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Abstract—Video moment retrieval aims to search the moment
most relevant to a given language query. However, most existing
methods in this community often require temporal boundary
annotations which are expensive and time-consuming to label.
Hence weakly supervised methods have been put forward recently
by only using coarse video-level label. Despite effectiveness, these
methods usually process moment candidates independently, while
ignoring a critical issue that the natural temporal dependencies
between candidates in different temporal scales. To cope with
this issue, we propose a Multi-scale 2D Representation Learning
method for weakly supervised video moment retrieval. Specifi-
cally, we first construct a two-dimensional map for each temporal
scale to capture the temporal dependencies between candidates.
Two dimensions in this map indicate the start and end time
points of these candidates. Then, we select top-K candidates
from each scale-varied map with a learnable convolutional neural
network. With a newly designed Moments Evaluation Module,
we obtain the alignment scores of the selected candidates. At
last, the similarity between captions and language query is
served as supervision for further training the candidates’ selector.
Experiments on two benchmark datasets Charades-STA and
ActivityNet Captions demonstrate that our approach achieves
superior performance to state-of-the-art results.

I. INTRODUCTION

Video moment retrieval can facilitate a lot of multimedia
applications, e.g. video surveillance, sport analytics and short-
term video recommendation.

Therefore, it has drawn much research interest in recent
years[4], [27], [23]], [24]. This task aims to search the moment
most relevant to the given text query in an untrimmed video.
Taking Fig. 1 as an example, given a text query ”A person is
eating a sandwich. ”, we want to know when this event starts
and ends in the whole video.

During the past several years, deep learning based ap-
proaches have greatly promoted the development of video mo-
ment retrieval. Most of these methods use a fully-supervised
training manner, which requires accurate annotations of the
start and end time points of the corresponding moments
for given text queries. However, manually labelling temporal
boundary of the moments is time-consuming and of high cost.
Besides, the temporal boundaries of moments are usually am-
biguous to define, which brings more difficulties for accurate
labelling. To remedy the above issues, more recently, intense
attention [14], [13], [21], [S] is being paid for developing a
weakly-supervised training mechanism, which merely requires
video-level description for training data and thus leads to the
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Fig. 1. Video moment retrieval task: Localize the best-matched video
moments in an untrimmed video for the given text query.

significant cost saving. Although several works have made in
the weakly-supervised setting, there are still two crucial issues
requiring to be handled.

First, most existing weakly-supervised methods resort to
projecting the text features and video features of moment
candidates into some learned unified space, and then calculate
the alignment score of candidates with text query, the larger
score indicates the higher probability to be the result. However,
these methods process each moment candidate individually,
thus the relations between video moments are inevitably
neglected. Second, the present weakly-supervised moment
retrieval methods generally overlook the fact that the variance
of temporal scale of video moments is also an important
influence factor for moments localization. For example, both
text queries shown in Fig.1 are devoted to describing a similar
event of person eating sandwich, but the temporal lengths of
the corresponding video moments varies greatly.

For the first issue, we spot that this issue has been con-
cerned in several works for fully-supervised temporal action
detection. [16] employed self-attention mechanism and update
the features by aggregating the information from other candi-
dates with learned weights, but it brings much computational
cost. [26] constructed a candidate graph updated by graph
neural network(gnn) [18], in which relations between moment
candidates are implicitly represented by the edges between
candidate nodes. The constructed graph does not characterize



temporal dependencies between nodes explicitly, [27] then
proposed the 2D-TAN method, which consists of a single-scale
2D temporal feature map to explicitly represent and capture
the temporal dependencies between moment candidates and
has achieved promising performance. However, the lack of
temporal boundary annotations is not conductive to handle the
variance of temporal scale and design loss function in training
time, which makes it difficult to directly transfer the proposed
framework in these fully-supervised methods into the weakly-
supervised task. For the second issue, in fully-supervised
setting, e.g. 2D-TAN, such challenge is weakened by the
strong supervision of massive accurate moment annotations,
but we note that the single-scale 2D map applied in [27]
achieved limited success when generate more precise moment
candidates, which contributes little to the weakly-supervised
training.

