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Abstract—Recognizing human activities from multi-channel
time series data collected from wearable sensors has become an
important practical application of machine learning. A serious
challenge comes from the presence of coherent activities or body
movements, such as movements of the head while walking or
sitting, since signals representing these movements are mixed and
interfere with each other. Basic multi-label classification typically
assumes independence within the multiple activities. This is over-
simplified and reduces modeling power even when using state-
of-the-art deep learning methods. In this paper, we investigate
this new problem, which we name ‘“Coherent Human Activity
Recognition (Co-HAR)”, that keeps complete conditional depen-
dency between the multiple labels. Additionally, we treat Co-
HAR as a dense labelling problem that classifies each sample on
a time step with multiple coherent labels to provide high-fidelity
and duration-sensitive support to high-precision applications.
To explicitly model conditional dependency, a novel condition-
aware deep architecture ‘“Conditional-UNet” is developed to
allow for multiple dense labeling for Co-HAR. We also contribute
a first-of-its-kind Co-HAR dataset for head gesture recognition
associated with a user’s activity, walking or sitting, to the research
community. Extensive experiments on this dataset show that our
model outperforms state-of-the-art deep learning methods and
achieves up to 92% accuracy on context-based head gesture
classification.

I. INTRODUCTION

With the rapid development and lower cost of wearable
devices with embedded sensors, a plethora of new applications,
such as healthcare [1], authentication [2], robotic control [3],
virtual/augmented reality [4], [S], [6] and e-learning [7] are
emerging. However, a number of unique challenges need to be
addressed in order to best harness the promise of such applica-
tions and enable the widespread use of wearable technology. In
theory, any number of devices that detect posture could be used
and mounted to any position on a human body, a practice that
would result in a very large search space. In addition, people
prefer to have limited devices with multiple functions, such as
smart phone, virtual reality headset, smart glasses, or wireless
headphones, instead of wearing multiple devices at the same
time. Another challenge is that the body moves simultaneously
during daily activities and generate complicated mixed signals
for the limited devices mounted on the body. These multiple
human activities and movements interfere with each other
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Fig. 1: A toy example of coherent human activity recognition and
signals (blue lines are boolean head gesture labels, red lines are
one accelerometer data): a) performing a gesture under sitting; b)
performing a gesture under walking.

interactively. For example, it is important to recognize head
gestures during walking (e.g. in Figure 1) using embedded
sensors at only one location of a Virtual Reality headset. The
upper left red line of representing a denoised accelerometer
signal during sitting in Figure 1 shows a clear pattern, while
the lower left red line representing the same accelerometer
signal during walking is less clear. As we can see, other
body parts generate stronger inertia than the simultaneous head
movements while the user is walking. Previous works on head
gestures [3], [8], [5] only focus on a controlled experiment
environment in which users only sit still, or simply do not
consider such coherent activities at all. In this work, this kind
of challenging tasks with coherent interfering movements, for-
mally defined later as “Coherent Human Activity Recognition
(Co-HAR)”, will be comprehensively studied and specially-
addressed.

Recent developments in deep learning shed a light on human
activity recognition research, since deep learning allows to
learn latent features using deep structures such as convolution
layers, pooling layers and embedding layers [9]. It usually
requires much less or even no effort on feature extraction
than the models that pre-date deep learning. In an end-
to-end fashion, deep learning models have better generality
which perform well for different data without domain-specific
work and result in shorter development cycles. However, deep
learning for the Co-HAR problem has been highly under-
explored.

