arXiv:2010.06425v1 [cs.Al] 13 Oct 2020

Temporal Collaborative Filtering with Graph
Convolutional Neural Networks

Esther Rodrigo Bonet, Duc Minh Nguyen and Nikos Deligiannis
ETRO Department, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
imec, Kapeldreef 75, B-3001, Leuven, Belgium
{erodrigo, mdnguyen, ndeligia} @etrovub.be

Abstract—Temporal collaborative filtering (TCF) methods aim
at modelling non-static aspects behind recommender systems,
such as the dynamics in users’ preferences and social trends
around items. State-of-the-art TCF methods employ recurrent
neural networks (RNNs) to model such aspects. These meth-
ods deploy matrix-factorization-based (MF-based) approaches
to learn the user and item representations. Recently, graph-
neural-network-based (GNN-based) approaches have shown im-
proved performance in providing accurate recommendations over
traditional MF-based approaches in non-temporal CF settings.
Motivated by this, we propose a novel TCF method that leverages
GNN:s to learn user and item representations, and RNNs to model
their temporal dynamics. A challenge with this method lies in
the increased data sparsity, which negatively impacts obtaining
meaningful quality representations with GNNs. To overcome this
challenge, we train a GNN model at each time step using a set
of observed interactions accumulated time-wise. Comprehensive
experiments on real-world data show the improved performance
obtained by our method over several state-of-the-art temporal
and non-temporal CF models.

I. INTRODUCTION

Recommender systems aim to provide users with the most
relevant information or products, with which they are likely
to interact. Providing such information helps users quickly
navigate and filter out irrelevant information from the plethora
of data available online nowadays. As such, recommender
systems have become indispensable components of online
platforms, such as e-commerce, movie streaming and news
websites, to drive user engagement and interactions.

Building recommender systems has been a very active
research topic for years, resulting in a great number of methods
proposed in the literature. Among them, collaborative filtering
(CF) methods are arguably the most popular ones due to favor-
able performance compared to other methods [1]. CF methods
leverage collective user-item interactions and build models to
predict the likelihood of unobserved interactions. For instance,
models that follow the matrix-factorization (MF) approach —
a very common CF approach— learn users’ and items’ latent
representation vectors (also referred to as latent embeddings
or states) by factorizing data matrices which contain historical
interactions. Unknown user-item interaction scores are then
calculated by taking the dot product of the corresponding
representation vectors. These vectors, or embeddings, are often
interpreted as encoding preferences of users and characteristics
of items.

Despite being widely-adopted, traditional CF methods focus
mainly on static settings, where user preferences and other
factors such as social trends around items, are assumed to
be stationary. In real application settings, however, such
assumption seldom holds [2]. Recently, numerous works have
focused on modeling the temporal dynamics in recommender
systems [3], [4], [5]. They are referred to as time-aware or
temporal collaborative filtering (TCF) methods [6], [7], [8].
TCF methods often employ recurrent neural networks (RNNs)
to model the temporal trajectories of user embeddings [5], [9],
or of both user and item embeddings [2], [3], [10]. They have
achieved higher performance over non-temporal counterparts
in predicting future ratings [2], [4], [7].

A limitation of existing TCF methods is that they often rely
on linear MF models to individually learn users’ and items’
embeddings, neglecting the fact that correlations amongst
users and items are effective hints in modeling their latent
representations. In contrast, recent studies on static CF have
shown the benefits of modeling user-item interactions in forms
of graphs and of using graph neural networks (GNNs) to learn
representations over linear models [11], [12]. Motivated by
this, we aim to leverage GNNs in the context of femporal CF.
To this end, we propose a method that (i) employs a graph-
based CF model, namely the Graph Convolutional Matrix
Completion (GCMC) model [11], to effectively learn user
and item embeddings and (ii) models the temporal trajectories
of these embeddings using RNNs. The RNNs, after training,
can propagate the latent embeddings to a future time step.
These latent states are then used to predict potential user-
item interactions. An inherent challenge with this method in
the temporal CF setting lies in the increased data sparsity. To
overcome the challenge of efficiently learning the embeddings
from highly sparse data, we propose to use the historical user-
item interactions, accumulated over time. Our experimental
results show systematic performance improvement obtained
with this approach.

