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Abstract—Elasticities in depth, width, kernel size and resolu-
tion have been explored in compressing deep neural networks
(DNNs). Recognizing that the kernels in a convolutional neural
network (CNN) are 4-way tensors, we further exploit a new
elasticity dimension along the input-output channels. Specifically,
a novel nuclear-norm rank minimization factorization (NRMF)
approach is proposed to dynamically and globally search for the
reduced tensor ranks during training. Correlation between tensor
ranks across multiple layers is revealed, and a graceful tradeoff
between model size and accuracy is obtained. Experiments then
show the superiority of NRMF over the previous non-elastic
variational Bayesian matrix factorization (VBMF) scheme.

I. INTRODUCTION

Deep learning and deep neural networks (DNNs) have
achieved breakthroughs in various artificial intelligence (AI)
applications, including classification [1], object detection [2],
and semantic segmentation [3]. However, DNN structures are
getting deeper and larger, making it challenging to deploy
DNNs on edge devices with limited resources. This dilemma
has motivated the search for compact neural networks with
lower computation and memory cost. Various neural network
compression techniques have been proposed, which can be
mainly divided into three categories, namely, pruning [4],
quantization [5], [6], and low-rank approximation [7].

Tensor factorization [8] belongs to the third category and is
a powerful tool to compress convolutional neural networks
(CNNs). It offers efficient low-rank approximations of the
convolution kernels that can be regarded as a 4-way tensor,
resulting in a significant reduction of parameters at the expense
of only a small drop in output accuracy. Canonical polyadic
(CP) decomposition is a widely used tensor decomposition
method, which has been applied to decompose a 4-way kernel
tensor into four sequential smaller convolutional (CONV)
layers [9]. However, this approach is highly sensitive to the
decomposition and only works well when one or two layers
are compressed. Besides, the CP ranks need to be selected
manually which is time-consuming without any optimality
guarantee. To address this, Tucker-2 decomposition has been
proposed to factorize a CONV layer into three smaller ones
with Tucker ranks set by variational Bayesian matrix factoriza-
tion (VBMF) [10]. Although VBMF provides a principled way
to prescribe ranks, it suffers from two major drawbacks: 1) it
does not guarantee a globally or locally optimal combination
of ranks; 2) once the ranks are set, they remain fixed during
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the fine-tuning stage, making it impossible to seek better ranks
dynamically.

To improve upon VBMF rank selection, an intuitive way is
to traverse all rank combinations. This is similar to the neural
architecture search (NAS) [11], but obviously such brute-force
method is time-consuming and computationally prohibitive.
Recently, the once-for-all (OFA) approach has been proposed
using a progressive shrinking algorithm to effectively train
a network that supports diverse architectural settings with
elastic depth, width, kernel size and resolution [12]. Along
a related but orthogonal direction, we devise a new way
to exploit elasticity in tensor ranks for compressing CNNs.
Our baseline is the work in [10] that compresses the input-
output channel dimensions using Tucker-2 decomposition (the
spatial dimensions, typically 3 × 3 or 5 × 5, are too small
to be compressed). However, instead of fixing the ranks and
prescribing the CNN structure before fine-tuning, our scheme
dynamically finds the required Tucker-2 ranks via a nuclear-
norm-like regularizer added to the normal loss function.

To our best knowledge, this is the first time that Tucker
ranks of kernel tensors are found on-the-fly during training.
We further show that the ranks located by our nuclear-norm
rank minimization factorization (NRMF) consistently achieve
higher compression ratios than VBMF ranks with only a slight
accuracy drop. Our key contributions are:

• We exploit the elasticity in tensor ranks during training
by adding a nuclear-norm-like regularizer to the loss
function, in contrast to everything being hardwired at the
beginning as in the VBMF approach.

• By analyzing variation of ranks in early CONV layers
to deeper ones, one observes an interesting decreasing of
ranks in the last several layers. This could be guidance
to remove redundancy in wide layers without much
information loss.

• The proposed NRMF is a generic, dynamic rank selec-
tion method which can be applied for low-rank CNN
approximation together with other techniques such as
quantization and pruning.

