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Abstract—Few-shot Learning (FSL) which aims to learn from
few labeled training data is becoming a popular research topic,
due to the expensive labeling cost in many real-world applica-
tions. One kind of successful FSL method learns to compare the
testing (query) image and training (support) image by simply
concatenating the features of two images and feeding it into the
neural network. However, with few labeled data in each class, the
neural network has difficulty in learning or comparing the local
features of two images. Such simple image-level comparison may
cause serious mis-classification. To solve this problem, we propose
Augmented Bi-path Network (ABNet) for learning to compare
both global and local features on multi-scales. Specifically, the
salient patches are extracted and embedded as the local features
for every image. Then, the model learns to augment the features
for better robustness. Finally, the model learns to compare global
and local features separately, i.e., in two paths, before merging the
similarities. Extensive experiments show that the proposed ABNet
outperforms the state-of-the-art methods. Both quantitative and
visual ablation studies are provided to verify that the proposed
modules lead to more precise comparison results.

I. INTRODUCTION

In recent years, Deep Learning methods have achieve
significant progress in computer vision by applying deeper
architectures [1]–[4] to bigger datasets [5]–[7]. When training
a deep neural network, the performance heavily depends on the
amount of labeled training data. However, in many real-world
tasks, it is time-consuming even prohibitive to collect and
annotate enough data for training the popular deep networks.
For example, annotating some fine-grained categories [8] or
medical data [9] are restricted by not only the few available
samples but also the few domain specialists. Therefore, how to
get rid of cumbersome labelling and train a good classification
model with few labeled data, i.e., Few-shot Learning (FSL)
[10]–[14], is a valuable research problem.

Many methods have been proposed to deal with the Few-
shot Learning problem in past decades. Early studies [10],
[15] use a small number of samples to directly construct
a model for classifying new samples. However, the model
is not able to learn the real data distribution or generalize
to testing data. Recently, Meta-learning based methods [12],
[13], [16] are proposed, in which many episodes (basic tasks)
are sampled from the training data. The model is trained
on many sampled tasks for learning meta-knowledge that
is generalized to a distribution of tasks. Methods in this
framework differ in the design of the classifier for basic tasks.
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Fig. 1: The effectiveness of salient patches. S stands for the training (support)
image. Q1 and Q2 are testing (query) images. In previous methods, only the
global features (of the whole images) are compared, as shown in (a). However,
our method compares both global and local features by extracting the salient
image patches. Hence, the comparison result is more precise.

[12] used a prototype (class center) based nearest neighbor
classifier to classify testing (query) images based on those
training (support) images. [13] proposed to learn to compare
the similarity between the query and support images. With the
shared feature embedding network, the features of two images
are concatenated and fed it into the comparison neural network
which outputs the similarity between two images.

However, with few labeled data in every class, the neural
network has difficulty in learning or comparing the local
features of two images. Such simple image-level comparison
may cause serious mis-classification. As illustrated in Fig. 1,
given one support image (S) and two query images (Q1 and
Q2), the global features of S and Q1 are more similar than
those of S and Q2. However, S and Q2 belongs to the class
“dog”, while Q1 is an image of a “bird”. If we extract and
compare some salient image patches, e.g., head and legs, we
can easily find that S and Q2 have more similar patches, and
they should be classified to the same class.

For more precise comparison, we propose Augmented Bi-
path Network (ABNet) to learn to compare both global and
local features on multi-scales. Our method includes four main
modules. First, the salient patches that contains informative
parts are extracted for every image. Second, the original
image and its salient patches are embedded by the shared
feature embedding module. Third, we learn to augment both
global and local (salient patch) features of support images for
better robustness. Fourth, we learn to compare the features of
support and query images and output the similarity between
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the two images. Instead of calculating the similarity based on
concatenated features directly [13], we generate the similarity
maps based on concatenated features and learn to re-weight
them. Then the global and local similarity maps are merged to
produce the overall similarity. Extensive experiments on three
challenging benchmarks show that our method outperforms
the state-of-the-art methods with a large margin. Ablation
studies are provided for verifying that the proposed modules
are important for achieving better performance. Visual analysis
is given for better illustration of how feature augmentation and
local features lead to correct classification.