Beyond naively transferring deep methods to Co-HAR,
some critical technical challenges prevent current deep archi-
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tectures from obtaining a better generalization, including the
fact that: 1) the single location of sensors has mutual impact
on signals. As discussed, sensors mayb be placed only in a
headphone over a user’s head. It is impractical to ask a user
to wear sensors all over their body in real-world scenarios. In
addition, it is also technical difficult to exactly separate signals
and reduce mutual impacts for existing basic multi-label clas-
sification [10], [11]; 2) the imbalanced domination of different
activities could fade away the signals of the other activities.
Sensors could have different sensitive levels to different body
movements and the dominating movement might not be the
one under investigation in the case of study. For example, in
the head gesture problem (in Figure 1) with sensors placed in a
headphone, walking generates stronger signals in the forward
inertia than head movements. However, head gestures are more
critical for most applications like Virtual Reality. The current
models might have limited power in such scenarios. 3) the
multi-label window problem for activities of various duration.
The time steps in one window may not always share the same
ground truth label, and the duration of an activity always varies
in different windows. Mixing of ground truth labels not only
creates difficulty for underlying models but also reduces the
flexibility of usages due to a whole set of hyper-parameters
to be considered, such as the best window length, sampling
stride and window labelling strategy.

To tackle these challenges simultaneously, we proposed
a novel condition-aware deep structure, called “Conditional-
UNet” !, which takes multi-channel sensor data embedded at
only one location of the human body as the input and explicitly
captures conditional dependence within coherent labels. The
proposed framework includes a novel encoding module to
model the conditional dependence which could reduce the
mutual impact of coherent body movement and guide the
model to better learn patterns of activities with imbalanced
domination. Since it follows the dense labeling approach
[12], it not only avoids the multi-label window problem, but
also aims to classify multiple dense labels which is more
challenging than previous single dense labeling works. The
major contributions of our work are summarized as follows:
« We address a more challenging problem, so-called “Coher-

ent Human Activity Recognition (Co-HAR)”, which clas-
sifies coherent activity labels with complete conditional
dependency assumption comparing instead of simple in-
dependent multi-label assumption, and uses multi-channel
time-series data from one wearable device at only one
location of the human body.

« A novel condition-aware deep classification model, called
“Conditional-UNet”, is developed to better densely classify
coherent labels. Conditional-UNet explicitly models condi-
tional dependence through a novel deep structure, including
a new encoding module with specially-designed gradient-
permitted sampling and embedding operations and a UNet-
based decoding module.

o The contribution of a new dataset for the Co-HAR prob-

Ipublished in https://github.com/tongjiyiming/Conditional- UNet

lem. To conduct experiments, we build an Arduino-based
device to collect data and label head gestures and walk/sit
condition.

« Extensive experiments show that our proposed Conditional-
UNet outperforms existing state-of-the-art UNet model, and
achieves up to 92.06% of accuracy and 87.83% of F1 score
over head gesture classification.

II. RELATED WORK

Feature extraction based methods. Models that pre-date
deep learning rely heavily on hand-crafted features (e.g., mean,
variance, kurtosis, or other kinds of indexes) [8], [2], motion
(e.g., physical laws) [4] and transform-based feature (e.g.,
wavelet [13], fourier transform [14]). Exacted features are
then fed to classifiers such as Support Vector Machines [4],
Boosting Tree [8] and Hidden Markov Model [4]. These
approaches usually work well for a specific type of tasks and
fails for other types of applications.

Deep learning based dense labeling. With the advance-
ment of deep learning methods, the applications of deep learn-
ing to HAR using data from wearable sensors are relatively
new. More and more works propose to utilize some kinds of
deep learning methods [12], [15], [16]. The success of deep-
learning-based methods comes from their high expressiveness
in learning underlying complex principles directly from the
data in end-to-end fashion without handcrafted rules. Another
most recent advancement in using deep learning is Dense
Labeling [12] which uses a fully convolutional network [17]
to label each sample instead of a sliding window. It avoids
the segmentation problem in most of conventional methods.
Another work [18] achieves the same goal of dense labeling
but utilizes another deeper structure called “UNet”. However,
these works still assumes a single activity label rather than
coherent activities.

Multi-label classification. A recent study [1] tried to
classify multiple overlapping activity labels for each slicing
window using deep neural networks, but predicted labels do
not have explicitly consideration of conditional dependence
of different activities in that work. Another recent work [11]
converts multiple labels into one label with all classes from
different labels to solve the multi-label classification. More
works exists, and we point readers to more details in other
survey papers in this area [19], [20]. However, there is no
existing works considering coherent multiple labels which
model conditional dependency within them.