To summarize, our contributions in the paper are two-fold:

o We propose a method, coined Time-aware Graph-based

Matrix Completion (TG-MC), which leverages the state-
of-the-art graph-based CF model with RNNs for collabo-
rative filtering. To the best of our knowledge, we are the
first to leverage the graph-based CF approach for TCF.

o« We present comprehensive experiments on large-scale

real-world data to assess the effectiveness of our method

in comparison with the state of the art.
The remainder of the paper is organized as follows: Section
II reviews the related work, Section III presents our method
in detail. Section IV describes the experimental settings and
results while Section V concludes the paper.

II. RELATED WORK

Our work lies in the intersection between the temporal
collaborative filtering (TCF) and the graph-based collaborative
filtering literature. In this section, we review these two areas
and show the differences between our method and existing
ones in each corresponding area.

A. Temporal Collaborative Filtering

Existing TCF methods focus on the temporal aspects of
only users, of users and items, or of their interactions, e.g.,
rating scores. In this section, existing studies are grouped
based on how they model users’ preferences and items’ social
perception. Throughout the paper, the opinion that a social
environment has of a product will be referred as item (social)
perception.

A number of works consider items’ social perception as
stationary and model users’ preferences as evolving over
time [9]. For instance, [9] uses random walks to independently
learn short- and long-term user preferences.

Nevertheless, most TCF methods in the literature assume
that both items’ perception and users’ preferences may evolve
over time [2], [3], [4]. They either (a) model users’ and items’
latent states by means of temporal MF [2], [3] or (b) infer
rating scores by modeling users’ and items’ dynamics by
means of baseline predictors [4]. While [4] and [7] obtain
time-stamped latent states by following a MF approach, [2]
uses Long-Short Term Memory (LSTM) units [13] to learn
time-varying functions, thus reconstructing the dynamics of
the evolution rather than the latent states.

The previous studies propose methods that learn the evo-
lution of users’ preferences and items’ perceptions using
independent RNNs. Alternatively, other papers define baseline
functions which only depend on previous rating scores and
incorporate time-decay functions to penalize older ratings [14]
or emphasize relevant periods like seasons or week-ends [15].

Unlike the TCF techniques presented above, which employ
baseline functions or MF methodologies, our method models
the user-item interactions by means of graph-based techniques,
that is, GNNs. Our target is to effectively learn the latent
embeddings with these novel neural networks which allow for
a more precise study of the interactions and an increase in
computational complexity.

B. Graph-based Collaborative Filtering

Link prediction refers to the task of anticipating whether
an edge should be created between two nodes. Recommender
systems can be formulated as a link prediction problem by
representing users, items and their interactions in a bipartite
graph. One of the first papers that proposed this methodology
was [16] who introduced novel linkage functions as measure

for inferring the rating scores in the model. Since then, various
methods have followed proposed by [11], [12], [17], [18], [19].

Although MF is arguably the most commonly employed
approach for recommender systems, recent studies have also
leveraged CNNs and GNNs with favorable outcomes. Mainly
thanks to the development of CNNs and GNNs in recent
years, interpreting recommender systems as a link prediction
problem has received a boost in attention, leading to per-
formance improvements. Namely, the methods by [11], [12],
[19] outperform non-graph CF papers by incorporating GNNss,
whereas [17] addresses the problem similarly using CNNs. In
effect, these papers leverage the graph structure of the data
and employ neural networks in the extraction of the latent
embeddings of users and items. Differently, [18] proposed to
leverage signal processing concepts such as as graph frequency
and graph filters to address the problem.

The approaches reviewed in this subsection focus on the
static CF problem and ignore the dynamics behind users’
opinions and social trends. In this work, we attempt to combine
graph-based and time-dependant techniques with the aim of
learning user and item latent embeddings and their dynamics.