These considerations motivate us to propose a multi-scale
2D Representation Learning model for Weakly-supervised
moment retrieval. The key idea is to construct multiple 2D
temporal feature maps with different temporal sampling scale,
and then evaluate the alignment scores of moment candidates.
The representation learning model resort to the two-stage
pipeline, and consists of Multi-scale 2D Temporal Network
and Moment Evaluation Module. In the Multi-scale 2D Tem-
poral Network, we construct the Multi-scale 2D Temporal Map
and perform convolution over the map to capture the temporal
context. In the Moment Evaluation Module, we introduce the
video caption module for each input moment candidate, and
generate pseudo label for training. We evaluate our proposed
method on two popular benchmark datasets for video moment
retrieval, e.g. Charades-STA and ActivityNet Captions Dataset.

The main contribution of this paper can be concluded as
follows:

1. We introduce a novel multi-scale 2D temporal network,
which elaborate multi-granularity moment candidates gen-
eration and captures temporal dependencies between mo-
ment candidates.

2. We propose a moment evaluation module with
reconstruction-guided binary cross-entropy loss (RG-
BCE loss), which facilitates the weakly-supervised
training.

3. Experiment results on the two benchmark datasets
(Charades-STA and ActivityNet Captions) verify the effec-
tiveness of our proposed method.

The rest of this paper is organized as follows. In Section
II, we briefly review some related works, followed by the
introduction of proposed multi-scale representation learning
method in Section III. Experimental results and discussions
are showed in Section IV. Finally, we conclude this paper in
Section V.

II. RELATED WORKS

In this section, we will mainly focus on the related works of
temporal action detection and recent related advances in video
moment retrieval via text queries.

Temporal action detection aims at localizing boundaries
and classifying category of action instances in untrimmed
videos. The two-stage method first generates action instances
with temporal boundaries and followed by classifier. These
works mainly focus on generating proposals with precise
boundaries. [12] adopted three activeness curves to locate
flexible proposal boundaries, [26] used graph network to ex-
tract features between different proposals, [11]used two feature
maps separately for completeness regression and temporal
boundary classification. By contract, the one-stage method
integrates location and classification into a single step and
hence achieves higher efficiency.

Besides, the weakly-supervised temporal action localization
only uses video-level action category as label when detecting
the temporal boundaries. Autoloc [19] regressed the confi-
dence scores and then generates more accurate proposals. BaS-
Net [10] proposed an asymmetrical two-branch weight-sharing
architecture to handle the background. However, the temporal
action are limited to the pre-defined simple action category,
which is not flexible to some video understanding applications.

To overcome aforementioned limitation of temporal action
detection, Gao [4] and Hendricks [1]] introduced the video
moment retrieval via text queries. [4] proposed to jointly model
video clips and text queries using multi-modal operations, then
alignment scores and location offsets were predicted based on
the multi-model representation. [1]] proposed to embed both
modalities into a common space and minimize the squared
distances. [25] followed a two-stage pipeline to retrieve video
clips. They first generated query-specific proposals from the
videos, then utilized caption reconstruction. In [2f], a visual
concept based approach was proposed to generate proposals,
followed by proposal evaluation and refinement. [24] explored
reinforcement learning to find the corresponding segments.
[27] introduced the 2d temporal feature map to represent
the moment candidates with temporal relations, and achieved
better performance.

Inspired by the success of the weakly-supervised temporal
action detection, a small number of works are proposed to
retrieve best-matching video moment without annotations of
temporal boundaries. [3] decomposed the problem of weakly-
supervised dense event captioning in videos into a cycle of
dual problems: caption generation and moment retrieval, and
explores the one-to-one correspondence between the temporal
segment and event caption. [[14] proposed a weakly-supervised
joint visual-semantic embedding framework for moment re-
trieval, and utilizes the latent alignment for localization during
inference. [21] exploited a multi-level co-attention mechanism
which comprises of a Frame-By-Word interaction module as
well as a novel Word-Conditioned Visual Graph (WCVG),
and incorporate the positional embedding in the temporal
sequence. [5] designed an alignment branch and a detection
branch, and merge the moment-text matching score for the
evaluation. [13] constructed a novel semantic completion
network for moment candidates evaluation, and exploited the
alignment relationship. However, these methods processed the
moment candidates individually, which neglects the temporal
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Fig. 2. The Framework of our Multi-scale Representation Learning for weakly-supervised moment retrieval. Taking a video-sentence pair as input, we extract
the basic video and text representations by Feature Extractor and Text Encoder. After that, we construct the Multi-scale 2D Temporal Network which consists
of 2D feature map and 2D score map. Then, we reconstruct the text query based on the top-k moment candidates in the map, and generate the pseudo labels

for training.

context information.

