); maximum number of iterations I;
threshold for minimum performance of the
pruned network π?.

output: A pruned ANN with parameters θ?T
1 for i ∈ {1, ..., I} do
2 θ̃

(i−1)
= abs(θ(i−1)T )

3 ηp = p-th quantile of θ̃
(i−1)

4 m(i) = 1K // mask is vector of ones
5 for k ∈ {1, ...,K} do

/* if magnitude of parameter is
smaller than the quantile,
set corresponding mask entry
to 0 */

6 if θ̃(i−1)k ≤ ηp then
7 m

(i)
k = 0

8 end
9 end

10 θ
(i)
t = θ

(i−1)
t �m(i) // weight rewind

11 π(i),θ
(i)
T = retrain(N , T − t,θ(i)t ,m(i),Λ)

12 if π(i) < π? then
13 break
14 end
15 end

B. IMP+LRR

IMP+LLR was proposed in [2] as a better alternative to
IMP+WR in terms of test accuracy.

Its formulation is similar to IMP+WR, but it gets rid of
the weight rewind. Considering the algorithm described in



Section III-A, IMP+LLR obtains a new parameters vector by
multiplying the final parameters of iteration i − 1 with the
mask. Rows 10 and 11 become, respectively,

θ
(i)
0 = θ

(i−1)
T �m(i),

and
π(i),θ

(i)
T = retrain(net, T,θ(i)0 ,m(i),Λ).

IV. ACCELERATED ITERATIVE MAGNITUDE PRUNING

With the aim of reducing the time to obtain pruned ANNs,
we propose the following modification to the re-training al-
gorithm of IMP: we define a quantity τ ∈ {1, . . . , T − 1}
which we call partial training epochs such that, for all the
intermediate iterations of IMP (i.e., from the first one to
the second-to-last one) we re-train the network only for this
number of epochs1.

This modification is compatible with both IMP+WR and
IMP+LRR: practically, it could be applied to all those iterative
pruning techniques requiring a re-training phase. In our work,
though, we limit our experiments to IMP+WR and IMP+LRR.
One more note on the algorithm: probably, the intermediate
iterations will not produce networks performing on par with
the original network. As a consequence, the if construct at
row 12 has to be dropped.

We call the corresponding algorithm Accelerated Iterative
Magnitude Pruning (AIMP). In the following sections, when-
ever the number of partial training epochs τ is specified, we
indicate it as a subscript to the acronym, i.e., AIMPτ indicates
that we ran AIMP with τ partial training epochs.

An undesirable behaviour which we noted on our models,
which got more frequent as τ was decreased, is the phe-
nomenon of exploding gradient. We tackled it by operating
norm gradient clipping [16], [17] at 1 at each optimization
step.

V. EXPERIMENTS, RESULTS, AND ANALYSIS

In order to analyze the effectiveness of our method, we
trained a CNN on the dataset CIFAR10 with the VGG19 [3]
architecture as described in [18], removing the two hidden
fully-connected layers and applying batch normalization be-
fore the ReLU activation in each hidden layer.

CIFAR102 is a widely-used dataset for image classification
composed of 60 000 images (of which 10 000 belonging to the
test-set) of size 32× 32 arranged in 10 classes.

We used the Stochastic Gradient Descent (SGD) optimizer,
with hyperparameters as in [18]: initial learning rate of 0.1,
momentum of 0.9, weight decay of 0.0001; for computational
reasons, we reduced the batch size to 128, as in [1]. We set the
epochs of initial training (T ) to 160. We annealed the learning
rate by a factor of 10 at epochs 80 and 120. The experiments
were executed on single GPU.

1Actually, when using IMP+WR, we rewind the parameters to the situation
at iteration t, so we re-train for only τ − t epochs.

2https://www.cs.toronto.edu/∼kriz/cifar.html

For each training epoch, we shuffled the mini-batches for
SGD and applied random transformations (cropping, flipping,
affine transformations) to the original images.