Experimental results on some popular networks demonstrate
that the ranks obtained by our proposed method are better
choices than VBMF-based Tucker-2 decomposition, which
achieve higher compression ratios and maintain good perfor-
mance. In the following, Section II shows some related works.
Section III introduces necessary tensor basics. Details of the
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proposed method are described in Section IV. Experiments are
given in Section V and Section VI draws the conclusion.

II. RELATED WORK

Tensor Decomposition. In CNNs, computational cost dur-
ing inference is dominated by the evaluation of convolutional
layers. With the goal of speeding up inference, many CNN
compression tools based on tensor decomposition have been
proposed. Tensor-train (TT) decomposition has been applied
to fully-connected layers [13] and CONV layers [14]. CP [15]
and Tucker [10] decomposition are also used to model com-
pression. However, the CP approach requires manual rank
setting, and is highly sensitive and only works for one or
two layers. Consequently, we use the Tucker-2 decomposition
in [10] as our baseline for compressing CONV layers.

Rank Selection. Ranks are key parameters in tensor de-
composition for trading compression with model accuracy. In
order to find the optimal ranks for different layers, several rank
selection methods have been proposed. Reconstruction opti-
mization [8] uses CP decomposition. Ref [16] has proposed a
heuristic fitness-based rank selection method. However, these
methods have limitations in multi-rank selection and suffer
from convergence problems during optimization. A sensitivity-
driven rank selection considering the ratio threshold of singular
values (SVs) is introduced in [17], but the wide range of the
criterion renders the decision difficult. Variational Bayesian
matrix factorization (VBMF) [18] is a tool to select ranks for
Tucker-2 decomposition by unfolding a tensor along different
modes. VBMF offers a probabilistic ground to automatically
find the ranks and noise variance, and is employed in [10]
to determine ranks. However, the matrix-wise independence
in VBMF factors is hard to justify. Also, it is difficult to use
VBMF to fit a given compression ratio since the parameters
of controlling ranks are so sensitive that minor modifications
might lead to zero ranks.

Pruning. The popular and effective DNN compression
pipeline involves training, pruning and re-training [4], which
takes parameter magnitude for thresholding. There are various
extensions: pruning cost measurement [19], soft weight-
sharing and factorized Dirac posteriors [20], dynamic sparse
training [21] etc. Instead of pruning weights in neural net-
works, [12] proposes progressive shrinking to reduce multiple
dimensions (viz. depth, width, kernel size and resolution)
of the whole network. Besides, it targets searching the best
sub-networks which maintain accuracy rather than pruning
just one network. As a generalization of pruning methods,
ranks used in compressing layers via Tucker decomposition
can also be considered as an elastic dimension. While it has
high computational cost with Tucker decomposition for every
rank combination, we propose to not actually factorize during
training, but use a data-driven optimization to strike a balance
between accuracy and compression.

III. PRELIMINARY

Tensors are high-dimensional generalization of vectors and
matrices [22]. In the following, we use Roman letters a, b, . . .

Fig. 1. Graphical representation of a scalar a, vector a, matrix A, and third-
order tensor A.

to denote scalars; boldface letters a,b, . . . to denote vectors;
boldface capital letters A,B, . . . to denote matrices; and
boldface capital calligraphic letters A,B, . . . to denote tensors.
Tensor network diagram is a handy way of representing
tensors as shown in Figure 1, wherein each node denotes
a tensor whose order is represented by the number of free
edges. Reshaping is a basic tensor operation, by adopting a
MATLAB-like notation, “reshape(A, [m1,m2, . . . ,mp])”, we
reshape a d-way tensor A ∈ RI1×I2×...×Id into another p-way
tensor with dimensions m1,m2, . . . ,mp. The total number of
elements of A is

∏d
k=1 Ik, which must be equal to

∏p
k=1mk.

Tensor-matrix multiplication is a generalization of the matrix-
matrix product to the multiplication of a matrix with a d-way
tensor along one of its d modes.