The main contributions of this paper includes two folds:

• We propose Augmented Bi-path Network (ABNet) to
learn to compare both global and local features of
support and query images, which includes two novel
modules, namely, “Learning to Augment” and “Learning
to Compare”.

• We evaluate our approach on three challenging Few-shot
Learning benchmarks, miniImageNet, Caltech-256 and
tieredImageNet. Our ABNet outperforms the state-of-the-
art by a large margin.

II. RELATED WORK

A. Meta-learning Based Methods

Meta-learning based methods [11], [12], [16]–[19] aim to
learn a more generalized model by meta-training on many
sampled FSL tasks. Typically, Finn et al. [20] propose an
model-agnostic algorithm for meta-learning that trains a mod-
els parameters such that a small number of gradient updates
will lead to fast learning on a new task In addition, Ravi et al.
[21] describe an LSTM-based model for meta-learning. The
model is trained to discover a good initialization of the learners
parameters, as well as a successful mechanism for updating
the parameters to new task.

The idea of “learn to compare” is also widely used. Gregory
Koch et al. [11] first propose siamese neural networks for One-
shot image recognition. Through a shared network structure,
deep features are learnt and compared to decide whether
the two inputs belong to the same class. Oriol Vinyals et
al. [16] build a matching network, which learns a LSTM
encoder to embedding the deep features conditioned on the
specific support set and query set. Inspired by the evaluation
process of Few-shot Learning, they construct similar few-shot
classification task in the training data. Following the same
training strategy, ProtoNet [12], RelationNet [13] and many
other superior networks [21]–[23] are proposed.

Our ABNet also belongs to meta-learning based methods.
The main difference between aforementioned methods and
ours is that we learn to compare both global and local
similarities of the support and query images instead of only
using the global features. We also learn to augment features
instead of using hand-craft augmentation strategies.

B. Data Augmentation Based Methods

One of the important difficulties in Few-shot Learning is
the small number of samples. Data augmentation methods
[22], [24]–[28] aim to build a generation model to enhance
the variety of the input. Eli Schwartz et al. [25] design an
auto-encoder [29] for data augmentation. The core idea of
their approach is learning to reconstruct a sample via another
one, hence the abundant labeled samples can be used to
augment the few-shot input. Combining a meta-learner with
a hallucinatory, Wang et al. [22] present a method to augment
the input samples by producing additional imaginary data.
Chen et al. [28] propose to augment the features by semantic
information. Creatively in our method, we learn meaningful
affine transformation augmentations from training categories
in feature map space, and apply them to augment the feature
maps of support image.

C. Salient Patches

Salient patches, which contains rich vision details of the
object, is widely used to improve the discrimination of fea-
tures in various computer vision tasks, such as fine-grained
image classification [30], [31], clothes retrieval [32], person
re-identifica-tion [33], image caption [34] et al. For these
application scenarios, predefined salient patches for specific
categories could be extracted by the part detector or key-point
detector. While in the few-shot scenario, extracting salient
patches for new categories is challenging in the situation of
few labeled images and lack of prior knowledge. Wang et al.
[35] employ the semantic embedding of class tag to generate
various local features, and combine them into an image-level
feature for Few-shot Learning, which could be limited by the
performance of unified visual-semantic embedding. Zhang et
al. [36] employed a saliency network pre-trained on MSRA-
B to obtain the foregrounds and backgrounds of images, then
hallucinated additional datapoints by foreground-background
combinations. Chu et al. [37] propose a sampling method
based on maximum entropy reinforcement learning to extract
various sequences of patches, and aggregate the extracted
features for classification. Training the sampler from scratch
without effective supervision would extract many background
patches and degrades the performance of salient patches. In
this paper, we learn to compare by exploiting more class-
relevant salient patches, and learn to augment the samples
by learn intra-class variations in feature space, which is
significantly different from those related works.