Unless stated otherwise:
• we performed IMP for 20 iterations and used p = 20 %;
• we applied AIMP and IMP in conjunction with WR with

late resetting epoch t = 1 (i.e., the pruned weights were
rewound at the situation found after the first epoch of the
initial training);

• we performed 5 runs for each combination of the hy-
perparameters and computed the median performance
indexes.

We performed several experiments to evaluate AIMP in
different conditions and from different points of view.

In Section V-A, we present the results of AIMP+WR
applied with τ ∈ {20, 30, 40, 50} and we compare them
with IMP+WR. In Section V-B, we show that AIMP50+WR
is effective also when the original training of the unpruned
network is truncated at 50 epochs. In Section V-C, we show
the results obtained by applying AIMP50+WR and IMP+WR
with p increased to 30 and 40 %. In Section V-D, we compare
the performance of AIMP50+WR to that of IMP+WR applied
for a number of iterations smaller than 20. In Section V-E, we
show the results obtained by AIMP50 and IMP+LRR.

A. AIMP+WR with 20 iterations and pruning rate p = 20 %

We applied AIMP+WR with p = 20 % and τ = 50, 40, 30,
and 20.

For this round of experiments, we analyze the performance
under two facets: effectiveness, as test-set accuracy, and ef-
ficiency, as search-cost. The latter is defined in [2] as the
computational resources required to run the whole pruning
algorithm. This quantity is approximated by total epochs of
re-training for all the pruning algorithm iterations.

1) Test-set accuracy analysis: Median results are shown
in Table I. It can be seen that applying AIMP+WR with
τ = 30, 40, and 50 produces results on par with the regular
IMP+WR procedure. Lowering the epochs to 20, instead,
produces slightly worse results. The effect of AIMP+WR and
IMP+WR on pruning can be appreciated in Figure 1: regular
IMP+WR produces models with comparable performance for
all iterations; with AIMP+WR, instead, we observe that all
the intermediate byproducts are, as expected, very under-
performing. The final iterations produce the results we see
in Table I, second and third column.

2) Search-cost analysis: In our setting, IMP requires the
networks to be re-trained for 160 epochs for all 20 iterations,
which means we train for a total of 20 · 160 = 3200 epochs
(as done in [2], we do not consider the first training in this
calculation). Following this scheme, if we consider the generic
AIMPτ , we have 19 · τ + 160 total training epochs; obtaining
the results in Table I, fourth and fifth column. We can see that,
in order to get a CNN with approximately 1 % of the weights
of the original network with a comparable performance, with
AIMP we can save more than 70 % of time with respect to
the regular IMP, resorting to AIMP40.

https://www.cs.toronto.edu/~kriz/cifar.html


TABLE I
RESULTS FOR AIMP+WR WITH DIFFERENT VALUES OF τ COMPARED TO
THE REGULAR IMP+WR (τ = 0), BOTH WITH p = 20 %. ∆IMP REFERS
TO THE DIFFERENCE IN ACCURACY OF AIMPτ W.R.T. IMP. SPEED-UP IS

CALCULATED AS RE-TRAINING EPOCHS IMP
RE-TRAINING EPOCHS AIMPτ

.

τ Acc. ∆IMP Total retraining epochs Speed-up

0 0.9064 3200
50 0.9071 +0.0007 1110 2.88
40 0.9082 +0.0018 920 3.47
30 0.9039 −0.0025 730 4.39
20 0.9001 −0.0063 540 5.92
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Fig. 1. Median test-set accuracy vs. proportion of unpruned weights during
the execution of the pruning method for models pruned with AIMPτ+WR
(with τ ∈ {50, 40, 30, 20}), compared to the model pruned with IMP+WR
(τ = 0), both with p = 20 %. For the 20th and last iteration, all models are
trained for 160 epochs.

B. Reducing the number of epochs of the original training

One question which may arise is the following: is it pos-
sible that the pruned network performs similarly as the ones
presented in the previous section if also the unpruned network
is trained for the same number of epochs τ? The answer is:
yes.