Definition 1: (k-mode product) The k-mode product of
tensor G ∈ RR1×···×Rd with a matrix U ∈ RJ×Rk is denoted
A = G ×k U and defined by

A(r1, · · · , rk−1, j, rk+1, · · · , rd) =
Rk∑

rk=1

U(j, rk)G(r1, · · · , rk−1, rk,rk+1, · · · , rd)

where A ∈ RR1···Rk−1×J×Rk+1···×Rd .
Definition 2: (Full multilinear product) The full multi-

linear product of a tensor G ∈ RR1×···×Rd with matrices
U (1),U (2), . . . ,U (d), where U (k) ∈ RIk×Rk , is defined by
A = G ×1 U

(1) ×2 U
(2) . . .×d U (d), where A ∈ RI1×...×Id .

Definition 3: (Tucker decomposition) Tucker decomposi-
tion represents a d-way tensor A ∈ RI1×...×Id as the full
multilinear product of a core tensor G ∈ RR1×R2×...×Rd and
a set of factor matrices U (k) ∈ RIk×Rk , for k = 1, 2, . . . , d.
Writing out U (k) = [u

(k)
1 ,u

(k)
2 , . . . ,u

(k)
Rk

] for k = 1, 2, . . . , d,

A =

R1∑
r1=1

· · ·
Rd∑

rd=1

G(r1, . . . , rd)(u
(1)
r1 ◦ · · · ◦ u(d)

rd )

= G×1 U
(1) ×2 U

(2) · · · ×d U
(d)

where r1, r2, . . . , rd are auxiliary indices that are summed
over, and ◦ denotes the outer product. The dimensions
(R1, R2, . . . , Rd) are called the Tucker ranks.

With the definition of Tucker decomposition in place, the
Tucker-2 decomposition [10] is easily understood. A CONV
layer can be regarded as a 4-way kernel tensor of size [height
× width × #input × #outputs], and the Tucker decomposition
is applied only to the last two modes instead of all four since
spatial dimensions are too small (e.g., 3 × 3 or 5 × 5) to be
decomposed. Figure 2 shows the graphical representation of



Fig. 2. (Upper) Tucker-2 decomposition of a kernel tensor K. (Lower)
Convolution process on the decomposed kernel tensor where X is the input
feature and U(3),C,U(4) are three sequential smaller CONV layers after
factorization with kernel size 1× 1, D ×D and 1× 1, respectively.

Tucker-2 decomposition on a kernel tensor K in the upper
part, and the convolution process after the decomposition
in the lower part. The Tucker ranks play a crucial role in
approximating the original full tensor, which determines the
performance of the compressed CNNs.

VBMF is employed in [10] to find Tucker ranks, which
we briefly describe here. The upper part of Figure 3 shows
mode-3 and mode-4 matricizations of the 4-way kernel tensor
W ∈ RD×D×S×T . When searching rank R3 for W (1) ∈
RS×(T×D×D), VBMF treats W (1) as the observation matrix,
which is the sum of a target matrix U ∈ RS×(T×D×D) and a
noise matrix E ∈ RS×(T×D×D) such that W (1) = U + E.
The goal of VBMF is to find a low-rank U by filtering out
the noise on W (1). Being a probabilistic matrix factorization
tool [18], VBMF finds the noise variance on W (1) automati-
cally, then gets the rank R3 of U , and similarly for R4.

IV. THE PROPOSED NRMF SCHEME

Here we propose a novel way to exploit elasticity in Tucker
ranks. First, we introduce a nuclear-norm-based regularizer,
and demonstrate how it can dynamically locate the ranks
during training. Algorithm 1 captures the workflow.

A. Regularizer

Given a CNN with M convolution filter tensors Wm ∈
RDm×Dm×Sm×Tm , m = 1, 2, · · · ,M , where Dm × Dm de-
notes the kernel size, Sm and Tm are input and ouput channels
for mth convolution layer, respectively. Then, we get W (1)

m ∈

Fig. 3. (Upper) Mode-3 and mode-4 matricizations of 4-way kernel tensor
Wm. (Lower) NRMF rank selection strategy.

RSm×(Tm×Dm×Dm) and W
(2)
m ∈ RTm×(Sm×Dm×Dm) as

mode-3 and mode-4 matricizations of Wm. Next, a regular-
ization term Ln is added to the training loss that penalizes
increase in the sum of singular values (SVs) of matrices
W

(1)
m W

(1)T
m and W

(2)
m W

(2)T
m :

Ln =
1

2M

M∑
m=1

(tr(W (1)
m W (1)T

m ) + tr(W (2)
m W (2)T

m )). (1)

Because tr(W (1)
m W

(1)T
m ) and tr(W

(2)
m W

(2)T
m ) are also nu-

clear norms of W
(1)
m W

(1)T
m and W

(2)
m W

(2)T
m , respectively,

we call this trace loss a nuclear-norm loss.