III. AUGMENTED BI-PATH NETWORK

For few-shot classification, the dataset contains a meta-
train set and a meta-test set, which have disjoint categories
(Cmeta−train∩Cmeta−test = ∅). The meta-train set, in which
each category contains many labeled samples, is used to train
a generalized model. Then, it is evaluated on the meta-test set
with only few labeled images in each category. In the popular
setting, many testing episodes are performed during evaluation
process. Each testing episode contains N categories and each
category has K labeled images. These labeled data form the



support set S = {(x1,1, y1,1), (x1,2, y1,2), ..., (xN,K , yN,K)},
where (xi,j , yi,j) is jth datum of ith class. The rest unla-
beled testing data of these N categories form the query set
Q = {x1,K+1,x1,K+2, ...,xN,K+1,xN,K+2, ...}. Such setting
is called N -way K-shot learning.

We follow the widely used episode-based training strategy
[16], which mimics the evaluation process. Similar as each
testing episode, a training episode is constructed by random
sampling N classes from Cmeta−train. K labeled data of
every class sever as the support set, and M labeled data from
the rest form the query set. The popular methods [12], [13],
[16] train a deep embedding model by feeding the whole
image into the deep neural network. To fully exploit the
few labeled images, we propose Augmented Bi-path Network
(ABNet) for Few-shot Learning, the framework is illustrated
in Fig. 2. In total, ABNet includes four modules: 1) Given the
support s and query q images, a patch extraction module is
first applied to obtain N salient patches for each image. 2)
Then, both the whole image and patches are fed into a shared
convolution neural network (CNN) f(·) for feature embedding.
3) To enhance the robustness, a learnable feature augmentation
module is utilized to augment the features of support images
by mimicking the diversity of query images. 4) We learn to
compare the features of the support and query images. The
similarity maps between two features from the support and
query images are computed and re-weighted by a learnable
attention module. Finally, combining the global path and local
path, the merging module learns to merge the global and local
similarity and regress the similarity score of the support and
query images. The following subsections are details of the
proposed method.

A. Salient Patch Extraction

Salient patches are vital for the comprehensive description
of an object, especially in the few-shot scenario. Hence, we
develop a salient patch extraction module. Our extraction mod-
ule starts with the patches sampled by selective search (SS)
method [38], which applies bottom-up grouping procedure
to generate good object locations capturing all scales. Then
elaborate selection method is utilized to distill salient patches.

We measure the importance of patches from two aspects,
namely, geometry property and visual salience. Geometry
property is referred to the area and aspect ratio of the patch.
As small patches usually lack enough discriminate features and
large patches are close to the global image, only patches with
moderate scale and aspect ratio are significant and will be kept.
We use rectangular function Π(x) as the geometry property,
if the geometry property satisfies the requirement, Π(ri) = 1
else Π(ri) = 0. Visual salience measures the attraction of
pixels to human attention, which is the principal element
of importance. The Minimum Barrier Distance (MBD) [39],
which represents the connectivity to the background regions,
is utilized to measure the visual salience. Hence, the salience
of specific patch could be represented as the average of the
pixels in it. Taking both geometry property and visual salience

into consideration, the total importance of patch ri is defined
as follows [39]:

S(ri) = Π(ri) ·
1

K

K∑
j=0

v(pj)

v(pj) = min
π∈S

[
T

max
t=0

I(π(t))−
T

min
t=0

I(π(t))]

(1)

where v(pj) is the visual salience of the pixel, K is the total
number of pixels in patch ri, I(·) is the pixel value, π is
a sequence of pixels where consecutive pairs of pixels are
adjacent and the total number of pixels is T , S is the set of all
sequences that connect pj and seed pixels from background.

Then, the patches could be ranked by the importance, and
top N patches could be selected to balance efficiency and ef-
fectiveness. Our salient patch extraction is not time consuming
as the procedure is performed only once and offline before
training. As shown in Fig. 2, the whole image accompanied
with the extracted salient patches introduces multi-scale inputs
to the feature embedding module (CNN), which improves its
representation ability.

