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Abstract—Human action recognition (HAR) in videos is a
fundamental research topic in computer vision. It consists mainly
in understanding actions performed by humans based on a
sequence of visual observations. In recent years, HAR have
witnessed significant progress, especially with the emergence of
deep learning models. However, most of existing approaches
for action recognition rely on information that is not always
relevant for this task, and are limited in the way they fuse the
temporal information. In this paper, we propose a novel method
for human action recognition that encodes efficiently the most
discriminative appearance information of an action with explicit
attention on representative pose features, into a new compact
grid representation. Our GRAR (Grid-based Representation for
Action Recognition) method is tested on several benchmark
datasets demonstrating that our model can accurately recognize
human actions, despite intra-class appearance variations and
occlusion challenges.

I. INTRODUCTION

Human Action Recognition (HAR) is a very popular topic
in computer vision. The popularity of this task is mainly due to
its use in various real-world applications such as smart video
surveillance, autonomous robots, virtual reality, sport video
analysis and urban planning [1], [2], [3], [4]. The goal of
HAR is to identify and classify human actions from video
sequences that contain spatial and temporal information related
to the performed human action. Actions can be complex (e.g.,
preparing a meal) or simpler (e.g., walking). In this work,
we focus on atomic human actions (e.g., running, dancing,
jumping). Despite great progress in the last few years, human
action recognition is still a challenging task due to dynamic
backgrounds, occlusion, varied people appearance and imaging
conditions.

In the last few years, there has been a lot of research based
on deep learning to recognize human actions in videos [5],
[6], [7], [8], [9]. Since videos are 3D spatio-temporal signals,
the main idea behind the majority of these studies is to
extend Convolutional Neural Networks (CNNs) to include the
temporal information contained in videos. Karpathy et al. [5]
proposed several fusion techniques that slightly modify the
CNN architectures to operate on stacked video frame inputs.
As their results were similar to the results obtained by using
individual RGB frames, these techniques were shown to not
correctly model the temporal information. In order to operate
in the spatio-temporal domain, Ji et al. [10] proposed a 3D
CNN model that performs 3D convolutions on stacked video

frames to learn spatio-temporal information between consec-
utive frames. In addition to the fact that 3D CNNs perform
similarly to 2D CNNs, they are computationally expensive to
train because they contain many more parameters and do not
model long range temporal information. In the same context,
Simonyan et al. [6] proposed a two-stream CNN architecture
that learns spatial appearance information from RGB frames
and motion information between frames using optical flow. To
improve this architecture that considers only a single frame as
input, Ng et al. [11] and Wang et al. [12] proposed archi-
tectures that aggregate the convolutional features at different
temporal and spatial positions. However, the streams in these
two-stream CNN architectures are independent and there is no
shared information between them. These architectures capture
only the motion information in short time windows and do
not guarantee to keep the most representative features with
pooling techniques.

Another line of research incorporates human pose sequences
to represent actions as they provide valuable cues for the
recognition task. Multiple studies proposed to recognize ac-
tions based on 3D poses [13], [14], [15], [16]. However, these
methods are less convenient for general cases, because they
require special depth sensors. With the research progress in
pose estimation over the past few years, some alternative
approaches exploit 2D poses to recognize human actions [17],
[18], [19]. Similarly to the previously discussed approaches,
2D pose-based methods still represent actions by randomly
leaned features. Also, they remain limited in the way they in-
tegrate the temporal information that is irrelevant with respect
to the dynamic nature of human actions.

To address the aforementioned problems, we propose a
novel pose-based approach for human action recognition that
learns the temporal discriminative features of actions by inte-
grating them in a compact static representation. Based on key
poses, our model consists in integrating the most representative
appearance features in a single grid image to obtain a more
relevant representation of the performed action. In order to
restrict the analysis to only the most likely information related
to the action, we only consider the human region in the
scene in each frame. By fusing valuable appearance features
with representative poses, our grid representation mimics an
explicit attention mechanism that allows us to deal with some
challenges related to real-world data including occlusions and

ar
X

iv
:2

01
0.