B. Modified Loss Function

Having the regularizer, we can train a CNN directly through
back-propagation algorithm to obtain both truncated ranks
and a new way of initialization which preserves compressed
information from the original CNN. Given the training dataset
D = {(x1,y1), (x2,y2), · · · , (xN ,yN )} and weights param-
eter W in the network, our initialization is determined by:

J (W) =
1

N
(

N∑
i=1

L((xi,yi),W)) + αLn(Wcl), (2)

w∗ = argmin
W
J (W), (3)

where L is the loss function, e.g., cross-entropy loss in
classification, Wcl ⊆W are filter weights for all convolution



layers with kernel size larger than 1×1, α is the scaling factor
for the rank regularization term.

The regularizer Ln tends to suppress non-zero SVs and
yields smaller ranks. However, stronger suppression of SVs
incurs increase in the loss function, which counteracts the
compression level. Consequently, it becomes a game between
the estimation loss term and the regularization term, through
which our method can dynamically find elastic ranks that strike
a balance between performance and Tucker-2 ranks.

C. Rank Selection

The proposed regularizer facilitates the learning of ranks to
achieve high compression ratios without much accuracy loss.
After training, the SVs in W

(1)
m W

(1)T
m and W

(2)
m W

(2)T
m are

suppressed to have nearly zero tails. By considering sum of
these SVs as “energy” in the original weight tensor, we use a
threshold ratio p to retain the leading singular vectors and the
number of SVs which preserve a certain percentage of energy,
as detailed in Algorithm 1. Because we are minimizing the
sum of SVs while keeping a balance between estimation accu-
racy and compression ratio using threshold p, initialization for
fine-tuning after doing Tucker-2 decomposition preserves most
energy in the original network without much information loss.
However, the accuracy still drops after Tucker-2 truncation,
which can be recovered by fine-tuning with our Tucker-based
initialization.

Algorithm 1 Nuclear-norm rank minimizing factorization
(NRMF)-based training for dynamic Tucker-2 rank finding.
Require: A CNN with kernel tensors {Wm ∈ W |Wm ∈
RDm×Dm×Sm×Tm , m = 1, 2, . . . ,M}, threshold p, scaling
coefficient α, optimizer L, learning rate lr, dataset D,
number of training epochs N .

Ensure: Tucker ranks R(3)
m , R

(4)
m with m = 1, 2, . . . ,M .

NRMF-based optimizer J in form of Eqn.(2) ← L, α,W
for i = 1, 2, . . . , N do

W ←W + lr ∗ ∂J (D,W)
∂W

end for
for m = 1, 2, · · · ,M do
W

(1)
m ← reshape (Wm, [Sm, (Tm ×Dm ×Dm)])

W
(2)
m ← reshape (Wm, [Tm, (Sm ×Dm ×Dm)])

λ
(im)
m ← SVs for W (1)

m W
(1)T
m , im = 1, · · · , Sm

ξ
(jm)
m ← SVs for W (2)

m W
(2)T
m , jm = 1, · · · , Tm

e
(1)
m ←

∑Sm

im=1 λ
(im)
m , e(2)m ←

∑Tm

jm=1 ξ
(jm)
m

R
(1)
m ← argmin

R
(1)
m

∑R
(1)
m

im=1 λ
(im)
m

e
(1)
m

≥ p

R
(2)
m ← argmin

R
(2)
m

∑R
(2)
m

jm=1 ξ
(jm)
m

e
(2)
m

≥ p

end for

V. EXPERIMENTS

We evaluate our proposed rank selection strategy from three
perspectives. In Section V-A, we present a simple LeNet5

example to demonstrate the SV suppression by the nuclear-
norm regularizer during training. In Section V-B, we compare
the VBMF- and NRMF-induced ranks on model initialization
and compression. A layer-wise analysis of compression ratios
is given in Section V-C. Lastly, an overview result is given
in Section V-D. We implement our proposed approach for
four popular networks, namely, AlexNet [23], GoogleNet [24],
ResNet18 [25], DenseNet [26] on CIFAR-10 [27], CIFAR-
100 [27] and ImageNet [28] to demonstrate the superiority of
our method when locating ranks and performing compression.
All codings are done with PyTorch and experiments run on
an NVIDIA GeForce GTX1080 Ti Graphics Card with 11GB
frame buffer.