B. Feature Embedding

Both the whole image and salient patches are fed into the
shared CNN backbone f for feature embedding. Following the
classic setting, f consists of four basic convolution blocks.
Each block includes a 2D convolution layer with 64 (3x3)
kernels, a batch normalization layer and a ReLU nonlinear
function. 2x2 max-pooling layer is added after the first two
basic convolution blocks. Given image I , we concatenate the
feature maps in the last convolution layer and construct a 3D
feature map:

f(I) = ω1 ⊕ ω2 ⊕ · · · ⊕ ωn, (2)

where ωi is the ith feature map in the output of CNN backbone
and ⊕ denotes the concatenate operator, f(I) ∈ RH×W×C
with width W , height H and C channels. Different from ex-
isting methods [12], [40], where feature embedding is reshaped
into one dimensional vector as the input of classifiers, we keep
the spatial information in the feature map by leveraging the
3D feature map. As training samples are limited in Few-shot
Learning, the additional spatial information will benefit the
learning with few samples.

C. Learning to Augment

In Few-shot Learning, the number of training samples is
quite limited, while the testing images varies considerably in
orientation, viewpoint and clutter background. Hence, even
the feature embedding of the same object will be diverse,
which results in mis-classification due to the extremely large
intra-class distance. To alleviate the problem, we manage to
augment the feature embedding of every whole support image
Is and its salient patches in the support set by learning intra-
class variations from the categories with sufficient labeled
training data. The feature augmentation module aims to learn
to transform the support feature to new ones which capture the
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Fig. 2: Illustration of the proposed Augmented Bi-path Network, which contains a global path (GP) for comparing the whole images and a local path (LP)
for comparing the extracted salient patches. The whole image accompanied with its salient patches are fed into the network f(·) for feature embedding. To
enhance the robustness, a learnable feature augmentation module A(·) is utilized to augment the support features. Then, similarity maps between augmented
support features and the query feature are computed through h(·). Specially for the local path, an re-weighting module α(·) is employed to suppress irrelevant
or meaningless patches. Finally, combining GP and LP, the merging module γ(·) learns to merge the global and local similarity maps and regress the overall
similarity. The label of the query image is predicted as the one with the largest similarity.

diversity of query images. Hence, we introduce a regulariza-
tion between the generated features and the query features. We
factorize the complicated variations into several independent
modes, each mode is represented by an affine transformation
matrix. For a specific point (xi, yi, zi) in a feature map f(I),
the transformed location (xai , y

a
i , z

a
i ) in the augmented feature

map is defined in the equation:
 xa

i
yai
zai

 = A

 xi

yi
zi
1

 =

 A11, A12, A13, A14

A21, A22, A23, A24

A31, A32, A33, A34

0, 0, 0, 1

 ·
 xi

yi
zi
1


(3)

where A is an affine transformation matrix with learnable pa-
rameters. Different from existing methods [16], [18], we learn
to augment feature instead of using hand-crafted augmentation
strategy. All the feature maps in support set share the same
transformation defined by A. A new group of transformed
output feature maps fk(Is) could be generated, which could
be translated, scaled, rotated or affined, whatever.

Hence, employing K affine transformation matrices, the
original feature embedding f(Is) could be greatly expanded
into K + 1 variants defined as Ω:

Ω = Af(Is) ={f0(Is), f1(Is), . . . , fK(Is)}
A ={A0,A1, . . . ,AK}

(4)

where A is a group of learned affine transformation matrices
(A0 is an identity matrix, indicating the original feature
embedding, and f0(Is) represents f(Is)).

D. Learning to Compare

Inspired by [13], we classify a query image by learning to
compare its feature with those of (labeled) support images.
Instead of only comparing the support and query image, we
propose to compare both the whole image and salient patches.
First, we compare the whole image of the support and query

image. Then, we compare the N salient patches of the support
and query image. Hence, there are 1+N2 comparison results.

a) Generating Similarity Maps.: For comparing two fea-
tures from support and query images (Is and Iq), we first
concatenate the support feature and every feature variant (Ωi)
of the support image in the channel dimension, which is
defined as follows:

pkq,s = f(Iq)⊕ fk(Is) (5)