08
84

1v
2 

 [
cs

.C
V

] 
 2

9 
O

ct
 2

02
0



intra-class appearance variations. Furthermore, we tested our
approach, called GRAR (Grid-based Representation for Action
Recognition) on several datasets and found that it yields
competitive or state-of-the-art results for individual actions as
well as collective activities when integrated into a bottom-up
setting.

The contributions of this paper are threefold:
1) We propose a new grid action representation that en-

codes only discriminative appearance features.
2) We consider an explicit attention mechanism that high-

lights the representative poses of the action and can
handle challenging situations, such as occlusions and
intra-class variations.

3) Experiments on three publicly available benchmark
datasets demonstrate the effectiveness of our proposed
model by achieving competitive results compared to the
state-of-the-art.

II. RELATED WORK

Our proposed work is related to three lines of research: deep
learning-related action recognition, pose-based video action
recognition and collective activity recognition in videos. In
this section, we review notable studies related to these research
areas and show how our proposed method differs from them.

A. Deep Learning-based Action Recognition

In recent years, deep learning methods have shown valuable
capabilities in various computer vision applications ranging
from image classification to action recognition in videos.
CNNs [20] are regarded as a powerful class of models for
the task of video action recognition. Simonyan et al. [21]
proposed to integrate spatial and temporal networks into a
two-stream CNN architecture that is trained independently on
inputs from static appearance and multi-frame dense optical
flow. Similarly, based on a two-stream CNN architecture,
Wang et al. [7] introduced a model called TSN that learns
video representations based on sparse temporal sampling to
encode the long range temporal structure for a better un-
derstanding of the dynamics in action videos. A 3D CNN
model that extends 2D convolutions to 3D convolutions is
proposed by Ji et al. [10] to learn spatio-temporal information
between stacked consecutive frames. The problem of 3D CNN
is that they contain many more parameters, which makes
them computationally expensive. Moreover they do not allow
modeling of long range temporal information.

Another widely adopted approach in this context is the
use of Recurrent Neural Network (RNN) and its variants
(e.g., LSTM and GRU). These networks have demonstrated an
impressive performance in modeling long-term dependencies
between frames. Donahue et al. [8] applied a long-term
recurrent convolutional network to model visual time-series to
recognize actions. In a different work, Du et al. [22] introduced
a recurrent network based on pose and attention mechanisms,
where the spatio-temporal evolution of the human pose is used
to guide the process of recognizing human actions in videos.
Recently, Li et al. [23] proposed an end-to-end sequence

learning framework for action classification that integrates
attention via a convolutional LSTM network.

B. Pose-based Video Action Recognition
Human pose is considered as an appearance clue that can

be leveraged to guide the process of action recognition in
videos. In this context, Wang et al. [16] proposed to infer
the best poses for each frame by extracting spatial-part-sets
and temporal-part-sets using a contrast mining algorithm [24],
where the output is then fed to a SVM classifier in order to
recognize human actions in videos. Nie et al. [25] proposed
a similar approach based on a spatial-temporal And-Or graph
hierarchical model that decomposes human actions into three
levels including poses, spatio-temporal parts and body joints.
Later, Zolfaghari et al. [26] integrate poses, motions, and
raw images into a three-stream architecture to improve the
action recognition performance. Recently, Choutas et al. [19]
proposed an approach called PoTion that jointly encodes
appearance and motion of semantic keypoints into a clip-level
representation serving as input for a shallow CNN.