A. Effect of Regularizer on SVs of the Parameters

We use a simple example to illustrate the effect of the
nuclear-norm regularizer. Specifically, we apply NRMF to
a modified LeNet5 on MNIST [29], namely, by inserting
an extra CONV layer with a kernel tensor of size W ∈
R3×3×128×256 into the original network, then training with
and without the regularizer. In the test, we set the scaling
coefficient α = 10−2, use a batch size of 64 and learning rate
10−4 decaying 0.1 times every 5 epochs. We train the modified
LeNet5 for 50 epochs to show the trend of SV variation.

As noted in Section III, the Tucker rank selection is
closely related to the SVs of W (1) ∈ R128×(256×3×3) and
W (2) ∈ R256×(128×3×3). Figures 4(a)&(b) show the SVs of
W (1)W (1)T and W (2)W (2)T versus training epochs without
the regularizer. It is obvious that the SVs keep increasing,
meaning that the important information of W (1) and W (2)

expands and flows through the whole network. However,
as depicted in Figures 4(c)&(d), when the regularizer is
incorporated into the training, the SVs of W (1)W (1)T and
W (2)W (2)T continually decrease and subside at the end.
The decrease in SVs is particularly evident after the first
few epochs. This phenomenon reveals that during training,
the regularizer concentrates the important information flow
into low-rank matrices, which facilitates subsequent model
compression.

B. VBMF vs. NRMF

Here we compare the performances of VBMF-based
and NRMF-based Tucker-2 decomposition via ResNet18 on
CIFAR-10. The test setup and flow are depicted in Figure 5.
As described in Section IV-C, the value of p is important
for determining the ranks. In order to explore the effect of
p on NRMF, we take p = 92%, 95%, 98%, and record the
performances of NRMF under these three settings.

For clarity, here we elaborate what is done in the “Trun-
cation or Extension” stage in Figure 5. Before this stage, we
already have two different sets of ranks, namely, VBMF ranks
and NRMF ranks. Correspondingly, we have two different
initialization models. By regarding the VBMF and NRMF
initialization models as the baselines, we can use VBMF
and NRMF ranks to modify them. Paths a&d in Figure 5
can be understood as entering the fine-tuning stage using



Fig. 4. (a) and (b) show the trends of SVs of W (1)W (1)T with and without regularizer, respectively. (c) and (d) show the trends of SVs of W (2)W (2)T

with and without regularizer, respectively. It is obvious that when the regularizer is included in the training process, SVs keeps decreasing as the number of
training epochs increases.

Fig. 5. Experimental procedure in Section V-B. Firstly, we use the pretrained model on ImageNet to train on CIFAR-10 with and without nuclear-norm-like
regularizer. Next, by applying VBMF and NRMF to the obtained normal and nuclear-norm initialization models separately, we can get VBMF and NRMF
ranks. After this, we use the ranks to do the Tucker-2 decomposition as shown by the dotted arrows. Therefore, we collect VBMF and NRMF initialization
models. Next, we use each of the two sets of the ranks on the VBMF and NRMF initialization models, such that a total of four rank-initialization combinations
are obtained for the fine-tuning phase.

the NRMF (VBMF) ranks and NRMF (VBMF) truncated
Tucker-2 factors. The operations of paths b&c are similar,
and here we take path b as an example. Assume there is
a CONV layer decomposed into three smaller ones of size
[1, 1, 128, 100], [3, 3, 100, 120], and [1, 1, 120, 256] in VBMF
initialization model, and the corresponding NRMF ranks of
the given CONV layer are 110 and 90. Then we will modify
the three CONV layers to [1, 1, 128, 110], [3, 3, 110, 90], and
[1, 1, 90, 256] according to the NRMF ranks. This is done by
padding zeros to the CONV layer of size [1, 1, 128, 100] and
truncating the CONV layer of size [3, 3, 120, 256]. As for
the middle one of the three smaller CONV layers, padding
and truncating operations are applied on the input and output
channels, respectively.