Then, a convolution block g(·) is utilized to calculate the
similarity and generate the similarity map g(pkq,s). Each feature
embedding in Ω is processed independently in this stage. All
of the K + 1 similarity maps are concatenated in the channel
dimension, and another convolution block h(·) is applied to
accumulate the results for calculating the total similarity maps
ms,q for Is and Iq:

ms,q = h[gφ(p0q,s)⊕ g(p1q,s)⊕ · · · ⊕ g(pKq,s)] (6)

Similar as the global feature comparison, the comparison
between every local patches of support and query image is
calculated. In total, N2 + 1 similarity maps are generated:

G = {ms,q} ∪ {mi,j
s,q|i, j ≤ N} (7)

where i, j is positive integer indicating the index of patches,
and N is total number of salient patches. In total, we have
one global similarity map and N2 local similarity maps.

b) Learning to Re-weight: Instead of using the original
similarity maps directly, we learn to re-weight the local
similarity maps for emphasizing class-relevant patches and
suppressing background patches. The re-weighting value is
adaptively predicted by an attention module α(·), which out-
puts a normalized weight between 0 and 1.

The input of the attention network is a triplet defined
as (f(Is), f(Iq),m

i,j
s,q), which combines the features of



the support and query images and corresponding similar-
ity map. For simply, we use α(i, j) to denote the weight
α(f(Is), f(Iq),m

i,j
s,q). By multiplying the weight α(i, j) to

corresponding local similarity maps mi,j
s,q , a re-weighted sim-

ilarity group G∗ could be obtained:

G∗ = {ms,q} ∪ {α(i, j) ·mi,j
s,q|i, j ≤ N}. (8)

c) Learning to Merge: To obtain the overall similarity
score between the support and query images, we merge both
the global and local similarity maps. All the elements from
the weighted similarity group G∗ are concatenated in channel
dimension, and regarded as the input to the merge module γ(·).
The module is utilized to merge these similarity maps and
develop a similarity metric, which contains two convolution
blocks and two fully-connected layers. The overall similarity
o(s, q) between Iq and Is is defined as:

o(s, q) = γ
(

[

i,j≤N⊕
i,j=1

α(i, j) ·mi,j
s,q]⊕ms,q

)
, (9)

where ⊕ denotes the concatenate operator. For few-shot
classification, we compute the overall similarities between a
query image and all support images. Then, the similarities are
averaged for every class. The label is predicted as the one with
the largest averaged similarity.

E. Loss Function

To train all the parameters in our model, we minimize
the classification loss between the predicted similarity score
and ground-truth score. The predicted score o(i, j) is first
converted to probabilistic score by Sigmoid function:

P (i, j) =
1

1 + e−o(i,j)
(10)

Then the classification loss function is computed as :

Lcls =
1

B × C

B∑
i=1

C∑
j=1

(P (i, j)− I(yi == yj))
2
, (11)

where B and C are the numbers of query and support images
respectively. yi and yj are the class labels of the query (Iq) and
support (Is) images. I(x) is an indicator function, I(x) = 1 if
x is true and 0 otherwise.

To learn sparse attention values for salient patches, we add
the L1 regularization. The loss is defined as follows:

Latt =
Satt
N2

N∑
i=1

N∑
j=1

|α(i, j)|, (12)

where N is the number of salient patches, Satt is scaling factor
to make the loss in the same scale.

Besides, we introduce the augmentation loss to regularize
the feature augmentation. The feature augmentation module
tries to learn the diversity of query images and generate new
features with such diversity. Hence, we introduce a regular-
ization between the generated features and the query features.
During training, we have labels of both support and query

images. For the query image Iq , if it has the same label as the
support image Is, we compute the mean square error (MSE)
between f(Iq) and augmented features {fk(Is)}1≤k≤K :

Laug =
Saug
B × C

B∑
i=1

C∑
j=1

K∑
k=1

(f(Iq)− fk(Is))
2I(yi == yj),

(13)
where K is the total number of augmented features and Saug
is the scaling factor for augmentation loss.

Finally, the total loss is computed as the weighted sum of
the above losses:

L = Lcls + λatt · Latt + λaug · Laug, (14)

where λatt and λaug are the weights of the attention loss and
augmentation loss.

