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Abstract—Most state of the art object detectors output multiple
detections per object. The duplicates are removed in a post-
processing step called Non-Maximum Suppression. Classical Non-
Maximum Suppression has shortcomings in scenes that contain
objects with high overlap: This heuristic assumes that a high
overlap between two bounding boxes corresponds to a high
probability of one being a duplicate. We propose FeatureNMS
to solve this problem. FeatureNMS recognizes duplicates not only
based on the intersection over union between the bounding boxes,
but also based on the difference of feature vectors. These feature
vectors can encode more information like visual appearance. Our
approach outperforms classical NMS and derived approaches and
achieves state of the art performance.

I. INTRODUCTION

Object detection is an important task in a huge variety of
applications. In some of these applications, images can contain
a lot of partially overlapping objects. One example are images
of traffic scenes that contain crowds of humans. This scenario
is common in autonomous driving or surveillance scenarios.

Most state of the art object detectors are based on Convolu-
tional Neural Networks (CNN). There are single-stage detectors
like YOLO [1], [2], [3], SSD [4] and RetinaNet [5], and two-
stage detectors like R-CNN [6], Fast R-CNN [7] and Faster R-
CNN [8]. Two-stage detectors first generate a set of proposals.
A dedicated second stage then decides which proposals are in
fact an object of interest. Single-stage detectors on the other
hand directly perform object detection on the input image.

Both approaches have in common that they usually generate
multiple detections per object. Duplicate detections are then
removed in a post-processing step called Non-Maximum Sup-
pression (NMS). The widely used classical approach is a greedy
heuristic. Detections are sorted by their scores in a decreasing
order. Then each detection is checked against all following in
the sorted list. If the Intersection over Union (IoU) with one of
the following detections is larger than a certain threshold the
latter detection is removed.

This heuristic however has shortcomings in crowded scenes
because the underlying assumption does not hold. In these
scenes, distinct objects often have a high overlap. In this paper
we propose FeatureNMS to solve this problem. Our approach
recognizes duplicates based on their feature embeddings if a
definite decision based on the IoU is not possible.

The remainder of this paper is structured as follows: Sec-
tion II presents related work. Section III describes our proposed

approach to Non-Maximum Suppression. The general idea
is presented in Section III-A while Section III-B contains
details about the necessary modifications to the object detector
network. In Section IV we present our evaluation procedure
and the results. Finally, Section V concludes the paper.

II. RELATED WORK

Both NMS and embedding learning have been studied in
previous research. This section presents relevant and related
work in these fields.

A. Non-Maximum Suppression

There have been several proposals how to improve the classi-
cal NMS heuristic. SoftNMS [9] does not remove overlapping
detections but decreases the detection scores of duplicates. The
factor by which it is decreased is a function of the IoU of the
corresponding bounding boxes.

The idea of AdaptiveNMS [10] is to adjust the threshold for
the greedy heuristic based on the local object density. This local
object density is predicted by the object detection network for
each detection.

Visibility Guided NMS [11] uses another approach. The
detection network outputs two bounding boxes per object.
One bounding box encloses the whole object while the other
encloses only the visible part. Given detections of two different
objects, the IoU for the visible parts is usually smaller than the
IoU for the whole objects. Because of that, classical NMS is
performed on the bounding boxes of the visible parts. But the
final output are the corresponding bounding boxes of the whole
object.

Other works [12], [13] try to work around the shortcomings
of classical NMS during the training of the object detector. The
idea is to push bounding boxes of different objects far enough
apart. Boxes that to the same object, however, should have as
much overlap as possible. This makes the task of NMS easier
since the detections violate the underlying assumptions less.

In [14], the authors propose to solve the NMS task with a
CNN. The proposed network learns to re-score detections to
suppress duplicates. Each block in the network has access to
pairwise features of detections. These features include the IoU
of both bounding boxes, normalized distances, as well as scale
and aspect ratio differences.
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Relation Networks [15] add a relation module to the detec-
tion network. This relation module learns to perform NMS in-
side the network. It can use geometric and appearance features
of the detections for this.

B. Embedding Learning

Learning of embeddings is used in a wide range of appli-
cations like zero-shot learning [16], visual search [17], [18],
[19] or image comparison [20], [21]. The underlying idea
is conceptionally simple: The embedding vectors of positive
image pairs (i. e. images that show the same object) should be
similar. Embedding vectors of negative pairs on the other hand
should be separated by a certain distance.