In summary, deep learning methods, including the state-of-
the-art UNet, are actively researched in exiting works with
better performances than conventional methods. However, to
the best of our knowledge, there is no work considering
conditional dependency in multiple dense labels beyond simple
multi-label classification. Next, we would formally define our
problem.

III. PROBLEM DEFINITION
A set of sequences D = {(XW YO)N vx® ¢
REXTY y(@) ¢ RHXTY which contains a multivariate
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sequence X (¥ which have K variables of sensors and the
time length of each sequence is 7). Here, each time step
t € {1,...,7W} is normally referred as a sample. Corre-
spondingly, Y () is a multi-label sequence with H labels. For
each label h € {1,..., H}, there are C}, different numbers of
classes for this label h so an element Y;ft e {1,....Cx},

where Yh » = 1 usually define for a null label (e.g. no hand
gesture isyperformed). The sequence index (i) is dropped in
later parts whenever it is clear that we are referring to terms
associated with a single sequence. We define our problem as
follow:

Definition 1 (Coherent Human Activity Recognition): is a
multi-label classification problem with conditional dependency
assumption within joint multiple coherent labels and has a goal
to minimize the difference between a classifier’s predicted H-
label sequence Y (¥) for K -channel sample sequence X (*) and
the ground truth label YV given multi-channel time-series
sequences set D.

For example, in our head gesture task, a sample X I(f) contain
K = 6 variables of sensors including tri-axial acceleration and
tri-axial gyroscopes. If a sampling rate is 1 H z, then there are
T = 60 total measures for a one-second window. Since we
are interested in two types of labels, head gesture and walk/sit
condition, so there are two label types L = 2. For walk label
y1 € {1,2}, y1 = 1 if a human subject is sitting, and yg = 2
indicates a walk activity. Similarly, for head gesture label ys,
ya = {1,...9}, and y» = 1 means no head gestures, and other
numbers indicates other 8 head gestures, and C; = 9.

A key component of Co-HAR is that we model the com-
plete joint probability of all labels p(Yl(z), cey YISL)) with
conditional dependencg{ rather than simplified joint probability
p(Yl(l)) x -+ x p(Y’) that assumed independence of all
labels in the ex1st1ng multl-label classification studies [10],
[11]. More details are in following section.

IV. METHODOLOGY

In this section, the condition-aware framework of Co-HAR
and detailed modeling components of Conditional-UNet are
introduced. Section IV-A shows the condition-aware deep
framework for Co-HAR problem and the formalization of its
decomposed conditional losses. The three key components
of handle joint label conditions to capture the conditional

dependence within coherent activity labels are introduced in
Sections IV-B, IV-C, and IV-D respectively.

A. Condition-aware deep framework

In this part, condition-aware deep framework is developed
firstly to build up a probabilistic understanding of Co-HAR
problem, and to formalize loss with an independent loss and
a series of dependent losses. In general, the goal of Co-HAR
in previous Co-HAR definition 1 is to learn a joint probability
of multiple labels given multi-channel sensor data, noted as
p(Y1,...,Yy|X). By an axiom of probability, joint probability
of observing a sequence can be decomposed to a series of
independence and dependence components in Equation 1:

p(Y1,...,Yu|X) = 0

po, Y1 X)po, (Y2|Y1, X) ... po,y (YH|Pr—1,...,Y1,X)
where 0; are parameters of each probability function p(-).
This is the complete conditional relationship for Co-HAR.
By assuming conditional independence between all the
labels, we can simplify it to be p(Yi,...,Yu|X) =
po, (Y11 X)po, (Y2|X) ... po, (Y| X), which is a normal
multi-label classification framework in many current works
[11], [10]. However, in this work, we want to keep the condi-
tional dependence since conditional independence assumption
drop a lot of useful information. Next, the condition-aware
loss function is introduced with its different components.