C. Collective Activity Recognition
The past few years have witnessed an increasing interest by

the research community about collective activity recognition
[4],[27], [28], [29], [30]. A notable work was introduced by
Choi et al. [31] where they described the activity of a person
based on spatio-temporal descriptors in order to infer the
high-level collective activity. Recently, multiple deep learning
based models have been proposed in this context. A two-
stage hierarchical temporal model was introduced by Ibrahim
et al. [4] to recognize collective activities. In the first stage,
they analyze the temporal dynamics of each person with an
LSTM network. Then, they aggregate this information in the
second stage with the encoded temporal group dynamic, in
order to learn interactions between people that contributes
to recognize collective activities. On the other hand, Deng
et al. [32] proposed a framework that combines graphical
models and deep neural networks. In this model, nodes are
representing both people and the scene, which allows message
passing between outputs. Later, StagNet was proposed by Qi
et al. [29] where a semantic graph is used to model individual
actions as well as their corresponding spatial relations, whereas
the temporal interactions are modeled with a structural-RNN
architecture.

Different from these methods, we propose a novel action
recognition approach that relies mainly on relevant poses to
build an action representation instead of considering random
features or frames. Additionally, with an attention guided by
key poses, our approach is more robust to occlusion and
intra-class appearance variation problems. Following a bottom-
up design, our approach can be successfully leveraged to
recognize activities based on individual actions.

III. GRID-BASED REPRESENTATION FOR HUMAN ACTION
RECOGNITION

In this section, we present the overall design of our novel
GRAR model, whose ultimate goal is to recognize efficiently
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Fig. 1. The pipeline of our proposed GRAR model. From each frame, we extract human poses using a pose estimation method. We select then the most
representative key poses for each human based on an unsupervised clustering method. These estimated key poses are combined with their corresponding RGB
sources and then concatenated. This results in a compact grid representation Gh, that encodes the relevant RGB and pose information related to the performed
action. Finally, we train a deep convolutional neural network on the obtained grid representations to predict the corresponding action category Ah.

the actions of all persons in a video sequence, by combining
important temporal features associated with poses. The overall
pipeline is illustrated in Fig. 1.

To obtain a more relevant representation of the performed
action, first of all, we select the human region in the scene in
each frame, instead of taking the entire frame. This restricts
the analysis to focus only on the most relevant information
related to the person’s action. Given the tracks of every person,
we extract the sequence of the 2D human poses at each
time step. Once the poses are extracted, we normalize the
joint coordinates with respect to the bounding box position
at each time t to get their corresponding relative positions.
Based on these normalized joint positions, we select the most
representative poses of each action using an unsupervised
clustering algorithm. This will allow us to keep only the
information of interest about the performed action. We will
refer to these representative poses as key poses in the rest of
the paper.

From the chosen key poses, we create our new static grid
representation that integrates only the most discriminative
temporal RGB and pose information, which allows our method
to deal with periodicity in actions as well as occlusions and
intra-class variations problems. Indeed, since we are using
key poses, frames where the person is too much occluded
will likely be ignored because they will result in unstructured
or infrequent poses. Other times, poses can allow to extract
information through occlusions (see Fig. 2). Finally, we recog-
nize the performed actions by training a convolutional neural
network on sets of these grid images. Because actions are
represented in a grid image, we can benefit from pre-trained
image classification networks.

In the following sections, we describe in details the main

components of our proposed model. Since we are interested
mainly in human action recognition in this work, we assume
that humans are already detected.

A. Human Pose Estimation

Human actions are highly correlated with their correspond-
ing poses. A 2D human pose is a continuous represen-
tation of the body parts in the image space. Let Vh =
{V1, V2, ..., Vt, ..., VT } ∈ IRT×M×d denote the pose sequence
for a human h in T frames, where d is the spatial di-
mensions and M is the total number of human body key-
points (joints). The pose vector Vt is defined as Vt =
{wt1, wt2, ..., wtm, ..., wtM} where wtm is the spatial coor-
dinate of the keypoint m in a single frame at time t. In
this work, we use the recently published HighResolution Net
(HRNet) pose estimation model [33] for its good performance
on small persons. HRNet is a top-down architecture based on
repeated multi-scale fusions between parallel multi-resolution
sub-networks. For computational purposes, in our proposed
method, we use the HRNet-W32 network trained using the
MSE loss function defined as:

Lmse =
1

M

M∑
m=1

||Cm − Ĉm||22 (1)

where Ĉm and Cm are the predicted and the ground truth
confidence map for the mth joint respectively.