We explored this scenario with the same setting as those pre-
sented before: VGG-19 for CIFAR10, same optimizer hyper-
parameters, first training operated for 50 epochs, AIMP50+WR
applied for 20 iterations; in the last iteration, the network
trained for 160 epochs.

The five networks obtained with this method achieved a
median test-set accuracy of 91.1 %, which is higher than both
IMP+WR (90.6 %) and AIMP50+WR (90.7 %).

C. AIMP with higher pruning rates

Another question which might arise is: is it possible that
AIMP works only because the pruning rate is too small? The
answer is: no.

We decided to increase p to 30 % and 40 %, producing a
pruned model with a similar sparsity and performance as the
one obtained with p = 20 %.

With p = 30 %, we applied IMP+WR and AIMP50+WR for
12 iterations; with p = 40 %, for 9 iterations.

TABLE II
RESULTS FOR AIMP50+WR AND IMP+WR FOR DIFFERENT VALUES OF p.

SPARSITY IS CALCULATED AS NUMBER OF PRUNED PARAMETERS
NUMBER OF PARAMETERS OF UNPRUNED MODEL.

Median test-set accuracy

p [%] Iterations Sparsity IMP+WR AIMP50+WR

20 20 0.9873 0.9064 0.9071
30 12 0.9850 0.9081 0.9053
40 9 0.9887 0.8999 0.8998
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Fig. 2. Median test-set accuracy vs. proportion of unpruned weights for
AIMP50+WR and IMP+WR applied to lower values of p. Given a number
N iterations, leading to a desired sparsity rate in the final product, re-training
is applied for 50 epochs up to the (N−1)th iteration, and eventually for 160
epochs.

The results are shown in Table II. As we can see, aside
from some small differences for the networks pruned with p =
30 %, the test-set accuracy is very similar independently of the
chosen method. Moreover, with p = 40 %, both IMP+WR and
AIMP50+WR are slightly outperformed by their counterparts
obtained with p = 20 % and p = 30 %.

D. AIMP with lower sparsity rates

We then decided to compare the accuracy of the models
pruned via AIMP+WR to that of models pruned via IMP,
at various sparsity rates. To allow for this comparison, we
repeatedly applied AIMP50+WR for a smaller number of
iterations, from 3 to 19: the corresponding pruned network
obtained with AIMP was always trained for 160 epochs for
the last iteration. The performances of IMP+WR are the same
as in Figure 1.

The results of the comparison are shown in Figure 2.
It can be seen that, for the longest part of the pruning
process, AIMP+WR could not keep up with the performance
of IMP+WR; the gap, though, seemed to progressively reduce,
until, at around 2 % of parameters remaining, the performances
of IMP+WR and AIMP+WR were almost identical. This indi-
cates that, most likely, when pruning the network aggressively,
AIMP becomes a viable alternative to IMP+WR.



E. AIMP+LRR

Given the recent introduction of LRR as an alternative to
WR, we decided to try if AIMP50 could produce quality results
also in conjunction with this new technique.

The setting was the same Section V-A, but instead of
applying WR, in each iteration we applied LRR: we trained the
network starting from the final pruned weights of the previous
iteration, rewinding the learning rate to 0.1. Since τ was 50,
the learning rate stayed constant at 0.1 for all iterations, except
for the 20th and last one.

The results are promising: the 5 repetitions for IMP+LRR
achieved a median test accuracy of 93.68 %, while
AIMP50+LRR scored a median test accuracy of 93.62 %.

F. Analysis

In this section we want to address the question: is there
some indicator of AIMP effectiveness during the pruning
process? Ideally, we would like to find an indicator that,
during a re-training phase of AIMP, tells that a steady state
has been reached, so we may stop training, proceed with the
pruning, and start the next iteration. We will not answer the
question definitely, but we provide some tools which may
be investigated further in future works in order to find said
indicators.

The candidate indicators we consider are:
• pruning masks;
• parameters;
• validation-set accuracy3.

We decided not to analyze the gradient because of the effects
of gradient clipping (see Section IV) which might introduce
distortions in the distribution.