Condition-aware multi-label dense classification loss:
following the common approach of Maximum Likelihood Es-
timation (MLE) [21] and similar to dense labeling [12], we get
loss function by factorizing joint probability in Equation 1 to
each temporal sample with each label, and get its logarithmic
transformation as follows:

T
L =log(p(Y1,...,Yu|X)) = (log(ps, (Y14|X))+ @
t

4+ 1log(Poy Y| Pa—14,- . Y14, X)))

where log(pg, (Y1,|X)) is log-likelihood to observe different
classes of label 1 on time step tth sample. Furthermore, this
log -likelihood with each class m of a label is formulated as
Zm yilog(pe, (Y1, = m|X)), where yi", is the observed
frequency of class m in all samples, and pg, (Y1, = m|X) is
the estimated likelihood of class m got from deep model. The
calculation of estimated likelihood is done by a deep model
that computes likelihood §; using sensor data X, noted as
1 = fo, (X), where ¢ is the estimated logit vector with mth
element on ¢th sample g7, as estimated probability of multi-
label categorical distribution of label 1. fy, is a normal MLE
with more details in [21]. The difference of our condition-
aware model starts from label 2. Instead of only taking X
as inputs for Y5, our deep model takes conditional signals
of Y7 as input too, noted as g2 = fo,(X,Y7), or §; =
fo, (X, Y1,...,Y;_1). It means that our condition-aware deep
model should decode all previous labels as joint conditional
dependence for the next label estimation. Before we show
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how conditional dependence is estimated, we summarize our
condition-aware loss as follows:

1 T Cy o
L=-5(_, D, viklog(ily) (3)
T C2 AN T C m ~M
D02 ylog@E) + Y >y dog(i.,))

g{?t = f91(X)aQ3?t = fgz(Y17X) (4)
97 = fo,(Y1,...,Yio1,X),V3<i<H

mini@mize L ®)
where © = {6,...,0g} is the set of all deep model’s
parameters that minimize negative log-likelihood loss £ in
Equation 3. To model the joint label conditions within
this condition-aware deep model, we create a chain of
conditional deep models fy,, except the first fy, . The model
follows the procedure illustrated in Figure 3:

1) Decoding module: uses a deep decoding module fy, (X)
to compute the logit vector of label 1 for each sample
y1 = fo, (X). Here, the deep encoding module is UNet [22].
UNet is originally designed for image segmentation following
the idea of fully convolutional network [17]. It is a deep
fully convolutional network, which internally contains multiple
down-sampling convolutional layers and multiple up-sampling
deconvolutional layers. It is recently used to boost performance
in normal HAR task [18] as a more powerful alternative than
basic fully convolutional network using in Dense Labeling
[12], CNN [23], or SVM [18]. We utilize the same structure
as [18] More details could be found in [18];

2) Encoding module: uses a encoding module to convert
logit vector y; to a conditional signal. It includes three
sub-modules in this module: a) a generating sub-module
Generate(-) to get a sampled class for the first label from
the categorical distribution, Y, = Generate(yy) (c.f. Section
IV-B); b) an embedding sub-module Embed(-) (c.f. Section
IV-C) is used to project Y; to a continuous embedding space
with Embedg, (Y1), where ¢; is the set of parameters; c) a
merging sub-module Merge(-) (c.f. Section IV-D) to merge
both X and embedded signal as input into the next encoding
module to get a logit vector y» of label Y5 as follows:

Y2 = fo,(Merge(X, Embed(Generate(y1))))

For Y3, the only difference is that it merges both g, (Y1) and
9o (Y3) with X, the logit vector y3 of label Y3 is computed
as follows:

y3 = fo,(Merge(X, Embed(Generate(yy))),
Embed(Generate(ys))))

We continue this chain of processes until it reaches the last
conditional model for the last label Y. Here, all labels Y; are
one-hot vectors;

3) Optimizing module: uses all logit vector g, to calculate
the multi-label dense classification loss £, and minimizes it
through gradient back-propagation optimization techniques for
deep neural network models, such as Adam [9], or Stochastic-

 Decoding module: fp, (X)

= — -

| Encoding module:

o i 9151 |
| [ Merge(x.) 7ii IL = © = minimize(L)
X —t _ i T\ Optimizing module
Embed(f,)| | Generate(s,)

b ZijE'r'réoding module:
VL{'U’* 920)}

L'D'éc'bd'irig ‘module: fp, (Y1, X)|

<~

Fig. 3: Conditional-UNet: a conditional deep model with UNet mod-
ule, Sampling module, and Embedding module to capture conditional
dependence in coherent activities.