Given a sequence of video frames S ∈ IRT×H×W×3, the
model predicts the pose sequence Vh for a human h based on
the bounding box sequence Uh ∈ IRTh×Hh×Wh×3. As we use
the COCO keypoints format [34] for the 2D pose estimation,
we consider M = 17 and d = 2. In some special cases,
object detection and tracking methods can fail to estimate



good quality bounding boxes. In the case of humans, this
corresponds to a bounding box that does not cover all the body
joints of the person of interest. To solve this issue, once we
get the pose keypoint coordinates, we apply a bounding box
refinement process, which consists in modifying the bounding
box coordinates U

′

h ∈ IRTh×H
′
h×W

′
h×3 to enclose the extreme

joints coordinates.

B. Relevant Features Selection

Frame selection is a challenging task in action recognition
in RGB videos. Considering all the frames or choosing some
frames randomly to represent an action induce redundant
or irrelevant information in the learning process, which is
directly reflected on the final classification accuracy. In order
to reduce the complexity of our proposed model and increase
its generalization ability, we propose to focus on the most
relevant information by extracting key poses, a subset of
distinctive human poses for each action. For example, the
distinctive poses for the action ”running” can match frames
where the right hand, and both the left knee and foot are
all heading forward, in opposite directions to the left hand
and the right knee and foot. At first, we make the keypoint
sequence Vh invariant to the position in the scene and the scale
of the person of interest. Based on the corrected bounding box
sequence U ′h, we transform the coordinates of each vector
Vt from the frame t coordinate space to the corresponding
bounding box coordinate space U

′

t . Then, we normalize the
obtained coordinates with respect to the dimensions of the
considered bounding boxes.

Now that we constructed the V
′

h ∈ IRT×M×d sequence
for each person in the same normalized coordinate space,
we proceed to cluster these keypoint sequences in order to
extract the most discriminative poses, that are the key poses.
To this end, we employ the well-known Partitioning Around
Medoids (PAM) clustering algorithm [35] based on a pairwise
dissimilarity metric. This method is shown to be more robust
to outliers than the sum of squared Euclidean distances used by
K-Means. This fact is also demonstrated by our experiments
in Section IV.

Formally, given an action represented by the V
′

h pose
sequence, PAM provides us with a set of K pose clusters
(C1, C2...CK) along with their reference pose medoids V ∗h =
{Vk1

, Vk2
, ..., VkK

} ⊂ V
′

h and V ∗h ∈ IRK×M×d (i.e., the most
centrally located pose in a cluster), where both the intra-
cluster poses similarity and the inter-cluster dissimilarity are
maximized. The learning process of extracting key poses for
each person performing a specific action is done as follows:
at first, we randomly select a set of K poses for each person,
then we assign the remaining poses to the cluster with the most
similar medoid to them. After that, we select an arbitrary non
medoid pose x and compute the cost of swapping the initial
medoid with the new candidate medoid. The updated total cost
is based on the L1 norm and is defined as:

Vk1 , Vk2 , ..., VkK
= argmin

K∑
i=1

∑
x∈Ci

||x− Vki ||1 (2)

After convergence, the obtained poses medoids serve as the
key poses, which will be used as the input feature vector for
the next module.