There are several loss functions that can be used to achieve
this objective. Contrastive loss [22] is widely used for this
purpose. It consists of two terms: One term pulls the `2 distance
of positive pairs as close to zero as possible. The other term
pushes the `2 distance of negative pairs apart if it is below a
certain margin.

Choosing the margin parameter correctly can be challenging.
It can be too difficult to push the embeddings of hard negative
examples far enough apart while keeping small distances for
positive pairs. Triplet loss [23] tries to solve this problem by
using triplets of images: An anchor, a positive example and a
negative example. It tries to ensure that the embedding of the
anchor is closer to all positive examples than to any negative
example. The authors also propose a sampling strategy to select
suitable triplets for training.

Recently, Margin loss [24] has been proposed as an alterna-
tive to contrastive loss. It does not try to push the embeddings
of all positive pairs to be as close to each other as possible. In-
stead, it just requires the distance to be below a certain margin,
making the loss more robust. Together with a distance weighted
sampling strategy it achieves state of the art performance on
multiple tasks.

III. APPROACH

We first describe our proposed approach for Non-Maximum
Suppression in Section III-A. We then describe the necessary
modifications to the object detector and the training procedure
in Section III-B.

A. Proposed Non-Maximum Suppression

With classical Non-Maximum Suppression, all detections are
first sorted by their confidence scores and added to a proposal
list P . The list of final detections D is empty in the beginning.
Then the following step is executed iteratively until P is empty:
The proposal p with the highest confidence score in P is
removed from P and compared to all detections in D. If the
intersection over union between p and all detections in D is
smaller than a threshold N then p is added to D. Otherwise
p is discarded. The pseudo code of this algorithm is given in
Algorithm 1.

This approach has one parameter N which has to be tuned
to achieve good performance. A common choice is N = 0.5.
The key idea of this algorithm is that bounding boxes with a
high overlap are likely to belong to the same object. Bounding

Algorithm 1 Classical Non-Maximum Suppression.
P ← GETPROPOSALS(image)
P ← SORT(P)
D ← ∅
while P 6= ∅ do

p← POP(P)
isDuplicate← false
for d ∈ D do

iou← GETIOU(p, d)
if iou > N then

isDuplicate← true
end if

end for
if ¬isDuplicate then

PUSH(p,D)
end if

end while

boxes with a low overlap on the other hand are likely to belong
to different objects.

There are however situations where this assumption fails.
Especially in images with a high number of objects and partial
occlusions there are many overlapping bounding boxes that
belong to different objects. One example of this are crowds
of humans.

We propose a novel approach to decide if two bounding
boxes belong to the same object or not. We call our approach
FeatureNMS since it is based on (appearance) features of the
detections. The overall structure of the proposed algorithm is
the same as classical Non-Maximum Suppression—but the rule
whether to add p from P to D or not is adjusted. The pseudo
code of our approach is given in Algorithm 2.

Again, each proposal p ∈ P is compared to all detections d ∈
D. The intersection over union between p and d is computed.
If this value is less or equal than a threshold N1 we assume
that the detections belong to different objects. If this value on
the other hand is larger than another threshold N2 we assume
that the detections must belong to the same object. In any other
case the two bounding boxes might belong to the same or to
different objects—the intersection over union alone cannot be
used to make a final decision. In this case we calculate the `2

distance of the feature embeddings of both bounding boxes. If
this distance is larger than a threshold T we assume that the
bounding boxes belong to different objects. Otherwise they are
likely to belong to the same object. The feature embeddings
are an output of the CNN that we use for object detection. It
is described in detail in Section III-B.

We propose to choose N1 = 0.1 and N2 = 0.9 but other
values are possible, depending on the application. The right
value for T depends on the training objective of the detection
network. In our work we use T = β = 1.0 (cf. Section III-B).

B. Detector Architecture and Training

We evaluate our approach with the RetinaNet [5] object de-
tector. But it generalizes to many other detector architectures—
the only required change is to learn an embedding vector



Algorithm 2 Proposed Non-Maximum Suppression. If the
calculated value of the intersection over union is in a range
that does not allow to make a definite decision we use a feature
embedding similarity.
P ← GETPROPOSALS(image)
P ← SORT(P)
D ← ∅
while P 6= ∅ do

p← POP(P)
isDuplicate← false
for d ∈ D do

iou← GETIOU(p, d)
if iou > N2 then

isDuplicate← true
else if iou > N1 then

embeddingDist← GETEMBEDDINGDIST(p, d)
if embeddingDist < T then

isDuplicate← true
end if

end if
end for
if ¬isDuplicate then

PUSH(p,D)
end if

end while

per detection. For this, we add one network head to each
output pyramid level of the RetinaNet backbone. The head
outputs an embedding vector for each anchor box. We chose
an embedding of length of 32, but other lengths are possible.
In our experiments, this proved to be a good trade-off between
accuracy, computational overhead and memory consumption.