Gradient-Descent [9]. Since we develop our code using Py-
Torch [24], the Adam Optimizer is directly used to perform
optimization and train our Conditional-UNet classification
model.

Module 1) and 3) are conventional works with more details
in other works [22], [18], [9], while Module 2) is our main
structure to explicitly handle conditional dependence. We will
now introduce different parts of this novel decoding module.

B. Gradient-permitted generating sub-module

This generating sub-module, noted as Generate(-) in Fig-
ure 3, is the first step to incorporate conditional dependence
information in Conditional-UNet. Its goal is to generate a
sample of current label Y; from estimated logit ¢; of which
each element is a probability to get mth class, so that sampled
label can be used as a conditional input for the next decoding
module. The keys here are both to allow gradient back-
propagation and to better process conditional dependence
signal. We proposed two variants for this sub-module as
follows:

1) Naive-Max trick: which selects the maximum probabil-
ity class m in estimated logit vector y; in Equation 6:

Y; = arg max j;,
m (6)
VYm e {1,...,Ch}, 7 € RO

where (Y, is the number of classes in label Y;. This Naive-Max
trick simplifies a categorical distribution to focus only on its
class with maximum probability, however, it does not capture
the whole distribution information. For example in Figure 4
(a), it can potentially learn a flatten distribution (differ from
the true distribution in Figure 4 (c)), whose class with the
max probability does not differ a lot from other classes. In
this case, the distinguishing power could be vanished because
of the big variance in this approach. The Naive-Max does not
block gradient flow, however, it is potentially unstable because
the maximum class shift a lot during training process. If a
maximum-probability class is changed in a followed training
iteration, the gradient flowing path changes to the other class
which has maximum probability in that training iteration. This
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is a huge instability disadvantage, while its advantage is its
easy implementation.

2) Gumbel-Max trick: which implements the true process
of sampling a class Y; from a categorical distribution using
the logit vector §j;, noted as Y; ~ Cat(j;). This sampling
process captures the full distribution information because it
can still generate classes which do not have the maximum
probabilities. In this way, we approximate the full categorical
distribution for each class, not only the one with maximum
probability. Unfortunately, this operation of sampling from
categorical distribution do not have gradients, so it prevents
gradients flowing in back-propagation training. The work-
around solution is to use re-parameterization tricks. Specifi-
cally, we leverage a “Gumbel-Max” trick [25] for categorical
data of labels. For example in Figure 4 (b), Gumbel-Max
reduces the chance of flatten distribution like Naive-Max,
while pushes the distribution to concentrate on one or a few
classes and decreases the probabilities of other classes. It can
get a distribution closer to the shape of true distribution (Figure
4 (c)), not only capture the peak one.

The Gumbel-Max trick is done in this way. Specifically,
we create y;, = tanh((¢"* + g)/7), where T is so-called
“temperature” hyper-parameter. Each value g; in g is an
independent and identically distributed (i.i.d.) sample from
standard Gumbel distribution [25]. g has the same dimension
as y,;;. We generate a one-hot representation y;;, whose
jth element is one and all the others are zeros, where j
is got as the index of the maximum element in y;,. Then,
a OneHot operation is used to get the integer value of a
class Y;; = OneHot(y; ). In this way, gradients can be
backpropagated through y;t The same approach is also used
for all the labels except the last one Y. The larger 7 is, the
stronger uniformly regulation is imposed and the less stable
gradient flows are. The typical approach is to decrease 7 as
training continues and we can adopt a decrease strategy in [25]
(Equations 7).

y;, = tanh ((¢,' +gv)/7)
Y = argmaxy; (7)
Y;+ = OneHot(y; ¢)

C. Class embedding sub-module

Generated class for each label and time Yi,t is a categor-
ical value. Inspired in Word2Vec [26] in Natural Language
Processing, we convert categorical classes to a continuous
space to be processed by the following neural networks. The
embedded continuous value is the conditional signal we need
for conditional dependence computing of the next label Y, ;.
To achieve this, an embedding weight table W; € R¢»*F:
contains all learnable embedding parameters, where CY, is the
number of classes in label Y;, E; is a hyper-parameter of the
dimension of continuous space, normally F; < C},. Here, we
simply take E; = 02“. Each label Y; has its own embedding
table W;. Embedding operation is g, , = W;Y;, where g, , is
the projected continuous vector in a continuous space.