1) Pruning masks: Let m̃(i)
t be the potential pruning mask

obtained at iteration of IMP+WR i and epoch t, and m̃
(i)
t,j

its jth entry. We use the term potential since pruning is not
operated at that moment; rather, we’re just calculating the
mask that we would have obtained, had we pruned the network
at epoch t of iteration i. Let P (i) be the total number of
parameters in the model at iteration of AIMP i. We define
two indicators:

D(i) =

∑P (i)

j=1 1
(
m̃

(i)
t,j 6= m̃

(i)
t−1,j

)
P (i)

D̃(i) =

∑P (0)

j=1 1
(
m̃

(i)
t,j 6= m̃

(i)
t−1,j

)
P (0)

,

where 1 is the indicator function:

1(z) =

{
1 if z is true
0 otherwise.

Practically speaking, both quantities identify the fraction of
elements within the mask that have changed with respect to the
previous epoch, i.e., parameters that would have been pruned
at the previous epoch and would not have been pruned at the

3The validation set was obtained by holding out 20 % of images from the
test set.
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Fig. 3. D(0), dynamics of the pruning mask as training is performed. The
jumps at iteration 80 and 120 are due to the drop in learning rate. Results
are extracted from a single run.

current one, or vice-versa; in D(i) the proportion is relative
to the current number of parameters in the model, while in
D̃(i) is relative to the total number of parameters in the initial
model. Note that D(0) = D̃(0).

First, in Figure 3 we see the trend of D(0), the mask
dynamics for the first training, as training is performed. We
see that, after each change of learning rate, the mask becomes
more and more stable, and, after epoch 120 a very small
fraction of parameters changes. This might be indicative of
the fact that, in order to determine a pruning mask, the epochs
120 to 160 are hardly needed for the first training, due to the
very small variations in the mask from epoch to epoch.

Then, in Figure 4, we see the trend of D(i) and D̃(i) for a
selected number of iterations of AIMP+WR. We notice that, as
the iteration number increases, the absolute number of changes
gets smaller and smaller (right chart), which is to be expected,
since there are less parameters in the model left to be pruned
(given that the p is constant at each iteration); instead, if
related to the number of parameters present in the model at
each iteration (left chart), the proportion of changes within the
mask increases as the number of iterations (thus, the sparsity)
increases.

As far as the behaviour across epochs is concerned, it would
seem that the value for D̃(i) stabilizes after 20 to 40 iterations
(even if at various rates throughout the different iterations),
while D(i) seems to be stable earlier in the re-training as the
iteration increases.

However, we do not see, in those indicators, any immediate
element in support of a choice of a particular level of τs.

As a side note, it can be seen that between subsequent
epochs there may be a large portion of parameters changing
between the pruning masks. As already noted in [13], there
are multiple lucky subsets of parameters within a dense ANN
which, when isolated (e.g., via pruning methods) and re-
trained, can lead to a performance comparable to that of the
initial network. Originally, the lottery ticket hypothesis [1]



postulated the existence of one of these subnetworks.
2) Parameters: We considered two indicators, namely the

L∞ norm of the parameter vector, and the LTOP(k)
1 measure,

i.e. the sum of the magnitude of the greatest (in magnitude)
k entries. Let θ(i)t be the vector of parameters at epoch t of
training for AIMP iteration i. We explored the application of
L

TOP(k)
1 on θ(i)t with various values of k, both dependent and

independent from the number of parameters in the model;
eventually, we resorted to a fixed k because, by doing so,
we always operate on a subspace of the parameter space
having the same dimension, thus yielding comparable values
no matter the iteration number. The final choice of 1000 is
rather arbitrary, as other values (like 500 and 10 000) yielded
similar trends.

Figure 5 shows the trends for LTOP(1000)
1 and L∞ (which

is equivalent to L
TOP(1)
1 ): we can see how the latter seems,

in many iterations, to settle after 20 to 40 epochs, while the
former does not stabilize, and keeps increasing as the iteration
increases.