C. Grid Representation Learning

Several research works in the literature have explored
multiple fusion techniques to integrate temporal information
[5] and complementary modalities [6] in order to improve
the final action recognition accuracy. However, these methods
remain limited in the way they integrate information in time.
In addition, they rely on randomly selected information which
results in less representative features. Different from these
methods, our GRAR model is based only on relevant RGB
information. Without requiring any additional annotations (i.e,
pose, skeleton data), the estimated key poses are used as an
explicit attention mechanism. By fusing temporal RGB and
pose features into a grid image representation, our model
efficiently encodes key patterns needed to recognize human
actions.

In order to create our new grid structure, we proceed as
follows: For each key pose in V ∗h , we get the RGB information
of interest Ihk

based on its corresponding bounding box. In
an explicit manner, we put attention on the key poses by
modifying the pixels p ⊂ Ihk

if p ∈ vhk
so that the pose

vector is encoded directly in the selected relevant RGB region.
This attention-guided by pose technique allows us to deal with
challenging real-word situations such as intra-class variations
and occlusions. Fig. 2 (b) shows an example where our model
can successfully compensate missing information caused by
occlusions.

(a) (b) (c)

Fig. 2. Examples from the Volleyball and CAE datasets of (a) a pose
estimation failure case considered as outlier during key poses selection. (b)
and (c) show occluded humans handled with our explicit attention on pose.

Afterwards, we put each fused Ihk
in a separated cell

forming our main grid structure Gh (see Fig. 3 for an ex-
ample of a grid image). Before grouping the obtained cells,
we concatenate each cell with a zeros-valued border. Such
operation is necessary to avoid learning unnecessary patterns
created by adjacent cells, when the convolution kernel sizes
are larger than the inter-cells spacing. Our experiments show
that considering a 3 pixel-wide boundary is enough according
to the filter sizes of the adopted CNN architecture. It is to
note that all of the Ihk

cells are not re-scaled, keeping them
at their original resolution allows our model to learn jointly



the features, as well as their corresponding distance from the
camera.

Fig. 3. Example of a grid image from the CAE dataset.

Once the grids are created, we train a CNN to learn
human action patterns from these sets of grids. We adopt the
Inception-ResNet-v2 model [36] pre-trained on the ImageNet
dataset [37] as our backbone CNN architecture. This model
is a hybrid Inception network that uses residual connections
rather than filter concatenation. We use the categorical cross
entropy as our loss function which is given by:

LCE = − 1

N

N∑
i=1

log
ew

T
yi

Gi+byi∑n
j=1 e

wT
j
Gi+bj

(3)

where Gi refers to the ith grid representation, N is the
number of training grids, yi is the class label of Gi, W is the
learned weight matrix and b is the intercept.

Considering only the human region in the scene instead of
the whole frame information, allows us to combine a multitude
of cues within the same image representation, without reducing
excessively the original image resolution. Excessive downsam-
pling of the image resolution to fall within the CNN input
size, often results in loosing information valuable for action
recognition. Moreover, being based solely on the human region
with pose information maximizes the information closely
related to the performed actions, and thus allows our model
to generalize well to other scenes. For example, in case of
a walking action, if our model is trained only with samples
of humans walking on a sidewalk, in the inference phase it
will be able to recognize that a human walks even if it is on
the grass. This can be explained by the fact that the extracted
deep features are more related to the human itself than to his
environment.

IV. EXPERIMENTS

In this section, we evaluate the performance of our proposed
model. We first present the considered benchmark datasets
and the implementation details. Then we report the results
of a series of ablation studies to analyze the impact of
each component of our GRAR model on the recognition

performance, followed by a comparison with the state-of-the-
art.

A. Datasets

We evaluate our model on three publicly available datasets:
the Collective Activity dataset [31], the Collective Activity
Extended dataset [38] and the Volleyball dataset [4].

1) Collective Activity dataset (CA) [31]: The Collective
Activity dataset is a popular dataset for both individual action
and group activity recognition. It contains 44 video sequences
with a resolution of 640×480 pixels from 5 individual actions
and group activity categories (talking, crossing, queuing, wait-
ing, walking). The collective activity label of a scene is defined
based on the performed action of the majority of individuals.
For train/test split, we follow the same evaluation protocol
suggested in [31].