Like all other RetinaNet heads, the network head for the
feature embeddings consists of four identical blocks. Each
block is formed by a 2D convolution layer with 512 channels, a
Batch Normalization [25] layer and a ReLU activation function.
The output of the last block is `2-normalized along the em-
bedding dimension (consisting of 32 values). This ensures that
all embeddings lie on a unit hypersphere which is a common
choice for embedding learning [23].

The training objective for the feature embedding is based on
Margin Loss [24]. The total loss can be calculated as follows:

L =

∑
i∈A

∑
j∈A\{i} L

′(i, j)

|A| · (|A| − 1)
(1)

In this equation L′ is the pairwise loss between two targets:

L′(i, j) =

{
max

(
0, ‖fi, fj‖2 − (β − α)

)
, if obj(i) = obj(j)

max
(
0, (β + α)− ‖fi, fj‖2

)
, otherwise

(2)
Here, A is the set of anchor boxes that are assigned to

ground truth bounding boxes. The vector fi is the embedding
feature vector that belongs to the target (anchor box) i. The
function obj(i) gives the object id of target i. The parameter α

determines the margin between positive and negative examples,
and the parameter β determines the decision threshold. We
chose α = 0.2 and β = 1.0.

Our sampling strategy is different from [24]. Since we only
train on active target pairs within a single image, the number
of pairs is limited. This means that we can nearly always use
all possible pairs during a training step. Only if the number of
pairs exceeds 5 000, we use uniform sampling to restrict the
number of samples to 5 000.

We weight the different losses during training according to
[26]. This way, the weighting factors can adjust based on the
training progress and do not have to be tuned manually.

IV. EVALUATION

We evaluate our approach on the CrowdHuman dataset
[27]. This dataset contains 15 000 training images and 4 370
validation images. We use the validation images to compare
the performance of the different NMS approaches, but we did
not use it to tune any parameters. The dataset contains multiple
annotations per person: A head bounding box, a visible region
bounding box and a full body bounding box. In this work, we
use the visible body bounding box annotations. Before feeding
the images into the network, we resize them so that the longer
side has a fixed amount of pixels. Then the image is padded
with a fixed color value to obtain a square image.

Our implementation is based on the RetinaNet implemen-
tation from Tensorflow1. Our patches for this implementation
that we used to perform the experiments are available online2.

We use the default hyperparameters with the following
exceptions:
• Batch size of 4
• 800 000 training steps
• LAMB optimizer [28]
• Learning rate

– 1 · 10−4 (step 0 - 100 000)
– 5 · 10−5 (step 100 000 - 200 000)
– 1 · 10−5 (step 200 000 - 400 000)
– 5 · 10−6 (step 400 000 - 800 000)

• Image size
– 768× 768 pixels (first 750 000 training steps)
– 1024 × 1024 pixels (last 50 000 training steps and

during testing)
We initialized the weights of our CNN backbone from a

model that was pretrained on the COCO dataset [29]. During
training, we froze the weights of the first convolutional layer
and the corresponding batch normalization layer.

Most of the training steps were performed at a reduced
resolution of 768 × 768 pixels. The reason is that the limited
VRAM of our GPU does not allow to train at higher resolutions
with a batch size of 4. Afterwards we fine-tuned the network
at full resolution on the CPU for 50 000 training steps.

We evaluate the different NMS approaches with three com-
mon metrics. The first is the average precision when requiring

1https://github.com/tensorflow/models
2https://github.com/fzi-forschungszentrum-informatik/NNAD/tree/

featurenms

https://github.com/tensorflow/models
https://github.com/fzi-forschungszentrum-informatik/NNAD/tree/featurenms
https://github.com/fzi-forschungszentrum-informatik/NNAD/tree/featurenms


an IoU of at least 0.5 between detection and ground truth
bounding box. The second is the average precision at a mini-
mum IoU of 0.75. The last metric that we use is the log-average
miss rate [30]. This metric is computed by averaging miss rates
at 9 FPPI (false positives per image) values evenly spaced in
log-space between 10−2 and 100. The IoU threshold used for
this is 0.5.