It is shown in Tables I to III that NRMF provides higher
compression ratios (viz. much smaller number of parameters)
with little test accuracy loss. It is observed that the highest
prediction accuracy is not achieved by the combination of
NRMF ranks and initialization. One possible reason is that
SVs in NRMF have been already squeezed to nearly zeros,
and it is more difficult to bring them back to higher values
for better accuracy via fine-tuning. We note that fine-tuning
through path b using NRMF ranks reaches competitive preci-
sion with VBMF ranks at only half the parameters. Compared
with the other two truncation ways, the NRMF initialization
and ranks offer a graceful tradeoff between complexity and
prediction accuracy. In the following experiments, we adopt
the combination of VBMF initialization and NRMF ranks to



TABLE I
THRESHOLD EFFECTS FOR RESNET18 ON CIFAR-10 WITH p = 92%

VBMF ranks NRMF ranks
VBMF initialization 94.40% 93.50%

NRMF initialization 95.46% 94.21%

# Parameters 7.01M 3.05M

TABLE II
THRESHOLD EFFECTS FOR RESNET18 ON CIFAR-10 WITH p = 95%

VBMF ranks NRMF ranks
VBMF initialization 94.40% 94.40%

NRMF initialization 93.58% 93.91%

# Parameters 7.01M 3.88M

TABLE III
THRESHOLD EFFECTS FOR RESNET18 ON CIFAR-10 WITH p = 98%

VBMF ranks NRMF ranks
VBMF initialization 94.40% 95.07%

NRMF initialization 92.98% 93.58%

# Parameters 7.01M 5.28M

TABLE IV
LAYER-WISE ANALYSIS ON RESNET18. S: INPUT CHANNEL DIMENSION,
T : OUTPUT CHANNEL DIMENSION, R3 AND R4 ARE TUCKER-2 RANKS.

p = 95% TO SELECT RANKS.

Layer S/R3 T/R4 #Parameters

conv1 256 256 589.82K

conv1 (VBMF) 168 176 354.18K(×1.67)

conv1 (NRMF) 144 141 255.70K(×2.31)

conv2 256 512 1.18M

conv2 (VBMF) 194 275 670.61K(×1.76)

conv2 (NRMF) 222 299 807.32K(×1.46)

conv3 512 512 2.36M

conv3 (VBMF) 332 328 1.32M(×1.79)

conv3 (NRMF) 292 212 815.18K(×2.89)

conv4 512 512 2.36M

conv4 (VBMF) 348 342 1.42M(×1.66)

conv4 (NRMF) 160 69 216.61K(×10.89)

conv5 512 512 2.36M

conv5 (VBMF) 382 392 1.74M(×1.35)

conv5 (NRMF) 31 39 46.72K(×50.50)

demonstrate effectiveness of our rank selection method.

C. Layer-wise Analysis of Compression Ratios

In this section, we present the layer-wise analysis of com-
pression ratios via VBMF-based and NRMF-based Tucker-2
decomposition. We apply the two approaches to ResNet18
on CIFAR-10. As for the rank selection setting, we employ
p = 95%. Besides, the number of epochs for fine-tuning
is 50 for both VBMF-based and NRMF-based compressed
models. Furthermore, only the CONV layers with 3×3 kernels

TABLE V
PERFORMANCE COMPARISON ON CIFAR-10

Model Rank Selection Top-1 Accuracy (%) #Parameters

AlexNet

Baseline 91.85 57.04M

VBMF 91.29 55.93M

NRMF 91.03 55.05M

GoogLeNet

Baseline 95.53 5.61M

VBMF 96.18 4.20M

NRMF 95.57 4.08M

DenseNet

Baseline 96.56 6.96M

VBMF 95.29 5.85M

NRMF 96.99 5.85M

are compressed, i.e., totally 16 CONV layers in ResNet18.
We do not compress CONV layers with 1 × 1 kernels and
fully connected layers. The number of parameters of those
16 original CONV layers is 10.99M . After compression,
the number of parameters of those CONV layers becomes
6.82M and 3.67M for VBMF-based and NRMF-based com-
pressed models, respectively. The accuracy of VBMF-based
and NRMF-based compressed models are both 94.40%.