2) Collective Activity Extended dataset (CAE) [38]: The
Collective Activity Extended dataset is an extended version
of the original Collective Activity dataset where the ”Walk-
ing” activity was replaced by two new activities ”Jogging”
and ”Dancing”. The reason why ”Walking” was removed is
because in some scenarios this activity is mixed with the
Crossing activity. To train our model, we followed the testing
scheme mentioned in [32] and use 2

3 of the videos for training
and the rest for testing.

3) Volleyball dataset [4]: The Volleyball dataset contains
4830 frames collected from 55 YouTube videos and are all
about Volleyball games. Each player is labeled with one of
these actions: moving, spiking, waiting, blocking, jumping,
setting, falling, digging and standing. We adopted the same
testing setup used in [4], where 2

3 of the data is used for
training and 1

3 for testing.

B. Implementation Details

We implemented our proposed model using the TensorFlow
library [39]. We use Inception-ResNet-v2 [36] as our backbone
CNN architecture pre-trained on the ImageNet dataset [37].
This network consists in 164 layers, with an image input
size of 299×299. For all the experiments and datasets, we
utilized stochastic gradient descent with ADAM [40] and set
the optimizer hyperparameters to β1 = 0.9, β2 = 0.999, ε =
0.001. For the CA and CAE datasets, we used 4 key poses
and trained the model in 100 epochs with a minibatch size of
16 and an initial learning rate starting from 10−3 then reduced
with a factor of 0.2 after 10 patience epochs. For the Volleyball
dataset, we used 6 key poses and trained the network with a
learning rate of 10−5 for 130 epochs with a mini batch size
of 32.

To track humans in the scene, for the Volleyball dataset,
we used the tracker proposed by Cao et al. [41], which is
implemented in the Dlib library [42]. For the CA and CAE
datasets, we used the tracklets provided by [31]. We used
the HighResolution Net (HRNet) algorithm [33] to compute
human postures across frames. Specifically, we used the pose-
hrnet-w32 architecture trained on COCO dataset. All our
experiments were run on a single TITAN Xp NVIDIA GPU.



C. Ablation Studies

In order to explore the effect of every component of our
model on the performance, we conducted extensive ablation
studies on the CAE dataset with the following variants.

Clustering Analysis: We start by studying the impact of
different clustering settings on the recognition performance.
The goal here is to find key poses forming the discriminative
grid representation. We compare three clustering methods,
namely, PAM, K-means and Gaussian Mixture Model (GMM)
estimated with the Expectation-Maximization algorithm. For
action representation learning, we used the same CNN archi-
tecture and parameters settings. The results are reported in
table I.

TABLE I
IMPACT OF THE CLUSTERING ALGORITHMS AND NUMBER OF KEY POSES

ON THE PERFORMANCE OF OUR MODEL ON THE CAE DATASET.
BOLDFACE: BEST RESULT.

K-means PAM GMM
K = 2 94.0% 94.6% 90.3%
K = 4 94.5% 95.2% 91.7%
K = 6 92.6% 93.9% 91.9%

Compared with K-means and GMM, we can see that PAM
gives the highest accuracy 95.2%. This can be explained by the
fact that PAM is robust against outliers. In fact, it minimizes
the average dissimilarity of human poses in each cluster, rather
than minimizing the squared sum of each intra-cluster as
adopted by K-means. It is important to highlight that the poses
that we use in our model are not manually labeled but instead,
are predicted with the HRNet model that can fail sometimes to
estimate high quality poses. Fig. 2 (a) illustrates an example
of a failure case in pose estimation, which is considered in
our study as an outlier pose. Compared to PAM and K-means,
GMM achieves the worst recognition rate in this experiment.
This can be explained by the fact that the nature of our input
pose data is not normally distributed.