III. APPROACH

In this section, we first introduce the problem definition of
this task, and then present the pipeline for the Multi-scale 2D
Representation Learning, including Multi-scale 2D Temporal
Network and Moments Evaluation Module. In the proposed
pipeline, we utilize a multi-scale 2D temporal map to represent
the video segments, and employ 2D Temporal Network on
the constructed maps. Then, top-k moment candidates are
selected from the set of maps and taken as input of Moments
Evaluation Module. Eventually, we can get the final video
moments according to the evaluation score.

A. Problem Definition

As mentioned before, the goal of this paper is to retrieve
video moments of interest in a weakly-supervised setting.
Given a video denoted as V = {v;}~* and a sentence
T= {ti}f: | as text query, we aim to automatically retrieve the
most relevant video segment according to the query. IV, is the
number of the frames of the video, and L is the length of the
sentence. Specifically, we can get the best-matched moment
M = {7, 7.}, where 75, 7. are the indices of start and end
frame respectively. Note that there is no need to have access
to the temporal boundary annotations of video moments in the
training time.

B. Basic Video and Text Representation

This section introduces the basic feature representation of
the input text query and untrimmed video.

Video Representation. As for the given untrimmed video
V= {vi}f\gl we first split the whole video into several video
clips, then each video clip would be used as the input of a pre-
trained 3D CNN model. In the procedure of video split, we
utilize the multiple fixed intervals to sample frames from the
original video, which facilitates the construction of the multi-
scale 2D map. Following the setting of [27]], spatio-temporal
feature are extracted by the pre-trained 3D CNN model, and
then passed through a fully-connected layer with d” output
channels.

Text Representation. The text encoder includes the word
embedding and LSTM network [6]. We use GloVe word2vec
model to extract the word embedding of each word in the
input sentence. For each word ¢; in the input sentence, the
respective embedding vector are generated as w; € RdT, d’
is the length of the vector. The embedding vector {wi}iLzl are
then fed into the three-layer bidirectional LSTM network, and
we utilize the last hidden state as the text representation of the
sentence. The final text feature are extracted as f7 € RLxd"
which encodes the input text query.

C. Multi-scale 2D Temporal Network

The Multi-scale 2D Temporal Network takes an the basic
video and text representation as input, and outputs Ng x K
segment proposals and corresponding alignment scores respec-
tively. Ny is the number of scales, and K is the number of
selected segment proposals in each scale.

To get the segment proposals more precisely, we perform
multi-scale temporal sampling on the untrimmed video V =



{vi}f\i“l. Specifically, we first segment it into small video clips.
Each video clip consists of 7" frames. Then, we repeatedly
sample the video clips with NN, intervals. After j-th sampling,
we get N; video clipi\,[ E]l\Ifld the original video would be
convertedto V' = {Sf} Jl’ -

Further more, we extractl théjdeep 3D CNN feature of each clip
as mentioned before, denoted as { fs }ZV;IN; To get a more
compact representation, we pass the extracted feature through
a fully-connected layer with d” output channels. For the i-th
video segment sampled in j-th scale, the final 3D feature is
f5 € R™, where dV is the feature dimension.

The video segments obtained by multi-scale temporal sam-
pling are set as the input of the multi-scale 2D temporal
feature map construction, and each grid in the map represents
a moment candidate with start and end indexes along the
axis. The moment feature of each grid in the 2D map are
extracted on the basis of the 3D segment feature f5 € R?" .
In the extraction process, we follows the temporal pooling
design. For each moment candidate, we perform max-pooling
operation on the corresponding segments with the reference
of the start and end indexes in the 2D map. For the moment
in the x-th row and y-th column of the map, we can obtain
the feature of this moment candidate:

max pool ( 13,

Fj :{ S 5—&-13"'7.](.5)3 Zf0<$§y<Nj
x,y 07

else
where this moment starts from time stamp z and ends in time
stamp y. When 0 < z < y < Nj, the value of the moment
feature is non-zero. Thus, the 2D map of the j-th scale is
constructed, and the corresponding moment features in the
map are extracted by aggregating the video segment features.