The results can be found in Table I. We also provide
precision-recall curves for all approaches in Figure 1. All
reported values are based on the output of the same detector
network—only the NMS approach differs.

Our approach (FeatureNMS, N1 = 0.1, N2 = 0.9) outper-
forms all other approaches that we compared to. As an ablation
study, we evaluated our approach with different parameters and
found that the performance does not change much. When using
N1 = 0.0 and N2 = 1.0 the only assumption is that bounding
boxes without any overlap can’t belong to the same object. If
there is any overlap the feature vector is always used to make
the final decision. When using N1 = −ε and N2 = 1.0, even
this assumption is given up. For each pair of detections in an
image, the feature vector is used to decide if a box should be
suppressed. This experiment shows the discriminativeness of
our feature vector. Even with these parameters, precision and
recall are high and our approach still performs better than the
others.

The performance of classical NMS is below that of Fea-
tureNMS except for very low detection score thresholds. Here,
the precision is low for both approaches but the recall of
classical NMS is slightly higher. This is because in a few cases
the feature vectors of detections that belong to different objects
are too similar. These detections are erroneously suppressed by
FeatureNMS, but not by classical NMS.

SoftNMS [9] achieves similar precision as FeatureNMS
at high detection score thresholds with low recall. But the
precision at higher recall values is much lower.

We also compared our approach to AdaptiveNMS [10].
AdaptiveNMS predicts the local object density for each detec-
tion and uses that to adjust the threshold of classical NMS. We
did not want to adjust the detector network for this because
a bad network design or training approach could distort the
achieved accuracy: If the density estimation by the detector is
not accurate it could reduce the performance of AdaptiveNMS.
Because of that we decided to use the ground truth density as
input to AdaptiveNMS. This also means that the density esti-
mation performance is an overestimate—a real-world detector
will not achieve a perfect estimation.

To our surprise we found that AdaptiveNMS performs
slightly worse than classical NMS with this ground truth den-
sity. The precision is slightly below that of classical NMS on
nearly all points of the precision-recall curve. This is because
the threshold for NMS is increased in densely populated regions
of the image, which also leads to more false positives in these
regions. Our findings are in contrast to the results reported
in [10]. There are several possible explanations for this: One
is that the localization performance of our detector is lower
than that of the detectors used in the original paper. A lower

Method AP @ 0.5IoU AP @ 0.75IoU log-average
MR

FeatureNMS
(N1 = 0.1,
N2 = 0.9)

0.6865 0.3030 0.7535

FeatureNMS
(N1 = 0.0,
N2 = 1.0)

0.6860 0.3027 0.7545

FeatureNMS
(N1 = −ε,
N2 = 1.0)

0.6838 0.2996 0.7541

AdaptiveNMS [10]
(with ground
truth density)

0.6480 0.2843 0.8309

SoftNMS [9]
(Gaussian,
σ = 0.5)

0.6280 0.2991 0.7582

Classical NMS
(IoU threshold
N = 0.5)

0.6597 0.2855 0.8129

TABLE I
COMPARISON OF DIFFERENT APPROACHES FOR NMS ON THE

CROWDHUMAN DATASET [27]. WE EVALUATED THE AVERAGE PRECISION
(AP) AT A MINIMUM IOU OF 0.5 AND 0.75, AS WELL AS THE

LOG-AVERAGE MISS RATE (MR) [30]. OUR APPROACH (FEATURENMS)
OUTPERFORMS ALL OTHER APPROACHES USED FOR COMPARISON.

localization performance will result in more false positives
when the NMS threshold is high. Another possible explanation
is that the ground truth density is actually not the best threshold:
The neural network might not output a good density estimation,
but a smoothed estimation that is closer to the average. This
could suppress some false positives in areas with high object
densities.

We also visually compared the detection results of our
approach to these of classical NMS. Figure 2 contains some
example images. We found that there are two situations where
FeatureNMS outperforms classical NMS. The first situation
occurs in the first two example images. Here, there are de-
tections with high overlap that belong to different objects.
Classical NMS suppresses some of these detections while
FeatureNMS can correctly separate these. The second situation
occurs in the second two example images. Here, the bounding
box detector outputs some detections with low localization
accuracy. Because of that, the IoU between multiple detections
for the same object is low. Classical NMS fails to suppress
the duplicates. FeatureNMS on the other hand is still able to
correctly associate the detections based on the feature vector.