Additionally, we evaluated the effect of the number of key
poses on the recognition performance. In this experiment, we
consider several numbers of key poses, starting from two
to six. Intuitively, one can say that the more key poses we
consider, the more we gain information about the performed
action. However, our evaluation on the datasets demonstrates
that above a certain number of key poses, the recognition
accuracy starts to decrease. We found that the performance is
directly related to the input size of the backbone CNN model
that we are using. In fact, by downsampling images to fit the
input size of the CNN, some important cues for the recognition
task are usually lost. So far, our findings demonstrate that
larger downsampling rate makes performance poorer. After
extensive experiments, we concluded that the number of key
poses must be chosen based on the average size of humans in
the scene. Furthermore, to keep the original full resolution for
each key pose image, our grid must have a resolution that is
close enough to the default CNN input size.

Features selection: Next, we study the importance of
features selection for human action recognition. We compared

random selection against pose-based selection for grid rep-
resentation. For pose-based selection, we also compared two
strategies, using only the poses features (K-Pose, in this case,
key poses are drawn in white over a black background) and
using only the RGB image corresponding to a key pose (K-
RGB). For action representation learning, we employed the
same CNN architecture in the three experiments. The results
are reported in table II.

Compared with random selection, choosing RGB informa-
tion based on human pose (K-RGB) gives an improvement
of 3.1%. This demonstrates that using the pose estimation to
select the RGB data provides us with relevant and discrimi-
native information for human action recognition. On the other
hand, using only pose features (K-Pose) with a standard CNN
model do not yield good results. Such experience reveals that
despite the pose containing valuable cues about the performed
action, using it solely does not provide the standard 2D CNN
with enough significant features for recognition.

TABLE II
IMPACT OF DIFFERENT MODULES ON THE ACCURACY OF GRAR BASED

ON CAE DATASET. BOLDFACE: BEST RESULT.

Model Variants Accuracy
Random 89.2%
Key poses only (K-Pose) 80.5%
Key Frame (K-RGB) 92.3%
Key Frame+Box enhancement (K-RGB+EB) 92.9%
Key Frame+Box enhancement+Pose Attention (K-RGB+EB+PA) 95.2%

Bounding Boxes Enhancement (EB): Here, we evaluate
the effectiveness of making use of the human pose to cor-
rect inaccurate bounding boxes used in GRAR pipeline. As
illustrated in Table II at the K-RGB and K-RGB+EB rows,
we can see that correcting the human bounding boxes give
us 0.6% of improvement. This emphasizes the importance of
incorporating human joint features to enhance bounding boxes
quality, which is useful not only for the action recognition task,
but could be useful to other computer vision problems.

Pose Attention (PA): Finally, we study the impact of
the introduced pose attention technique, where a key pose
is drawn over the corresponding RGB image. We compared
the recognition performance of K-RGB+EB against using K-
RGB+EB combined with pose-based attention. In both exper-
iments, we considered the enhanced version of the bounding
boxes (EB). As indicated in Table II at the K-RGB+EB
and K-RGB+EB+PA rows, we can conclude that putting
explicit pose-attention on appearance representation improves
the recognition performance by around 2.3%. This indicates
that if the estimated pose is of good quality, an attention
mechanism based on it makes the model more robust against
intra-class variations and occlusions problems, as explained in
Fig. 2.

D. Comparison with the State-of-the-Art

In this section, we compare the performance of our GRAR
model with respect to several state-of-the-art methods includ-
ing Learning context [38], Social Cues for activity recognition



TABLE III
COMPARISON OF THE ACTIVITY RECOGNITION PERFORMANCE OF

STATE-OF-THE-ART METHODS VERSUS OUR MODEL EVALUATED ON CA
DATASET. BOLDFACE: BEST RESULT.