III. THE PROPOSED METHOD

In this work, we follow the TCF approach for recommender
systems and consider the time information associated to the
user-item interactions. Concretely, we group the observed
interactions by the time they occur, resulting in a sequence of
T non-overlapping interaction matrices {R1,...,Rr}. This
is in contrast to the setting in static CF methods, where all the
observed interactions are processed at once in a single data
matrix. A time step ¢ in our setting is associated to a matrix
R; which contains interactions occurring between ¢ — ¢ /2 and
t+4/2 with ¢ the time window’s length. T is hence determined
by the total time span of the data (between the first and the
last observed interactions) and 4.

To learn from the sequence of interaction matrices, we
propose a method, coined Time-aware Graph-based Matrix
Completion (TG-MC), which leverages a graph-based CF
approach and temporal prediction techniques. The schema of
our method is illustrated in Figure 1. During training, our
method follows a two-stage pipeline. The first stage involves
learning latent embeddings representing users and items using
the GCMC model [11]. This step is performed independently
for each interaction matrix R; with ¢ = 1...7T, resulting in
two length-T-sequences of latent embeddings for the users and
the items. At each time step, a bi-linear decoder is trained
together with the GCMC model as in [11]. In the second
stage, we fit two RNNs on the sequences of user and item
representations to model their temporal trajectories. During
testing, these RNNs are used to propagate the user and item
representation vectors to a future time instance, from which
user-item interaction scores can be computed using the bi-
linear decoder trained in the first stage. Next, we present the
steps involved in our method in detail.

(b) Encoder (c) Predictive (d) Decoder
(@) Input step step step
Items Users Items Users
0 RNN RNN 7
X / layer =7 layer \ 3/,’«j<<>
¥ User RNN ’
(5 [GCN FC Uy, ..Uy : ’
layer layer ViV, .. V;
1 A '
\ o ltem RNN
=0 / layer layer
—t=1

Fig. 1: The proposed time-aware graph-based matrix completion architecture for Recommender Systems (TG-MC). (a) The model receives
as input a sparse tensor of ratings R€ RNV *Nv *T i three dimensions (users, items and time). The empty elements of R represent unknown
rating scores from a user to a specific item. (b) The encoder is formed by combining GNNs and fully-connected layers. Running the encoder
step for each time window results in two length-T sequences of latent representations for users and items. (¢) The predictive step encompasses
an RNN-, LSTM- or GRU-based architecture. Given the two sequences of users and items embeddings, two RNN models, which we refer
to as user- and item-RNNs, predict the subsequent embeddings. The two RNNs can share weights or can be completely independent. (d)
By matrix multiplication, the decoder step obtains, at the subsequent time instance, the output matrix Rr41 which contains the predicted

ratings scores.

A. Learning Users and Items Latent Embeddings with a
Graph-based Model

1) Modeling Users and Items: Following [11], we represent
the rating matrices in the form of graphs. Concretely, the
interaction matrix R; is represented as a bipartite graph G,
where a node corresponds to either a user or an item, and an
edge encodes a rating a user has given to an item. The aim
of this step is to learn the latent representations associated to
each user or item node. The latent embedding of the node i
at time ¢ is denoted with the vector z;; € IRXm, where d is
the dimension of the latent representation.

Independently of the node type (item or user), a latent node
embedding z; ; is learned by the following two steps. First, a
vector h;; is computed by accumulating all incoming links of
node ¢ (i.e. j — %, Vj connected to %) in graph G;

E Mj—si 1ty -ens E Mj—i Rt)

JEN;1 JEN: R
(D

where o[- is the activation function and N; , is the set of nodes
with linked interactions to user (or item) ¢ with rating score
r € {1,...,R} and accum(-) is an accumulation function,
e.g., concatenation or element-wise addition. Each incoming
link to node i is a user-item interaction and contributes by

h;+ = o [accum

it = Wit 2)

Ci gt
Here, W, ; € RA*Nv are learnable weights. Ny (or Ny) and
H are, respectively, the input size and the hidden dimension
size, xj; is the initial feature vector of item-node j at time ¢,
and ¢; ;; is the normalization factor.

In the second step, the latent vector z;; is computed by

Zit =0 (Wthi,t) , 3)

where each weight matrix W; € RYH i learned from the
available training data at time ¢. Depending on the node type
(i.e., whether it represents a user or an item), we consider the
learned representation z; ¢ as a user or an item vector, denoted
as u; ¢ and v;; respectively.