V. CONCLUSION

FeatureNMS is a simple yet effective approach to Non-
Maximum Suppression. It outperforms all approaches that we
used for comparison on the CrowdHuman dataset [27]. At the
same time, the run-time overhead during inference is low: It
performs the same operations as classical NMS. Additionally to
these, it only requires to compute a feature vector per bounding
box detection and to compare them for overlapping bounding
boxes. The necessary changes in the object detector network are
minor and the approach can be used with most CNN detector
architectures.
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Fig. 1. Precision-Recall curves of different approaches for NMS on the CrowdHuman dataset [27].
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[11] N. Gählert, N. Hanselmann, U. Franke, and J. Denzler, “Visibility Guided
NMS: Efficient Boosting of Amodal Object Detection in Crowded Traffic

Scenes,” in Proceedings of Conference on Neural Information Processing
Systems, 2019.

[12] X. Wang, T. Xiao, Y. Jiang, S. Shao, J. Sun, and C. Shen, “Repulsion
Loss: Detecting Pedestrians in a Crowd,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 7774–
7783.

[13] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li, “Occlusion-aware R-
CNN: Detecting Pedestrians in a Crowd,” in Proceedings of the European
Conference on Computer Vision, 2018, pp. 637–653.

[14] J. Hosang, R. Benenson, and B. Schiele, “Learning Non-Maximum
Suppression,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 4507–4515.

[15] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei, “Relation Networks for
Object Detection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 3588–3597.

[16] M. Bucher, S. Herbin, and F. Jurie, “Improving Semantic Embedding
Consistency by Metric Learning for Zero-Shot Classification,” in Pro-
ceedings of the European Conference on Computer Vision. Springer,
2016, pp. 730–746.

[17] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen,
and Y. Wu, “Learning Fine-grained Image Similarity with Deep Ranking,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 1386–1393.

[18] S. Bell and K. Bala, “Learning visual similarity for product design with
convolutional neural networks,” ACM Transactions on Graphics, vol. 34,
no. 4, pp. 1–10, 2015.

[19] D. Shankar, S. Narumanchi, H. Ananya, P. Kompalli, and K. Chaudhury,
“Deep Learning based Large Scale Visual Recommendation and Search
for E-Commerce,” arXiv preprint arXiv:1703.02344, 2017.

[20] E. Hoffer and N. Ailon, “Deep metric learning using Triplet network,”
in International Workshop on Similarity-Based Pattern Recognition.
Springer, 2015, pp. 84–92.

[21] S. Dey, A. Dutta, J. I. Toledo, S. K. Ghosh, J. Lladós, and U. Pal, “SigNet:
Convolutional Siamese Network for Writer Independent Offline Signature
Verification,” arXiv preprint arXiv:1707.02131, 2017.



FeatureNMS Classical NMS

Fig. 2. Comparison of example images when applying FeatureNMS and classical NMS.



[22] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality Reduction by
Learning an Invariant Mapping,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, vol. 2. IEEE, 2006, pp.
1735–1742.

[23] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A Unified Embed-
ding for Face Recognition and Clustering,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–
823.

[24] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krahenbuhl, “Sampling
Matters in Deep Embedding Learning,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 2840–2848.

[25] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” arXiv preprint
arXiv:1502.03167, 2015.

[26] A. Kendall, Y. Gal, and R. Cipolla, “Multi-Task Learning Using Un-
certainty to Weigh Losses for Scene Geometry and Semantics,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 7482–7491.

[27] S. Shao, Z. Zhao, B. Li, T. Xiao, G. Yu, X. Zhang, and J. Sun,
“CrowdHuman: A Benchmark for Detecting Human in a Crowd,” arXiv
preprint arXiv:1805.00123, 2018.

[28] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song,
J. Demmel, and C.-J. Hsieh, “Large Batch Optimization for Deep Learn-
ing: Training BERT in 76 minutes,” arXiv preprint arXiv:1904.00962,
2019.

[29] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft COCO:
Common Objects in Context,” in Proceedings of the European Conference
on Computer Vision. Springer, 2014, pp. 740–755.

[30] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian Detection:
An Evaluation of the State of the Art,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 34, no. 4, pp. 743–761, 2011.


	I Introduction
	II Related Work
	II-A Non-Maximum Suppression
	II-B Embedding Learning

	III Approach
	III-A Proposed Non-Maximum Suppression
	III-B Detector Architecture and Training

	IV Evaluation
	V Conclusion
	References