Method Accuracy
Choi et al. [38] 70.9%
Tran et al. [43] 78.7%
Ibrahim et al. [4] 81.5%
Deng et al. [32] 81.2%
Shu et al. [27] 87.2%
Qi et al. [29] 89.1%
Zhang et al. [44] 83.8%
Lu et al. [45] 90.6%
Wu et al. [46] 91.0%
GRAR (Ours) 91.5%

[43], Hierarchical Deep Temporal Model [4], Structure Infer-
ence Machines [32], CERN [27], StagNet [29], Fast collective
activity [44], Gaim [45], ARG [46], SSU [28] and SRNN [30].

1) Results on the Collective Activity dataset: Now that we
evaluated multiple variants of our model for individual action
recognition, our goal here is to explore the ability of our model
to recognize collective activities based on the individual ones.
As previously done, we derive the collective activity label
of a scene based on the performed action of the majority
of individuals. Moreover, we do not use any ground truth
annotations about the pose.

Table III summarizes the state-of-the-art performance on the
Collective Activity dataset (CA). Our model with the pose-
based grid representation outperforms the compared state-
of-the-art methods. For example, our model achieves ≈10%
higher accuracy than recent methods based on hierarchical
relational networks [4] and recurrent neural networks for
activity recognition [32]. This is mostly because we focus
primarily on highly discriminative RGB features along with
their corresponding poses.

TABLE IV
COMPARISON OF THE ACTIVITY RECOGNITION PERFORMANCE OF

STATE-OF-THE-ART METHODS VERSUS OUR MODEL EVALUATED ON CAE
DATASET. BOLDFACE: BEST RESULT.

Method Accuracy
Choi et al. [38] 82.0%
Tran et al. [43] 80.7%
Ibrahim et al. [4] 94.2%
Deng et al. [32] 90.2%
Qi et al. [29] 89.7%
Lu et al. [45] 91.2%
Zhang et al. [44] 96.2%
GRAR (Ours) 97.4%

2) Results on the Collective Activity Extended dataset:
The experimental results of human activity recognition on the
CAE dataset are shown in Table IV. Our pose-based grid
model again achieves the state-of-the-art performance with
97.4% collective activity recognition accuracy. This perfor-
mance demonstrates the effectiveness of choosing relevant
RGB information and incorporating key pose features as
an explicit attention mechanism in compensating the model
weakness when facing ambiguous RGB appearances.

TABLE V
EVALUATION OF ACTION RECOGNITION PERFORMANCE OF

STATE-OF-THE-ART METHODS VERSUS OUR PROPOSED MODEL ON THE
VOLLEYBALL DATASET. BOLDFACE: BEST RESULT.

Method Accuracy
Ibrahim et al. [4] 75.9%
Shu et al. [27] 69.0%
Bagautdinov et al. [28] 82.4%
Qi et al. [29] 81.9%
Biswas et al. [30] 76.6%
Wu et al. [46] 83.1%
GRAR (Ours) 82.9%

3) Results on the Volleyball dataset: We further conducted
experiments on the Volleyball dataset. Table V shows the
comparison of our proposed model with different recent state-
of-the-art methods for individual action recognition. As can
be seen, our GRAR model outperforms most of the state-of-
the-art methods [4], [27], [28], [29], [30] with an accuracy of
82.9%. It is also highly competitive to the ARG method [46],
mostly because this latter uses a graph convolutional network
that encodes complex actor relation.

V. CONCLUSION

In this paper, we have presented GRAR, a novel pose-
based model for human action recognition that uses a grid
image of key poses. Our results consistently demonstrate that
selecting RGB appearance based on the most discriminative
human poses and combining them together in an image leads
to considerable improvements. We obtained promising results
compared to state-of-the-art approaches on three public bench-
mark datasets. Our proposed method has several benefits: 1) it
is compact, 2) it exploits powerful CNN architectures designed
for image classification tasks without requiring any architec-
tural changes, and 3) it is robust against occlusions, intra-class
action variations and incorrect human poses estimation.
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