2) Bi-linear Decoder: Following the GCMC model [11],
for each time window, we compute the user-item interaction
scores from the learned user and item embeddings using a bi-
linear decoder. In this work, as we consider ratings (e.g., one-
to five-score rating) as the interaction type, the prediction of
rating values can be treated as a classification problem. We
calculate the probability of rating R; ;; (user 7 rate item j at
time t) to have value r according to

exp(uzt Qr,tvj,t)
2oser eXP(“iT,th,tUj,t) ’

with wu; ¢, v; ¢ the embeddings of user ¢ and item j at time ¢
and Q,; € R Vr = {1,..., R} the learnable parameters
of the bi-linear decoder at time ¢.

We jointly train the parameters of the bi-linear decoder
Qr: € R v = {1,...,R}) and those of the graph-
based user and item modelling (W), separately at each time
window t, by minimizing the negative log-likelihood objective
function,

P(Ri,j,t = T‘) =

“4)

Lyraph = — Y log P(Ri 1 =),
1,7 €0

®)

with €2, the set of ratings available for training at time ¢, and
r is the ground-truth rating that user 7 gives to item j.

TABLE I: Average test RMSE and MAE scores for all variations of our method on the Netflix and MovieLens 1M datasets.

Non-Accumulative Representation Accumulative Representation

Dataset Method RMSE MAE RMSE MAE
TG-MC RNN 1.008=+ 0.085 0.921£0.040 1.001 £0.033 0.822 4+ 0.022
Netflix TG-MC GRU | 0.969 + 0.034 0.876 £+ 0.037 0.952 + 0.023 0.767+£0.029
TG-MC LSTM | 0.974 + 0.028 0.918 + 0.017 0.931-£0.009 0.79040.020
TG-MC RNN 1.032+ 0.030 0.830£0.027 0.876 £+ 0.023 0.783 £ 0.027
MovieLens IM TG-MC GRU 1.019+0.028 0.818+ 0.028 0.867 + 0.013 0.697 + 0.023
TG-MC LSTM | 1.015 £ 0.022 0.768=+ 0.026 0.834 £+ 0.011 0.664 + 0.028

TABLE II: RMSE scores obtained by our method and reference methods on the Netflix and MovieLens 1M datasets.

Method [Netflix MovieLens IM
PMF [20] 0.957 0.883
I-AutoRec [21] 0.979 0.833
U-AutoRec [21] 0.985 0.877
GCMC [11] 1.264 1.001
TG-MC (ours) 0.931 0.834

3) Handling Data Sparsity: CF methods generally suffer
from the data sparsity problem, i.e., the number of observed
user-item interactions is scant compared to the total possible
number of such interactions. In our case, this problem aggra-
vates because the number of observed ratings is distributed
with respect to their time instance: if the range of observed
interactions is uniformly distributed across time, the density
of R; is on average 1/ T that of R.

To mitigate this problem when building R;, rather than
only using the interactions observed within ¢, we also in-
clude the interactions accumulated from previous time steps
{1,...,t — 1}. Following this approach, the density of the
rating matrix increases through time, i.e., |Q 1| > |2, Vt €
{1,...,T — 1}, which helps ease the learning of the GCMC
model. In Section IV, we will compare the efficiency of
this variance (accumulative representation) against the non-
accumulative representation.

B. Modeling Users’ and Items’ Dynamics

By learning user and item embeddings for each time win-
dow t, with ¢t € {1,...,T}, we obtain two length-T" sequences
of embeddings, one for the users and the other for the items.
We denote these two sequences, respectively, by U; and V;
with t € {1,...,T}. We have U, € R"*? v, ¢ RNv*?
where Ny, Ny are the number of users and items.

We employ two RNNs to model the temporal information in
these sequences of embeddings, one for the users and one for
the items, which we refer to as the user-RNN and item-RNN,
respectively. This is motivated by the success of RNN and its
variants in learning and predicting sequential data [22]. As we
unify the dimensions of the user and item embeddings (both
equal to d), we can have the user-RNN and item-RNN either
sharing weights or operating separately. In Section IV, we will
compare the results obtained with these two variants.