We denote the the 2D temporal feature map of the j-th scale
as F79 ¢ RNixNjxd” Nj is the number of sampled segments
in the j-th temporal scale, and also represents the start and end
indexes in the j-th 2D map. Different from the single-scale 2D
temporal feature map, we collect all the 2D map constructed
in multiple scales, denoted as FM = {FJ }]:1

To select the proper candidate moments, we need to sample
the possible moments based on the 2D temporal feature map.
As introduced in [27], one simple way is to enumerate all
the possible consecutive video clips as candidates. While the
other way is to sparsely sample the moments, this could
efficiently remove the redundant moment candidates, and save
the computational cost simultaneously. So we choose the latter
sampling strategy, and get the selected moment candidates as
proposals.

The 2D Temporal Network mainly consists of the cross-
modal fusion and the convolution network over the multi-scale
2D temporal feature map, and update the cross-modal feature
by capturing the temporal dependencies on the 2D map.

After the construction of the multi-scale 2D temporal
feature map which represent the video moment candidates,
the next step is the cross-modal fusion based on the text
query features. In order to align the text query with moment
candidates in multi-scale 2D map, we first duplicate the

, where Sg is the sampled clips.

extracted text embedding feature fT N, times, denoted as
FT = {7, ... ,fT}NS. Then, the text features and video
moment features in the map are projected into a common
feature space by a fully-connected network. And eventually the
cross-modal feature map are fused by the Hadamard product
and /5 normalization. Mathematically, the generation of the
cross-modal feature can be formulated as follows:

Foro = [(WT - FT 1) © (W FM)|

where W7 and W™ represents the parameters of the fully
connected layers, which could be learnt in training. 17 is the
transpose of an all-ones vector, ® is Hadamard product, and
Il o denotes Frobenius normalization.

In order to capture the temporal dependencies between
moment candidates in the multi-scale 2D feature map, we
construct the multi-layer convolution network on the 2D cross-
modal feature map F,,. Through the convolution network, the
context information is aggregated from the adjacent moment
candidates, and the enlarged receptive field makes it easy to
leverage the long-term relations in the video.

D. Moments Evaluation Module

We generate the moment candidate alignment scores by
the Multi-scale 2D Temporal Network, and select the best-
matching moments by this score. However, there is no full an-
notations of temporal boundaries served as the supervision of
the moments evaluation when training in a weakly-supervised
manner. Thus, we propose a Moments Evaluation Module and
generate the pseudo labels for the moment candidate in the
2D multi-scale score map. In this module, we first select the
top-k moment candidates with higher alignment scores from
the 2D feature map in each temporal scale, and then perform
moments caption based on the selected moments. According to
the similarity between the reconstructed text query generated
by the moments caption model and the original text query in
annotations, we could obtain the pseudo labels as supervision
for training.

Moments Caption. Observing that the only annotation of
this task is the text query, we design the caption module and
make the whole model trainable. The framework of Moments
Caption has been shown in Fig. 3.

The text embedding vectors w; € R are passed through
the first LSTM layer, and the hidden state {h(l), hi,--- ,hi}
are fused with the cross-modal feature of the selected top-
k moment candidates F.ro. Then the fused sequence feature
are fed into the second LSTM layer [6]], and get the hidden
state {h3, h3,---, h%}. Finally, we utilize the fully-connected
layer and obtain the embedding vector of reconstructed query
w; € R,

Moments Evaluation. As for moments evaluation, the
output of the convolution network in the 2D temporal network
is passed through a fully-connected network with sigmoid
activation function, and obtain the multi-scale 2D score maps,
denoted as P = sigmoid (WX - F,,,). Each grid in the
score map represents the alignment score between the moment
candidate and the given text query. Owing to the lack of



Reconstructed * o

aQ wy w5 <EOS>
uer
v t t t
( FC Layer )
h2 h} hi
h hi hi
By
Input Query <S0OS> wy Wi

Fig. 3. The Caption Module for reconstruction of the text query. This module
consists of a two-layer LSTM network and a fully-connected layer, and
generate the caption of the moment candidates based on their cross-modal
feature and text query feature.

temporal boundary annotations, we are not able to compute the
tloU between moment candidates and truly-matched moments.
Thus, we generate the pseudo labels for further training of the
evaluation module, details are illustrated in the loss functions
section.