The stabilization of L∞ may also be a signal of stabilization
of the training process, and could play a role in finding a
criterion to determine τ in a dynamical way, iteration by
iteration.

3) Validation-set performance: Figure 6 illustrates the
validation-set accuracy for iterations 1 to 19 of AIMP, for
all the three choices of τ (30, 40, and 50). The final test-set
accuracies of the pruned networks were, respectively, 90.5 %,
90.6 %, and 90.5 %. The results are obtained from a single
run, they are not averages of the 5 multiple trials we ran.

We observe that:
• Especially for the first iterations of AIMP, there is a

significant amount of performance gained by stopping
training at 50 rather than 40 or 30 epochs: for the first
iteration, accuracy is around 78 % at the 50th epoch vs.
around 73 % at the 30th epoch; the same trend is much
lighter for the latest iterations, where the gain stands at
around 2.5 % of accuracy.

• For all the choices of τ , the higher the iteration of AIMP,
the higher the performance throughout the training.

• Not one of the networks comes close, in terms of per-
formance, to the final test-set accuracy of 90.5 % (for
the models obtained with AIMP30 and AIMP50) and
90.6 % (for the model obtained with AIMP40). Anyway,
we can notice that, stopping training when validation-
set accuracies were above 75 % produced, after the 20th
AIMP iteration, a good final product, competitive with
respect to the original network pruned with IMP+WR.

All to all it is hard, based on the data at our disposal, to
formulate a criterion to decide, in a dynamical fashion, when
to stop training during the intermediate AIMP iterations. There
are still many questions to be answered, and many experiments
to conduct before using validation-set performance in support
of the selection of the level of τ .

4) Takeaways: In the previous sections we have presented
an analysis of parameters, pruning masks, and validation-set

accuracy data for each epoch of re-training and iteration of
AIMP in hope to find regularities or trend(s) supporting a
given choice of τ . Except for maybe the analysis of L∞
norm, we have not noticed anything immediate from our
investigations, but, with more experiments and analyses, and
maybe employing different metrics or quantities, it might be
possible to find some criteria to support the selection of a
given τ .

Since then, AIMP remains a method based solely on heuris-
tics, and the hyperparameter τ needs to be found for each
network architecture and dataset.

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we presented AIMP, a pruning technique for
ANNs based off of IMP. Our method consists into reducing the
number of epochs of re-training for the intermediate iterations
of IMP.

Our experiments, although performed on a limited array of
settings, indicate that AIMP can produce pruned ANNs with
same or better test-set accuracy than the networks with same
sparsity rate obtained with the regular IMP (both with WR or
with LRR) when the target sparsity rate is sufficiently high
(starting from about 98 % in our case), while speeding up the
execution of the algorithm by a factor of almost 3.

Evidence suggests that, when the target sparsity rate is not
large enough, AIMP fails to meet the performance achieved
by the homologous networks produced via IMP.

One downside of our algorithm is that the number of
iterations of AIMP (or, equivalently, the target sparsity to
achieve) have to be set beforehand: probably, all the iterations
before the last one will have a performance uncomparable to
the one of the unpruned network; consequentially, a stopping
criterion for the algorithm cannot be based on the performance
of the intermediate pruned networks.

Moreover, there are some points, the analysis of whom we
leave for future work:
• We experimented on a limited setting: VGG19 trained

on CIFAR10, with 5 repetitions of the experiment for
each set of hyperparameters considered. It should be
interesting to observe if AIMP works with different, more
complex networks (e.g., Resnet[19]) and datasets (e.g.,
ImageNet).

• We applied AIMP+LRR only with τ = 50, p = 0.2, and
20 iterations. Does the same trend of underperformance
applies for AIMP+LRR when the number of iterations is
smaller? Does AIMP+LRR perform well with different
values of τ and p?

• The objective of our work was to introduce AIMP and
present its results in comparison to IMP. We didn’t focus
extensively on analyzing methods to determine dynami-
cally, during training, good values of τ , rather presenting
tools which might help future works in addressing this
issue.
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