Using RNNs, we predict the embeddings at a time step 7'+1
from the embeddings of the previous 7' time steps (from ¢ = 1
to T'). By re-iterating this process, we can further infer the

embeddings at later time steps, e.g., T'+ 2 and T + 3 and so
on. Formally, considering the user embeddings, we have:

Urs1 = fan(Un, - .., Ur), (6)

with (7T+1 the predicted embeddings at time 7" + 1 and
frn(+) the function implemented by the user-RNN. The item
embeddings at each time window can be predicted in the same
way using the item-RNN whose operation is referred as grnn.-

We employ the mean-squared-error (MSE) loss function to
train the user- and item-RNNs. Concerning the user-RNN,
at time step t, the MSE is calculated between the predicted
embedding U; produced by applying the model on the se-
quence of prior embeddings, Uy, ..., U;_1, and the embedding
produced by the GCMC model at time ¢, namely, U;, as
illustrated in Eq. (7).

N
1 ~
Luser-RNN = N E_l |Us = Us||%, @)

with ||.||r the Frobenious norm. The loss function used to
train the item-RNN is calculated analogously using the item
embeddings.

C. Predicting entry values at future time instances

Using the trained user-RNN and item-RNN models as
presented above, we can predict the user and item embeddings
at any future time step. Following the same setting, we employ
the T bi-linear decoders learnt at time steps ¢t = {1,...,7}
and a LSTM-based RNN architecture to predict the bi-linear
decoder weights at ¢t = T 4 1. The selected loss function is
MSE as illustrated in Eq. (7). With this, we are able to predict
the user-item interaction probabilities at ¢ = T'+ 1. Concretely,
consider the time instance 7'+ 1, the predicted probability for
rating R; ; 741 to have value r is calculated following Eq. (4),
with the embeddings produced by the (user- and item-) RNNs
at time 7'+1 and the bi-linear decoder produced by the RNN at

time 7'+ 1. From the computed probabilities, we can produce
the continuous-valued predictions according to:

Riji=Y rP(Rij,=r) (8)
reR
where R = {1,..., R} is the set of possible rating scores.

IV. EXPERIMENTS

In this section, we present our experimental study to assess
the effectiveness of the proposed methods compared to the
state of the art. We first describe the experimental settings
and then report the obtained results.

A. Experimental Settings

We employ the Netflix and MovieLens datasets [23], [24] in
our experiments, both widely used in recent literature [2], [11],
[21], [25] and with different characteristics regarding number
of users, items and distribution of ratings. The Netflix dataset
comprises a total of about 100M ratings, 480, 189 users and
17,770 movies, whereas the MovieLens 1M (ML-1M) dataset
has 6,040 users, 3,900 items and 1M observed ratings.

A data point (i.e. rating) of any of the two sets contains a
movie and user identifier as well as the rating score and the
time of the event. The Netflix timestamp is given as YYY Y-
MM-DD while the ML-1M is given as seconds since midnight
Coordinated Universal Time (UTC) of January 1, 1970.

For the Netflix dataset, we follow the setup in [2] and
consider a 6-month subset of the dataset (nearly 5M data
points) with ratings occurring between July and December
2005. To respect causality considerations, ratings recorded
in the month of December are kept for testing while those
recorded between July and November are used for training. All
the ratings are integer values in the range [1 — 5]. We split the
data according to a time window of 1 week. As the total time
span of the data is 30 weeks, we obtain 7" = 30 interaction
matrices, of which the first 26 ones are used for training (3M
ratings) and the rest are reserved for testing (1.8M ratings).
This results in a train-test split of 62%-38%.

For the ML-1M dataset, we follow [25] and split the dataset
according to a time window of 3 months. As the total time
span of the data ranges from May 2000 to January 2003, we
obtain 7" = 11 time windows, where the first 9 are used for
training and the remaining are kept for testing, resulting in a
99%-1% train-test split. Like on the Netflix dataset, the ratings
are integers in the range [1 — 5].