IV. EXPERIMENT

In this section, we first compare to the state-of-the-art
methods on three popular datasets. Then, we show that our
method is generalized and can achieve good results on differ-
ent learning settings. Latter, blation study with visualization is
provided to illustrate that every proposed module is important.

A. Datasets

We do experiments on three datasets, namely, miniImageNet
[16], Caltech-256 [41] and tieredImageNet [26]. miniIma-
geNet is the most popular benchmark for few-shot classifi-
cation, Caltech-256 is a larger dataset with more categories,
and tieredImageNet is a more challenging dataset with test
classes that are less similar to training ones.

miniImageNet. The dataset contains 100 classes with 600
images per class [16]. Objects in images have variable ap-
pearances, positions, viewpoints, poses as well as background
clutter and occlusion. We follow the popular split [21], where
64 classes are for training, 16 classes are for validation and
the rest 20 classes are for testing. All images are resized to
84 × 84 size.

Caltech-256. This dataset [41] contains 30,607 images from
256 object categories. These categories are diverse, ranging
from grasshopper to tuning fork. We follow the split for FSL
which is provided by [19]. The training, validation and testing
sets include 150, 56 and 50 classes respectively. The same to
miniImageNet, all images in Caltech-256 are resized to 84 ×
84 size.

tieredImageNet. This dataset [26] contains 608 classes
(779,165 images) grouped into 34 higher-level nodes from
the ImageNet human-curated hierarchy. This set of nodes is
partitioned into 20, 6, and 8 disjoint sets of training, validation,
and testing nodes, and the corresponding classes constitute the
respective meta-sets. All images are resized to 84 × 84 size.

B. Implementation Details

During salient patches extraction, the size requirement is set
to be 1%∼50% and the aspect ratio requirement is set to be
1/3∼3. To further remove duplicate patches, Non-Maximum
Suppression (NMS) technique is applied to keep smaller ones.



Method miniImageNet Caltech-256 tieredImageNet

5way1shot 5way5shot 5way1shot 5way5shot 5way1shot 5way5shot

MatchingNet [16] NIPS’16 43.56±0.84 55.31±0.73 45.59±0.77 54.61±0.73 54.02 70.11
MetaLSTM [21] ICLR’17 43.44±0.77 60.60±0.71 - - - -
MAML [20] ICML’17 48.70±0.84 55.31±0.73 48.09±0.83 57.45±0.84 51.67±1.81 70.30±0.08
MetaNet [17] ICML’17 49.21±0.96 - - - - -
ProtoNet [12] NIPS’17 49.42±0.87 68.20±0.70 - - 54.28±0.67 71.42±0.61
RelationNet [13] CVPR’18 50.44±0.82 65.32±0.77 56.12±0.94 73.04±0.72 54.48±0.93 71.32±0.78
CTM [42] CVPR’19 41.62 58.77 - - - -
Spot&Learn [37] CVPR’19 51.03±0.78 67.96±0.71 - - - -
MetaOptNet [43] CVPR’19 52.87±0.57 68.76±0.48 - - 54.71±0.67 71.79±0.59

ABNet 58.12±0.94 72.02±0.75 63.20±0.99 78.42±0.69 62.10±0.96 75.11±0.78

TABLE I: Few-shot classification accuracy (%) on miniImageNet, Caltech-256 and tieredImageNet datasets. The results are averaged over 600 testing
episodes, and the 95% confidence intervals are reported. We compare to methods using the same 4-layer feature embedding module, i.e., (64×64×64×64).

Then, the extracted patches are ranked by the visual salience,
and top five salient patches are selected for each image. For
those images with less than five extracted salient patches, we
pad the number to five by duplicating.

For fair comparison, we employ the most widely used 4-
layer convolution module [12], [13], [21] with 64 filters in
each convolution layer as the backbone. The architecture is
(64 × 64 × 64 × 64). This embedding module generates 64
(19×19) feature maps for each input image or patch. Unless
specified, all experiments are implemented with this 4-layer
backbone. We also provide the results with ResNet backbone
on miniImageNet.