Iteration 1: Iteration 2: Iteration 3:
Probability Probability Probability

i e el ~

1.2 3 4 5 1.2 3 4 5 1.2 3 4 5
Gesture class Gesture class Gesture class

(a) Unstable Naive-Max trick

o 12 3 4 5
Iteration 3: Gesture class

Probability

Iteration 2:
Probability

Iteration 1:
Probability

(¢) True logits

e

1 4 5 1 4 5 1
Gesture class Gesture class Gesture class

(b) Stable Gumbel-Max trick

Fig. 4: Stability illustration of different Gradient-permitted generating
sub-module variants: (a) three iterations of Naive-Max trick, whose
peak might bounce back and forth with a flatten distribution; (b)
three iterations of Gumbel-Max trick, whose learn the whole shape
of distributions with more stable process; (c) the true logits of
categorical distribution to be learned.

D. Merging sub-module to capture joint conditions

The embedded vector y, , are concatenated with all previous
embedded vector y, 4,...,Y;_1, and the raw sensors X ;. In
this way, the next label Y;’s joint conditions of all previous
labels and sensors, noted as p(Y;|X,Y7,...,Y;—1) in MLE
before, are captured in merged vector as input for the next
decoding module fp,. The only exception is the last label’s
embedding vector yy ,, which does not have concatenation
operations, since we have reached the end.

In our proposed Conditional-UNet, a natural question is
that what is the best order to sequentially model joint label
conditions. This is just another hyper-parameter to be tuned.
If there are H labels, there is potentially (H — 1)! orders.
However, fortunately, there are normally not many labels in
real-world applications (e.g. 2 labels in our head gesture
experiment, and there are 2! = 2 orders to be tuned on).

V. EXPERIMENTS

In order to demonstrate and verify the performance of the
proposed Conditional-UNet for Co-HAR problem, we conduct
experiments as follows: (i) collect a new dataset about head
gesture under walk/sit situation through Arduino UNO and
other hardwares; (ii) compare our method and its variants with
state-of-the-art competing methods; (iii) a qualitative analysis
to illustrate effectiveness of our proposed method.

A. Device design and experiment settings

Hardware design: To our best knowledge, there are no
dataset that is collected for Co-HAR yet, especially sensor
module locates only at one location of body, so that we can
only retrieve mixed signals instead of signals from multiple
locations. The types of labels should be conditional dependent
and interactively impact each other, so that we need to classify
multiple different labels for the same sample. With this in
mind, we implement an Arduino UNO module with accelera-
tion and gyroscope sensors located on a headphone (e.g. Figure
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Fig. 5: Hardwares and softwares to collect conditional multiple

labels and wearable sensor data of tri-axial acceleration and tri-axial
gyroscopes through bluetooth communication with an I0S app and
backend data storage server.

5). The data communication is done through a bluetooth HM-
10 module which sends data to an IOS iphone app. Also,
a camera which is not shown in the figure simultaneously
records a user’s head gesture and body movement video as
the Arduino UNO collect sensor data. Each video is a section
of either sit condition or walk condition with multiple gestures
performed by a user.