We compare the performance of our methods with that
of state-of-the-art reference models, including non-temporal
CF models such as the PMF [20], Autorec [21] and GCMC
models [11] and temporal CF models [2], [4], [6], [10],
[25], [26], [27], [28]. The performance of the models are
assessed using two metrics, namely, the root mean squared
error (RMSE) and mean absolute error (MAE). For each
model, we report the mean results obtained after five different
runs employing the test and train sets explained above.

On the GCMC model [11], the reported results are obtained
by running their code on the whole matrix of ratings when

T =1 with the best hyperparameters reported in their paper.
Equivalently, reported results from [2] on the Netflix dataset
are collected from their papers. The temporal MF model from
[26] was re-implemented and run for the best parameters we
found. We followed an equivalent process for [6], [21], [27].
Results on [10], [25], [28] are taken from their paper since
they follow the same experimental settings.

B. Hyperparameters Selection

We empirically select the hyperparameters for the graph
encoder, the user- and the item-RNNs.

a) The Graph-based Encoder: For this model, we em-
ploy a learning rate of 1072, a dropout rate of 0.3 and rectified
linear unit (ReLLU) as the activation function after both dense
and GNN layers.

On the Netflix dataset, we performed grid search to select
the best combination of the output dimensions of the GNN and
dense layers (H and d). We compared the results obtained by
different combinations on a separate validation set containing
20% of the known ratings in the training set at the last training
time step. This procedure results in H = 500 and d = 75.
For each time step, we train the corresponding graph-based
encoder for 1, 000 epochs with a batch size of 100, 000 training
ratings. On the ML-1M dataset, we perform the same grid
search procedure and accordingly set H = 500 and d = 50.
For each time step, we train the model for 2, 500 epochs with
a batch size of 100,000 training samples.

b) The user- and item-RNN models: We experiment with
different variants of RNNs to construct the user- and item-
recurrent networks, including LSTM, GRU and vanilla RNN
models, with one, two or three hidden layers. For each variant,
we use the tanh activation function. As mentioned earlier, the
weights between the user- and item- RNNs can be shared. For
training, we employ the Adam optimizer with a learning rate
of 1072, running for 250 epochs. Throughout our experimental
study, we empirically observe that using LSTM models with
two hidden layers give the best performance overall, and that
sharing weights between the user- and item- recurrent models
improves the performance. As such, we use this configuration
when comparing our method to the reference models.

C. Experimental Results

a) Non-Accumulative versus Accumulative Representa-
tions: Table I compares the results obtained by our methods
on the Netflix and ML-1M datasets when using the non-
accumulative and accumulative data representations. Recall
that with the former, only the ratings observed within a time
window t are used to learn the user and item embeddings (U,
and V; respectively), while with the latter, all ratings between
the first and the ¢—th time windows are employed.

We can observe from the two tables that, given the same
experimental conditions and independently of the employed
dataset and RNN variant, the accumulative data representation
yields better results in terms of RMSE and MAE. Furthermore,
it is worth mentioning that more complex units like LSTMs
and GRUs provide lower prediction errors than the vanilla
RNN.

TABLE III: Comparison of our method and TCF methods on the Netflix and MovieLens datasets.

(a) Average test RMSE scores for different TCF models on the Netflix
Data Set.

Method [RMSE
Temporal MF [26] 1.112
RRN [2] 0.944
TimeSVD++ [4] 0.962
NCF [27] 0.947
LFM [28] 0.936
TG-MC (ours) 0.931

b) Comparison against Non-temporal CF models: In this
paper, we argue that (i) learning user and item embeddings
via GNNs and (i7) modeling the temporal dynamics improve
the performance of CF models. To confirm both points, we
compare the performance of our method with that of both
non-temporal and non-graph-based reference CF models.

Table II shows the RMSE scores obtained by our method
and non-temporal CF reference methods on the Netflix and
ML-1IM datasets. As can be seen, our method yields the
best performance on the Netflix dataset, followed by the
PMF method. On the ML-1M dataset, the I-AutoRec model
performs the best while our method has the second best per-
formance. It should be noted that the performance difference
between the two is relatively small (i.e., 0.001 point on RMSE
on average), and that our method has lower MAE compared
to the I-AutoRec model (0.664 versus 0.790, respectively).