In feature augmentation module, four affine transformation
matrices are utilized to learn augmentations from the training
data. The module g and h for generating similarity maps
contains the same basic convolution block as the backbone,
and an additional 2×2 max-pooling layer is utilized in h. The
triplet input of attention module α is global-average pooled in
spatial dimension and further concatenated into an one dimen-
sional vector. Then three fully-connected layers are employed
to learn the attention value. Finally, in the merging module γ,
one basic convolution block followed by two fully-connected
layers are applied to regress the similarity score. Besides,
ReLU is used as the default activation function in all fully-
connected layers except the output layer of attention module
and merging module, where Sigmoid is used to normalize the
score to be (0, 1). When training shot > 1, e.g. 5-shot learning,
we average the similarity scores of all training shots.

We train the model from scratch, and no extra data or
pretrained models are used. Adam [44] optimizer is used
during training with initial learning rate 0.01 for feature
augmentation module and 0.001 for the others. The learning
rate is decayed in half every 100,000 episodes. λatt and λaug
are both set to be 0.1. Following [13], we report the averaged
testing accuracy over 600 episodes, and each episode contains
15 query images of every class.

C. Comparison to the State-of-the-art

We compare our approach to several state-of-the-art meth-
ods under 5-way-1-shot and 5-way-5-shot settings. The results
are shown in Table I. As a deeper backbone with higher
resolution input image will always increase the classification

Method Backbone miniImageNet

5way1shot 5way5shot

RelationNet [13] CVPR’18 ResNet-18 58.21 74.29
CTM [42] CVPR’19 ResNet-18 62.05±0.55 78.63±0.06
MetaOptNet [43] CVPR’19 ResNet-12 62.64±0.61 78.63±0.46

ABNet ResNet-18 63.15±0.63 78.85±0.56

TABLE II: Few-shot classification accuracy (%) on miniImageNet with
ResNet backbones.
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Fig. 3: The 5-way n-shot classification accuracy on miniImageNet (left) and
Caltech-256 (right). The 4-layer backbone is used. Orange points are results
of our ABNet, while cyan points are results of RelationNet.

performance by a large margin [45], [46], we compare to
methods using the same backbone (64 × 64 × 64 × 64) for
fair comparison.

According to Table I, our ABNet achieves the best perfor-
mance in all settings. Our method outperforms the runner-
up (MetaOptNet [43]) by 5.25% (1-shot) and 3.26% (5-shot)
on miniImageNet and 7.39%(1-shot) and 3.32%(5-shot) on
tieredImageNet. In addition, our method also shows significant
improvements on Caltech-256 dataset. Compared to Relation-
Net [13], our method achieves 7.08% and 5.38% improve-
ments on 1-shot and 5-shot learning settings respectively.

Some works employ deeper networks, e.g. ResNet, to ex-
tract features. We also provide the results on miniImageNet
with ResNet-18 as the backbone in Table II. Obviously, our
method achieves the best performances on two settings. It is
interesting that the gaps between different methods (CTM [42],
MetaOptNet [43] and ours) with ResNet backbone are not
large. The main reason may be that the features extracted
by deep networks are already good enough for few-shot
classification.
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Fig. 4: Visualization of 5-way 1-shot classification results on miniImageNet. LA denotes Learning to Augmentation module. Local stands for local features
which is produced by Salient Patch module. Correct predictions are made by the model with feature augmentation when the orientation (a) and viewpoint
(b) varies. When the scale of object varies (c), even both scale and viewpoint/orientation varies in (d)/(e), the combination of feature augmentation and local
features in ABNet leads to the correct classification.

D. Generalization Ability

To verify that our method is generalized to settings with
different training shots, we provide the detailed comparison
to RelationNet [13] under 5-way-n-shot setting where n ∈
[1, 10]. As illustrated in Fig. 3, along with the increase of
training shot, the performance of our ABNet stably improves.
On both two datasets, our method always significantly outper-
forms RelationNet under all settings. It demonstrates that our
method has good generalization ability on n-shots tasks.