To process the sensor data with a good quality, we im-
plement the software in C++. First, it calibrates the device
for the initial few seconds. Then, it starts the read of sensor
data. Then, it sends the data to a registered bluetooth transmit
address to allow the bluetooth module send data to an iphone
through a simple 1I0S app that parses transmitted data and
uploads to a backend server. Notice that some basic manual
cleaning of the data is done aligned with the recorded videos
(in 3—4 minutes duration) like clipping the starting and ending
periods (about a few second duration). We then use synchro-
nized cleaned videos (about 10 videos for each combination
of head gesture classes and walk/sit classes) to manually label
head gesture label and walk/sit label. In general, we collect 9
classes for head gesture label, namely left-roll, right-roll, head-
right, head-left, right-lean, left-lean, head-up, head-down, and
a null class of no-move (e.g. in Figure 1), and 2 classes of
walk/sit label, namely if a user is walking or sitting. The baud
rate is set as 9600 bits per second, and our data sample rate
is chosen at 1—12H z. Under this setting, each ground truth head
gestures contains about 20 samples in a duration of about 1.6
seconds. The summary of our collected data is in Table I. We
can see that both left rolls and right rolls take much more time
than other head gestures. Also, we can found that duration
varies for each head gesture class. Maximum duration could
be 0.3s more than the minimum duration, which is about 4
more samples. The visualization of right-roll under both sit and
walk condition in Figure 6 also intuitively shows such varied
duration at different times and also the strong impact from
body movement under walk condition. This is an indication
that Co-HAR problem is more challenging than just sit without
walk.

B. Competing methods and Conditional-UNet variants

Two competing methods including a pre-dated conventional
method, and a baseline deep UNet model are used. Two
variants of our proposed Conditional-UNet model are also
introduced here.

TABLE I: Summary of collected head gesture data

class number .
class  number duration range of a
Gesture . per walk ) )
per sit section . gesture (second)
section
head up 9 9 1.5-18
head down 9 9 1.5-1.8
head left 9 10 1.5-1.8
head right 10 10 1.5-17
left lean 10 10 1.5-1.7
right lean 9 10 1.5-1.7
left roll 10 9 1.9-2.1
right roll 10 9 1.9-2.1
no gesture - - -
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(a) Right-roll under sit (b) Right-roll under walk

Fig. 6: Collected sensor data for right-roll gesture, red lines are sensor
signals, blue line indicate if a right-roll is performed (noted 1) or not
(noted 0): (a) under sit condition. The sensor signals are with clearer
patterns; (b) under walk condition. The sensor signals are disturbed
from significant body movements.

1) Surpport Vector Machine (SVM): SVM is a conventional
method widely used pre-dated deep learning methods. We use
it as a naive baseline. The six sensors’ signals are used as
raw feature inputs. Two different SVM models are trained
separately for head gesture label and walk/sit label.

2) UNet baseline (UNet): This is a baseline multi-label
classification based on UNet, a state-of-the-art deep fully
convolutional network for HAR [18], which only uses one
UNet decoding module to output both head gesture label
and walk/sit label at the same time without any conditional
dependence.

3) Dense Head Conditioned on Dense Walk (DHcoDW):
This model is a variant of our Conditional-UNet that first de-
coding modules model walk/sit label and an encoding module
to encode conditional dependence of walk/sit condition, then
sequentially, a second decoding module models head label.
“Dense” means that both labels are classified for each sample
(ak.a. each time step).

4) Dense Walk Conditioned on Dense Head (DWcoDH):
This model is another variant of our Conditional-UNet that
first decoding modules model head label and an encoding
module to encode conditional dependence of head condition,
then sequentially, a second decoding module models walk/sit
label. Both labels are classified for each sample.

C. Evaluation metric

As a classification problem, we use common accuracy score
and multi-label F1 score as evaluation metric to compare
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Fig. 7: Confusion matrix of multi-label classifications of different methods. Each row is normalized with total sum of each row (number of
ground truth classes), and diagonal elements are true positive rate for each class.

competing method with our proposed methods. Overall, multi-
label F1 score considers both precision and recall in different
classes, and is better than accuracy score. We also demonstrate
confusion matrix to show the performance of precision and
recall for each class of a label. All the data is split into training
set (about 80%) and testing set (about 20%). Accuracy and F1
scores are reported based on testing set.