Among the reference non-temporal models, the GCMC
model [11] employs graph neural network to learn the latent
representations. In fact, this model can be seen as a special
case of our method where the time span ¢ is defined so that
all the known rating scores are enclosed in one matrix (i.e.,
T = 1). However, directly applying the GCMC model on
the TCF setting, where the training and testing sets are split
according to the time stamps, results in poor performance on
both the Netflix and ML-1M datasets, showing the benefits
of modeling the temporal dynamics behind user and item
embeddings in TCF.

c) Comparison with State-of-the-art TCF models: Ta-
ble III compares the performance of our method and that of
reference TCF methods on the Netflix and ML-1M datasets.
For a fair comparison, we follow most recent TCF papers [2],
[4], [7] and report RMSE scores for the Netflix dataset, and
MAE scores for the ML-1M dataset. It is worth re-calling that
whenever applicable, we include the best scores reported in
the corresponding papers in our comparison. From the table,
it is noted that our method yields the best performance on
the Netflix dataset. The LFM model achieves the second best
RMSE score, followed by the NCF model. On the ML-1M
dataset, our method out-performs all reference TCF methods
by large margins.

Among the reference TCF models, our method of modeling
the temporal trajectories of user and item embeddings is simi-
lar that of the Temporal MF model [26]. The key difference is

(b) Average test MAE scores for different TCF models on the Movie-Lens
1M Data Set.

Method [MAE
Temporal MF [26] | 0.843
RRN [2] 0.793
AMN=1 [25] 0.777
NTF [10] 0.689
TG-MC (ours) 0.664

that we employ graph neural network to learn the embeddings
at each time step, while the Temporal MF models follow a
matrix-factorization approach. The results reported in Table III
consistently show significant performance improvements ob-
tained by the TG-MC model over the Temporal MF model.
This justifies the benefits of using graph neural networks in
our method.

V. CONCLUSION

In this paper, we have presented a method for temporal
collaborative filtering (TCF), which combines graph neural
network (GNN) and recurrent neural network (RNN) models
to effectively (i) learn the latent user and item representations,
and (i) model the trajectories of these representations across
time. To deal with the increased data sparsity in the TCF
setting, we proposed to train the GNNs using an accumulative
data representation technique. Our comprehensive experiments
on the Netflix and MovieLens 1M datasets justified the benefits
of each of the proposed components, namely, the use of RNNs
to model the temporal dynamics in the TCF settings, the use of
GNNs to capture the latent representations of users and items
and the benefits of training the models using accumulative
data. The experimental results also showed that our method
yielded favourable performance compared to several state-of-
the-art TCF models.

ACKNOWLEDGEMENT

This research was supported by funding from the Flemish
Government under the “Onderzoeksprogramma Artificiéle In-
telligentie (AI) Vlaanderen” programme.

REFERENCES

[1] Y. Koren and R. Bell, “Advances in collaborative filtering,” pp. 77-118,
01 2015.

[2] C.-Y. Wu, A. Ahmed, A. Beutel, A. Smola, and H. Jing, “Recurrent
recommender networks,” 02 2017, pp. 495-503.

[3] X. Ma, P. Sun, and Y. Wang, “Graph regularized nonnegative matrix
factorization for temporal link prediction in dynamic networks,” Physica
A: Statistical Mechanics and its Applications, vol. 496, pp. 121 — 136,
2018.

[4] Y. Koren, “Collaborative filtering with temporal dynamics,” Commun.
ACM, vol. 53, no. 4, pp. 89-97, Apr. 2010.

[5]1 Y. Song, A. M. Elkahky, and X. He, “Multi-Rate Deep Learning for

Temporal Recommendation,” in Proceedings of the 39th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR *16. New York, NY, USA: ACM, 2016, pp. 909—
912.

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]

[27]

[28]

L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. Carbonell,
“Temporal collaborative filtering with bayesian probabilistic tensor fac-
torization,” 12 2010, pp. 211-222.

N. N. Liu, L. He, and M. Zhao, “Social temporal collaborative ranking
for context aware movie recommendation,” ACM Trans. Intell. Syst.
Technol., vol. 4, no. 1, Feb. 2013.