E. Ablation Studies

To study the effectiveness of Learning to Augment (LA),
Salient Patch (SP) and Learning to Re-weight (LR) modules
independently, we perform quantitative comparison and visual
comparison on miniImageNet dataset.
Quantitative comparison. We start with a baseline model,
which only employs global features with handcrafted feature
augmentations, e.g. horizontal flip, rotation of ±π/2 and π.
Then we gradually add LA, SP and LR modules. Then, we
evaluate the four variants of our method.

• Baseline: global features with handcrafted augmentations
• Baseline+LA: Baseline with Learning to Augment
• Baseline+LA+SP: Baseline with Learning to Augment

and Salient Patch
• Baseline+LA+SP+LR: Baseline with Learning to Aug-

ment, Salient Patch and Learning to Re-weight

The classification accuracies for 1-shot and 5-shot learning
are evaluated and shown in Table III. Compared to baseline
model, the accuracy with Learn to Augment module (Base-
line+LA) improves by 1.83% in 1-shot learning and 1.52%
in 5-shot learning. It means learnable feature augmentations
could acquire more appropriate variations from query im-
ages. When Salient Patch model is further introduced (Base-
line+LA+SA), the performance is boosted by 1.49% in 1-shot
learning and 1.68% in 5-shot learning. Hence, the importance
of local features is verified. Finally, a significant improvement
of 2.36% and 2.32% is observed after introducing Learning

to Re-weight module (Baseline+LA+SA+LR), which demon-
strates the importance of re-weighting local similarity maps
before merging. As class-irrelevant patches or background
patches could be introduced inevitably by the unsupervised
salient patch extraction method, the novel Learning to Re-
weight module could emphasize more relevant local similari-
ties by further taking features into consideration.

Model miniImageNet
5way1shot 5way5shot

Baseline 52.44±0.91 66.50±0.77
Baseline+LA 54.27±0.91 68.02±0.77

Baseline+LA+SP 55.76±0.89 69.70±0.72
Baseline+LA+SP+LR 58.12±0.94 72.02±0.75

TABLE III: Few-shot classification accuracy (%) for ablation studies.
The results are averaged over 600 test episodes with the 95% confidence
intervals. The baseline model is trained with handcrafted feature augmentation
(horizontal flip and rotation), LA: Learning to Augment, SP: Salient Patch,
LR: Learning to Re-weight.

Visual Comparison. The effectiveness of Learning to Aug-
ment and Salient Patches is also demonstrated by visualizing
the 1-shot classification results in Fig . 4. As the orientation
and viewpoint of specific object varies in the wild, it is very
difficult to predict correct category merely based on one glance
(shot) of the object. For example, when the “guitar” image in
the query set is placed in totally different orientation from the
one in support set (see Fig. 4(a)), one-shot classifier without
feature augmentation fails to recognize it and predicts the
wrong category. Similar as the “dog” image with different
viewpoints in Fig. 4(b). However, our method can learn to
augment the support image feature and predict the correct
category. Moreover, when the scale of object in the query
image is significantly different from the one in support image,
classifier with merely global features no longer works well and
local features are required to make correct prediction. Taking
the “dog” image as an example, when close-shot image is
compared to long-shot image in Fig. 4(c), the image of a
different specie (category) but similar scale is mis-matched
by the method using only global features. In contrast, ABNet
with local features could easily recognize the correct specie



(category) even the two objects have significantly different
scale. Even with different scales, viewpoints (see Fig. 4(d))
and orientations (see Fig. 4(e)), ABNet can predict the correct
category. The above improvements benefit from the meta-
learning ability of Learning to Augment and Learning to
Compare modules with salient patches.

V. CONCLUSION

We propose a novel meta-learning based method, namely
Augmented Bi-path Network, for Few-shot Learning. The
proposed method extends the previous “learn-to-compare”
based methods by introducing both global and local features
on multi-scales. Experimental results show that our method
significantly outperforms the state-of-the-art on three chal-
lenging datasets under all settings. Ablation studies verify
the importance of the proposed Learning to Augment, Salient
Patch and Learning to Re-weight modules. We also provide
visual comparison to illustrate how these modules can improve
FSL performance.
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