In Table IV, the layer-wise analyses of last five compressed
CONV layers are presented. It is worth noting that for conv4
and conv5, NRMF has a clear advantage over VBMF. Es-
pecially for conv5, compared with the original CONV layer,
the amount of parameters is reduced by 50.5×. Although
VBMF performs better than NRMF on conv2, the gap between
their compression ratios is small and can be ignored. Overall,
NRMF achieves higher compression ratios on almost every
layer, and can obtain a more compact model.

These results clearly show the advantages of dynamic rank
search in NRMF over the fixed-rank approach in VBMF, and
also the power of NRMF in revealing the unexploited data
redundancy for deeper compression.

D. Performances on Various Datasets and Neural Networks

Finally, NRMF is evaluated on CIFAR-10, CIFAR-100 and
ImageNet with various CNNs. As before, we compare NRMF
with the original networks and VBMF. We set α = 10−2 as
scaling of the nuclear-norm regularizer.

CIFAR-10 and CIFAR-100 Table V presents the com-
pression results of Tucker-2 decomposition with VBMF and
NRMF ranks for AlexNet, GoogLeNet and DenseNet on
CIFAR-10. It can be seen that NRMF offers the smallest
models with little difference in accuracy. Surprisingly, the
NRMF-compressed DenseNet is even better than the original,
reaching 96.99% prediction accuracy. Table VI shows the
results for CIFAR-100, whereby similar observations can be
made.

ImageNet For ResNet18 on ImageNet (ILSVRC2012), we
present performance and comparison with VBMF ranks in
Table VII. Again, NRMF achieves higher compression with
fewer parameters and also higher top-1 accuracy.



TABLE VI
PERFORMANCE COMPARISON ON CIFAR-100

Model Rank Selection Top-1 Acc. (%) Top-5 Acc. (%) #Parameters

AlexNet

Baseline 71.12 91.75 57.41M

VBMF 69.73 90.51 56.32M

NRMF 68.97 90.06 55.45M

GoogLeNet

Baseline 78.96 95.56 5.70M

VBMF 79.50 95.88 4.27M

NRMF 78.93 95.25 4.14M

DenseNet

Baseline 81.43 96.30 7.06M

VBMF 82.98 96.13 5.92M

NRMF 83.53 96.70 5.90M

TABLE VII
PERFORMANCE COMPARISON ON IMAGENET

Model Rank Selection Top-1 Acc. (%) Top-5 Acc. (%) #Parameters

ResNet18

Base 69.76 89.08 11.69M

VBMF 67.20 87.88 7.50M

NRMF 67.27 87.7 6.81M

Additionally, we verify there is high redundancy in the last
two layers in ResNet18. By varying the learning rate to 10−3

in the training process adding our new loss, we get a set of
ranks with small values using p = 95%. Similar to Table IV,
we set ranks S, T for the last two layers conv4, conv5 as 30,
6 and 6, 31 respectively. We then do Tucker-2 decomposition
on the last two convolution layers and fine-tune. The number
of parameters in the compressed model is 7.01M , with top-1
and top-5 accuracies being 67.14% and 87.49%, respectively.
Compared to compressing all convolution layers using VBMF
and NRMF ranks, factorizing only two layers can also provide
similar levels of compression and performance.

VI. CONCLUSION

We present nuclear-norm rank minimization factorization
(NRMF) to exploit elasticity in the 4-way kernel tensor for
CNN compression. For the first time, the ranks are dynami-
cally found through a nuclear-norm regularizer during training,
which can be perceived as a game between compression and
prediction accuracy. Compared to the fixed-rank variational
Bayesian matrix factorization (VBMF) approach, NRMF pro-
duces higher compression ratios in various CNN structures
(viz. ResNet18, AlexNet, GoogLeNet and DenseNet). Perhaps
more importantly, by observing the singular value dynamics,
our scheme reveals the elasticity and redundancy patterns
across CNN layers, thus providing insights and guidance in
compressing specific layers.
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