P. G. Campos, F. Diez, and 1. Cantador, “Time-aware recommender
systems: a comprehensive survey and analysis of existing evaluation
protocols,” User Modeling and User-Adapted Interaction, vol. 24, no. 1,
pp. 67-119, Feb 2014.

L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and
J. Sun, “Temporal Recommendation on Graphs via Long- and Short-
term Preference Fusion,” in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’10. New York, NY, USA: ACM, 2010, pp. 723-732.

X. Wu, B. Shi, Y. Dong, C. Huang, and N. V. Chawla, “Neural tensor
factorization for temporal interaction learning,” in Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining,
ser. WSDM °19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 537-545.

R. Van den Berg, T. N. Kipf, and M. Welling, “Graph Convolutional
Matrix Completion,” ArXiv, vol. abs/1706.02263, 2017.

S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based
recommendation with graph neural networks,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, p. 346-353, Jul 2019.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

P. Wang, H. Hou, and X. Guo, “Collaborative Filtering Algorithm Based
on User Characteristic and Time Weight,” in Proceedings of the 2019
8th International Conference on Software and Computer Applications,
ser. ICSCA ’19. New York, NY, USA: ACM, 2019, pp. 109-114.

D. Lee, S. E. Park, M. Kahng, S. Lee, and S.-g. Lee, Exploiting Con-
textual Information from Event Logs for Personalized Recommendation.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 121-139.

H. Chen, X. Li, and Z. Huang, “Link Prediction Approach to Collabora-
tive Filtering,” in Proceedings of the 5th ACM/IEEE-CS Joint Conference
on Digital Libraries (JCDL ’05), June 2005, pp. 141-142.

D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, “Convolutional matrix factor-
ization for document context-aware recommendation,” in Proceedings of
the 10th ACM Conference on Recommender Systems, ser. RecSys ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
233-240.

W. Huang, A. G. Marques, and A. Ribeiro, “Collaborative filtering via
graph signal processing,” in 2017 25th European Signal Processing
Conference (EUSIPCO), ser. WSDM 19, 2017, pp. 1094-1098.

X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph
collaborative filtering,” Proceedings of the 42nd International ACM SI-
GIR Conference on Research and Development in Information Retrieval
- SIGIR’19, 2019.

R. Salakhutdinov and A. Mnih, “Probabilistic Matrix Factorization,” in
Proceedings of the 20th International Conference on Neural Information
Processing Systems, ser. NIPS’07. USA: Curran Associates Inc., 2007,
pp. 1257-1264.

S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “Autorec: Autoencoders
meet collaborative filtering,” in Proceedings of the 24th International
Conference on World Wide Web, ser. WWW ’15 Companion. New
York, NY, USA: ACM, 2015, pp. 111-112.

1. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” 2014.

“Netflix Prize Data Set,” http://archive.ics.uci.edu/ml/datasets/Netflix+
Prize, 2009.

F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, Dec. 2015.
A. Karatzoglou, “Collaborative temporal order modeling,” 10 2011, pp.
313-316.

Y.-Y. Lo, W. Liao, and C.-S. Chang, “Temporal matrix factorization for
tracking concept drift in individual user preferences,” IEEE Transactions
on Computational Social Systems, vol. PP, 10 2017.

X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” 2017.

X. Shi, X. Luo, M. S. Shang, and L. Gu, “Long-term performance
of collaborative filtering based recommenders in temporally evolving
systems,” Neurocomputing, vol. 267, 06 2017.

http://archive.ics.uci.edu/ml/datasets/Netflix+Prize
http://archive.ics.uci.edu/ml/datasets/Netflix+Prize

	I Introduction
	II Related Work
	II-A Temporal Collaborative Filtering
	II-B Graph-based Collaborative Filtering

	III The Proposed Method
	III-A Learning Users and Items Latent Embeddings with a Graph-based Model
	III-A1 Modeling Users and Items
	III-A2 Bi-linear Decoder
	III-A3 Handling Data Sparsity

	III-B Modeling Users' and Items' Dynamics
	III-C Predicting entry values at future time instances

	IV Experiments
	IV-A Experimental Settings
	IV-B Hyperparameters Selection
	IV-C Experimental Results

	V Conclusion
	References