E. Loss functions

In this section, we mainly introduce the loss functions for
training the framework. The Loss functions in the proposed
model consist of a reconstruction loss and a cross-entropy loss.
The former is calculated between text query and reconstructed
query, and the latter is calculated after the moment candidates
evaluation on the 2D multi-scale score map.

Given a video-sentence pair, the reconstruction loss max-
imizes the normalized log likelihood of the words in the
reconstructed query, denoted by:

1 N,K L
Lrec = NSKL kz glogp(w? |Fck;"o7hl2—17wla"' ’wl—l)

=1

The reconstruction loss reflects the similarity of the input
query and the reconstructed query, the learnt model tends to
select moments candidates with lower reconstruction loss. For
the k-th moment candidate in the j-th scale 2D temporal feature
map, the reconstruction loss of the moment is denoted as l{c,
and the pseudo label y; is computed as:

L
Z log (U}f Fckroa h12_17w17w27 T awl—l)
lj _ =1
T K L )
Z Z IOg (wik |Fckro7 hl_la wiy, w2, - 7wl—1)
k=11=1
. 0; ) li > lma?(
y‘]z; = 1- li, lmin < li < lmax
1) l?c < lrnin

After generating the pseudo labels yi, we adopt them as
supervision of the candidates and design a reconstruction-

guided binary cross-entropy loss (RG-BCE loss):

N. K
1 s . . . .
Lrg—bee = 77 >0 yllogpl + (1 — yi) log (1 - pi)
ST j=1k=1
In total, the final multi-task loss could be formulated as:

L= Lrgfbce"')\Lrec

where A is the hyper-parameter for balancing the reconstruc-
tion loss and binary cross-entropy loss.

IV. EXPERIMENTS

We conduct experiments on two benchmark datasets:
Charades-STA and ActivityNet Captions, and evaluate the
effectiveness of our multi-scale 2D representation learning for
weakly-supervised video moment retrieval. We first introduce
the datasets, evaluation metric and implementation details, and
then report the experiment results and analysis. Finally, we
discuss the impact of the parameter setting in the proposed
model.

A. Datasets and Evaluation Metric

Charades-STA. The Charades dataset [20] is originally
proposed in 2016. It contains 9848 videos of daily indoors
activities. It is originally designed for action recognition and
localization. Gao et al. extend the temporal annotation, label-
ing the start and end time of moments of the original video
dataset with language descriptions and name it as Charades-
STA. Charades-STA contains 12408 moment-sentence pairs in
training set and 3720 pairs in testing set.

ActivityNet Captions. It consists of 19209 videos, whose
content are diverse and open. It is originally designed for
video captioning task, and recently introduced into the task
of moment localization with natural language, since these two
tasks are reversible. Following the experimental setting in [27]],
we use val-1 as validation set and val-2 as testing set, which
have 37417, 17505, and 17031 moment-sentence pairs for
training, validation, and testing. Currently, this is the largest
dataset in this task.

Evaluation Metric. We use the evaluation criteria following
prior works in literature [[14], [13], [21], [5]. We measure rank-
based performance R@K (Recall at K) which calculates the
percentage of test samples for which the correct result is found
in the top-K retrievals to the query sample. We follow [4] for
evaluating Charades-STA and ActivityNet Captions dataset,
and report results for R@1, R@5 in the condition of IoU=0.3
and IoU=0.5.

B. Implementation Details

We utilize a three-layer LSTM for extracting the basic text
features, and the feature dimension d” and d” is 512. We split
the whole video into small non-overlapping video clips, and
use pre-extracted C3D feature [22], [7]], [8]for both Charades-
STA and ActivityNet Captions datasets. The number of frames
in one clip in Charades-STA is 4, and that in ActivityNet
Captions is set to 16. The multi-layer convolution network is
8-layer with kernel size of 5. The dimension of hidden states



in moment caption module is 1024, and the dimension of the
Glove embedding [17] is 300. The thresholds [;,.x and lmin
in RG-BCE loss are respectively set to 0.7 and 0.1, and we
choose the top-10 moment candidates for moments caption.
We use Adam [9]] with learning rate of 1 x 10~%, and the batch
size 128 for optimization. Non maximum suppression (NMS)
[15] with a threshold of 0.5 is applied during the inference.