D. Quantitative anlysis

Table II contains the experiment results of accuracy and F1
scores by competing methods and variants of our proposed
methods. The bolded values are the best one compared to
other methods. We can see that SVM fails for head gesture
label with a low F1 score of only 35.57%, while SVM
performs better for walk/sit label with 66.71% F1 score. It
indicates that walk/sit has much stronger signals and is easier
to be classified. Basic UNet already performs very well as
current state-of-the-art method with 90.46% accuracy score
and 84.60% F1 score for head gesture label, and 94.94%
accuracy score and 94.15% F1 score for walk/sit label. For
head gesture label, DHcoDW variant perform about 2% better
on accuracy (92.06%) and 3.2% better on F1 (87.83%). The
performance on walk/sit label of DHcoDW is only a little
worse than UNet (1.94% less on accuracy and 2.15% less on
F1). For DWcoDH variant, head gesture also improve about
1% of accuracy and 2% of F1 score, and walk/sit labels are
almost equally as well as UNet baseline. This results show that
the DHcoDW utilizes the conditional dependence of walk/sit
to better classify head gestures with a little downgrading of
walk/sit label. But, DWcoDH’s results show that conditional
dependence of head gestures promotes less performance gain
because the stronger signals of walk/sit vanish signals of head
movements. This is also a good illustration of advantages of
our proposed Conditional-UNet for real-world applications,

TABLE II: Model performance comparisons

Labels W SVM UNet DHcoDW  DWcoDH
Metri¢
Head Accuracy | 0.7516 0.9046 0.9206 0.9128
Fl 03557 0.8460  0.8783  0.8638
- Accuracy | 0.6241 09494 09300  0.9426
WalldSit gy ‘ 0.6671 09415 09201  0.9369

since head gesture label is more critical and interesting than
walk/sit label in real-world applications.

The confusion matrix of different methods are shown in
Figure 7, which tell more details about different methods. All
confusion matrix values are normalized by total number of
ground truth in this class, or in another word by the sum of
each row (diagonal elements are true positive rate). The most
important observation is that two variants of our proposed
conditional-UNet achieve significantly gains on head gesture
label, because naive UNet model mistakenly classify a large
portion of head gesture as null class. Since the null class and
other head gesture classes are imbalanced, the accuracy score
does not quite reflect the margin of improvement as shown
by confusion matrix. By comparing DWcoHD and DHcoDW
variants, we can see that DHcoDW achieves a higher true pos-
itive rate except head-right, left-lean, left-roll. If we compare
the walk/sit label, it is found that DHcoDW variant achieves
more balance between walk class (94%) and sit class (93%),
but both naive UNet and DWcoDH have low performances
on walk class. This is another good demonstration that the
conditional dependence design helps to get more gains by
learning challenging body movements during walk conditions.

E. Qualitative visualization

We illustrate a few classification results here through vi-
sualization of raw sensor, ground truth, and classified classes
for both head gesture label and walk/sit label in Figure 8.
Each column is for each method. The first row is for head
gesture label. The second row is for walk/sit label. Left Y axis
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and ground truth classes (on left Y axis), and X axis is the samples
in this window.

of the first row plots are different classes of head gestures.
Right Y axis of first and second row plots are for raw X-
axis accelerometer values. The left Y axis of the second row
plots are for walk/sit label. DHcoDW obtains the best result
(only one sample on the right is classified wrong for head
gesture label). DWcoDH unfortunately classifies wrong class
for walk/sit label, while its classification for head gesture
labels is very good. In practice, this error of one sample
(ﬁ second) could be a minor issue for many real-world
applications.

VI. CONCLUSION

We studied a Coherent Human Activity Recognition prob-
lem, and proposed a novel condition-aware deep model
“Conditional-UNet” to model the joint probability of multiple
labels with explicit structures to handle conditional depen-
dency of multiple activities in a sequential manner. The
experiments we conducted show that the proposed method
outperforms an older method, SVM, and a state-of-the-art
UNet deep model, by 3% in F1 score. Moreover, it gets
significant gains for different head gestures with a little loss
in walk/sit label performance. The experiments show that our
proposed Conditional-UNet successfully captures conditional
dependence, as expected. In this work, a Co-HAR dataset is
also contributed to the research community.
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