C. Quantitative Results and Analysis

In this section, we report the quantitative experiment results
and analysis on the two datasets.

Charades-STA Dataset. The experiment results on the
Charades-STA Dataset are shown in Table 1, and we use the
evaluation metric "R@n, IoU=m”, where n is {1,5}, and m
is {0.5,0.7}.

As shown in Table 1, when comparing with other weakly-
supervised approaches, our proposed method outperforms the
TGA model significantly and achieves better R@1 perfor-
mance compared with SCN, and the results confirm the effec-
tiveness of context information between moment candidates in
the multi-scale 2D representation learning. Through the multi-
scale 2D temporal feature map, fine-grained candidates are
generated and the context information between candidates is
encoded by the temporal network. Although the performance
of LoGAN is slightly better than ours, but it constructed
a Frame-By-Word interaction and get fine-grained moments
representation by co-attention with higher computational cost.

Moreover, our proposed weakly-supervised model outper-
form the visual-semantic embedding approaches VSA-RNN
and VSA-STV by a large margin, and also perform better
than some of the fully-supervised method, which indicates
our weakly-supervised model could effectively improve the
performance without the annotation of the temporal bound-
aries. Even when comparing with the state-of-the-art fully-
supervised method 2D-TAN, the margin of the prediction
performance is not so large. Especially, the gap between fully-
supervised 2D-TAN and our multi-scale 2D representation
learning is not so large, which verifies the rationality of the
designed moments evaluation module and RG-BCE loss in our
approach.

ActivityNet Captions Dataset. The results in Table 2
show the performance comparison with other methods on the
ActivityNet Captions Dataset, and we use the evaluation metric
”"R@n, IoU=m”, where n is {1,5}, and m is {0.3,0.5}.

Similar to results on Charades-STA, compared with the
weakly-supervised methods WS-DEC, WSLLN and SCN,
our proposed approach has achieved better performance, and
even outperform some of the fully-supervised methods. The
WS-DEC method designed a iterative process of moments
retrieval and caption, which leads to complicated optimization.
Compared with WS-DEC, our proposed method has employed
the top-k selection on the multi-scale 2D temporal feature map,
and has avoided the redundant iteration.

D. Discussion

In this section, we mainly discuss the impact of the selection
of temporal scales and the impact of the loss weight, some of

TABLE I
PERFORMANCE COMPARISON RESULTS ON CHARADES-STA DATASET.
Method Training 10005 1oU0.7
R@1 R@5 R@1 R@5
Random - 8.61 37.57 3.39 14.98
VSA-RNN Full 10.50 4843 432 20.21
VSA-STV Full 1691 53.89 5.81 23.58
CTRL [4] Full 23.63 58.92 8.89 29.52
2D-TAN [27]] Full 39.70 80.32 2331 51.26
TGA [14] Weak 19.94 65.52 8.84 33.51
LoGAN [21] Weak 34.68 7430 1454 39.11
SCN [113] Weak 23.58 71.80 9.97 38.87
Ours Weak 30.38 69.60 17.31 34.92
TABLE 11
PERFORMANCE COMPARISON RESULTS ON ACTIVITYNET CAPTIONS
DATASET.
Method Training loU0.3 1oU0.5
R@]1 R@5 R@1 R@5
Random - 18.64 5278 7.63 29.49
VSA-RNN Full 3928 70.84 2343 5552
VSA-STV Full 4171 71.05 2401 56.62
CTRL [4] Full 4743 7532 29.01 59.17
2D-TAN [27]] Full 5945 85.53 4451 77.13
WS-DEC [3] Weak 41.98 - 23.34 -
WSLLN [5] Weak 42.80 - 22.70 -
SCN [113] Weak 4723 7145 29.22 55.69
Ours Weak 49.79 72.57 29.68 58.66

the experiment results are listed as follows.

Impact of Multiple Temporal Scales. To evaluate the
impact of temporal scales of the 2D temporal feature map, we
conduct a set of experiments outlined in Table [[IIl When using
our proposed multi-scale 2D temporal feature maps (N, = 3),
the experiment results are better than that of single-scale 2D
temporal feature map (N, = 1, N; = 64), which indicating the
effectiveness of the multi-scale 2D feature maps. When setting
N; = 64,24,4, the performance is boosted and better than
results of single-scale map by a large margin. The smallest
scale in N, is ranges in [4, 6, 8], and we get better experiment
results when set it as 4, because the smaller value makes the
multi-scale temporal maps able to cover more precise moments
with longer temporal length.

TABLE III
EXPERIMENT RESULTS WITH MULTIPLE TEMPORAL SCALES (T—SCALE).
. 1oUO0.3 IoUO0.5

T-Scale  Multi-scale R@l R@5 R@I R@S

64 X 4425 63.66 27.07 51.79
64-24-8 v 44.52 63.70 25.00 52.05
64-24-6 v 4799 6641 21.09 44.30
64-24-4 v 49.79 7257 29.68 58.66




A. Query: The person throws their dirty clothes onto a sofa.

D. Query: The person sits down in a chair.

B.  Query: The person opening a refrigerator in the dining room.

12.8 Score: 0.42  Reconstruction loss: 0.29 16.6

Query: A person pours some water in a glass.

11.8
Scnr: 0.30 Reconstruction loss: 0.42

22.5  Score:0.35 Reconstruction loss: 0.26 24,7

E. Query: A person sits on a bed with a pillow.

0.0 Score: 0,53  Reconstruction loss: 0.17 : 43

F. Query: A person starts throwing their clothes toward the doorway.

45.7
45.4 Score: 0.58

49.0
Reconstruction loss: 0,11 48.9

Fig. 4. Qualitative results on Charades-STA datasset. The red line represents the ground truth, and the blue line is the prediction of our method. And we also
demonstrate the alignment score and the corresponding reconstruction loss of the predicted video moments.

TABLE IV
EXPERIMENT RESULTS WITH DIFFERENT LOSS WEIGHT.
Loss weight IoU0.3 IoUO0.5
R@l R@5 R@l R@5
A=0.5 47.09 7462 21.63 54.01
A=1.0 49.79 7257 29.68 58.66
A=2.0 43.85 79.98 24.68 59.67

Impact of Loss Weight. As it shows, the performance of
our model is relatively stable when A is set as 0.5 or 1.0. When
A =2.0, the R@1 performance drops, while R@5 performance
increases. The context information from adjacent clips would
benefit the moment caption, so a few video moments with low
reconstruction loss do not have the highest tloU with ground
truth, and the R@1 metric drops.

E. Qualitative Results

We present some qualitative results on the Charades-STA
dataset to illustrate the effectiveness of our method, several
examples are shown in Fig. 4. The red line is the ground truth,
and the blue line represents the moment prediction. In Fig. 4,
case A, E and F are successful cases, and the predictions in
cases B, C and D are relatively misaligned compared with the
ground truth.

According to the Fig. 4, the successful moments prediction
have the higher alignment scores as well as the lower recon-
struction losses, which indicates that our moment evaluation
module with RG-BCE loss is capable to evaluate the quality
of input candidates. The successful samples include moments
with long time of duration (e.g. sample A) and those with short
time of duration (e.g. sample F), which shows the capability
of our proposed method in weakening the negative affects
resulting from variation of temporal scales.

Due to the ambiguity of the action moments and existing
noise in the scene, our weakly-supervised method has achieved
limited success when dealing with these cases. Take sample
B as an example, in the untrimmed video, a person opens the
refrigerator and then closes it. It is hard to deal with ambiguity
of “open” and “close” and localize the best-matching moment
without temporal boundary annotations. In sample C, the noise
of objects visible in the scene affects the moment evaluation,
which leads to the misalignment compared with ground truth.

V. CONLUSION

In this work, we focus on the task of video moment retrieval
without manually labelling the start and end time points of
moments in training. We address the motivation of considering
the various temporal scale of moment candidates as well as
the temporal relations between them in weakly-supervised
setting, and propose a multi-scale 2D representation learning
method, including the multi-scale 2D temporal network and
weakly-supervised moments evaluation module with RG-BCE
loss. The multi-scale 2D temporal map could generate more
precise moment candidates with various temporal scales, and
moment-to-text reconstruction facilitate the weakly-supervised
training in moments evaluation. The experiment results on
the Charades-STA and ActivityNet Captions datasets demon-
strated the effectiveness and superiority of our proposed ap-
proach.
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