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ABSTRACT OF THE THESIS

Early Wildfire Smoke Detection in Videos

by

Taanya Gupta

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, June 2020

Dr. Bir Bhanu, Chairperson

Recent advances in unmanned aerial vehicles and camera technology have proven useful

for the detection of smoke that emerges above the trees during a forest fire. Automatic

detection of smoke in videos is of great interest amongst the Fire Department. To date, in

most parts of the world, the fire is not detected in its early stage and turns catastrophic.

This thesis introduces a novel technique that integrates temporal and spatial features in a

deep learning framework using semi-supervised spatio-temporal video object segmentation

and dense optical flow. However, detecting this smoke in the presence of haze and without

the labeled data is difficult. Considering the visibility of haze in the sky, a dark channel

pre-processing method is used that reduces the amount of haze in frames and consequently

improves the results. Online training is performed on a video at the time of testing that

reduces the need for ground-truth data. Tests using public datasets and videos show that

the proposed algorithms outperform previous work and are robust across different wildfire-

threatened locations.

vi



Contents

Acknowledgements iv

List of Figures viii

List of Tables ix

1 Introduction 1

2 Related Work and Contributions 3
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 State-of-the-Art of Wildfire Detection . . . . . . . . . . . . . . . . . 3
2.1.2 Smoke Detection for Wildfire Detection . . . . . . . . . . . . . . . . 4
2.1.3 Machine Learning-based Wildfire Detection . . . . . . . . . . . . . . 4

2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Technical Approach 6
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Detailed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Dark Channel De-Haze Pre-Processor . . . . . . . . . . . . . . . . . 7
3.2.2 Dynamic Optimal Frame (DOF) Module . . . . . . . . . . . . . . . . 9
3.2.3 Dense Optical Flow Module . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.4 Spatio-Temporal Segmentation Network . . . . . . . . . . . . . . . . 11

4 Experimental Setup and Results 13
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Conclusions 25

Bibliography 26

vii



List of Figures

1 Overall framework for the proposed method of wildfire smoke detection . . 6

2 Frames of the video dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Final loss of the framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Precision-recall curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 The first row of frames correspond to the consecutive frames of a video of the

smoke above a forest fire. The second row is the output after pre-processing
the original video frames. The third row is the result obtained from the
proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Data showing the results of the ablation study of each of the different tech-
niques using quantitative metrics. Temp: optical dense flow; dynamic op-
timal frame module; ResNet-101; VGG backbone networks; De-haze: dark
channel prior pre-processor; TP: true positives; FP: false positives; IOU: in-
tersection over union; Accuracy: pixel accuracy, F1: F1 score defined in 4.2.
All of the combinations include the spatio–temporal segmentation network. 24

viii



List of Tables

1 Different ration/sizes of smoke for each video . . . . . . . . . . . . . . . . . 14
2 7-fold cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 The mean quantitative metrics defined for videos from the smoke video test

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 The standard deviation quantitative metrics defined for videos from the

smoke video test dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Comparison between different data sets . . . . . . . . . . . . . . . . . . . . 19
6 Comparison of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ix



Chapter 1

Introduction

The unpredictable behavior and continuous expansion of wildfires are a threat to

both humans and the environment. According to the year-to-date statistics of the National

Interagency Fire Center (NIFC) [1], 2,511 fires burnt 43,219 acres of land in the United

States in the first two months of 2020. The common approach to research in this area has

been to develop solutions that detected fire [2]. But if a fire can be detected at an early

stage, such as when smoke first appears, it can be easily extinguished and require the use of

fewer resources; this can be both economically beneficial and reduce the impact on humans.

Thus, research has been done on the early detection of smoke as it emerges above the crown

of the trees in the early stages of a wildfire. This detection can be facilitated by the use of

a camera mounted on a tower or an Unmanned Aerial Vehicle (UAV) that capture on-site

evidence of the smoke on video [3]. Fortunately, the market has recently been flooded with

high-end cameras that can easily capture distant smoke.

Traditional smoke detection techniques [4] use expert analysis of extracted features.

These methods are not able to differentiate smoke pixels from the surrounding pixels when

the image is comprised of similar semantics. Color has long been considered a unique feature

for detection [5], but the color of smoke can be easily confused with that of clouds, fog,
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or other similar objects. An approach using deep learning can capture the ambiguousness

of features, reducing the number of false negative detections. This deep-learning approach

could be enormously significant, as an unnoticed wildfire can be disastrous.

The long-established detection methods for identifying smoke in an image did not

consider pixel-level detection, which can give an exact location of the smoke. It is also

important to note that the structure of smoke is not definitive: it changes in each frame

of a video. To segment out an anomaly, a deeper segmentation technique is required.

Popular image-segmentation techniques exist [6], but they only provide spatial features.

For temporal features early efforts used optical flow to extract the motion features [7], and

a few methods [8] also computed the spatio-temporal features given by a Histogram of

Oriented Gradients (HOG) and a Histogram of Oriented Optical Flow (HOOF) that define

the spatial and temporal features, respectively.

The proposed work is an amalgamation of video segmentation and dense optical

flow used to identify spatio–temporal features. Unlike the traditional methods that rely on

motion, color, or hand-picked features, the proposed work uses deep convolutional neural

networks. This method extracts the temporal information from the dense optical flow and

processes it through a semi-supervised segmentation network that is a Fully Convolutional

Network (FCN) [9]. The lack of availability of labeled data for this area presented a problem;

to overcome this, the proposed method uses a minimum amount of labeled data by using

an online training method. To improve the image quality, we adopted a de-hazing method

that enhances the visibility of the smoke using the physical parameters behind it.

The remainder of the thesis will be organized as follows: Section 2 discusses the

previous work on wildfire detection, Section 3 presents the proposed technical approach,

Section 4 describes the experimental setup and results, and Section 5 presents the conclu-

sions.
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Chapter 2

Related Work and Contributions

2.1 Related Work

2.1.1 State-of-the-Art of Wildfire Detection

Initially, sensors were the principal tools used in wildfire detection. As society

advanced to computer vision techniques, variations in color and geometry were used to

identify fire. Numerous color spaces were used to extract the chromatic information [[10],

[11]]. The red component was pivotal in some studies [12], and previous work used a

combination of motion and color features [13]. With the accessibility of high-resolution

video cameras, video replaced static images. A few studies involved the characterization

and detection of smoke observed in low-quality fixed video surveillance devices set at a

specific distance from the prospective fire locations [14]. Many of the advanced alarming

systems used video processing for detection [15]. A study by Nanpeng et al. [16] on fire

due to power lines used segmentation techniques.
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2.1.2 Smoke Detection for Wildfire Detection

The fact that early detection of a wildfire dramatically reduces the damage it can

cause logically leads to the need for smoke detection. Insufficient data on smoke has led

to the demand for data augmentation, synthetic data generation, or similar methods. Seg-

mentation of smoke plumes and detection with computation intelligence techniques using

synthetic data are used in [17]. Another work [18] proposed an automated method for

detecting smoke using camera surveillance and image processing procedures. The funda-

mental purpose of these studies is to perceive and track smoke as objects in motion and

to differentiate smoke from non-smoke entities using a convolutional neural network for

cascade classifications.

Video surveillance [19] can consider both spatial and temporal domains with a sup-

port vector machine-based classifier. Byoung [20] proposed using spatio-temporal features

and classification involving a random forest classifier with the combination of a deep feature

map and a saliency map to detect smoke [21]. Unlike traditional methods that deploy color

or motion segmentation, Zhou [22] used the maximally stable extremal region for detection.

Focus has also been given to the histogram-based smoke segmentation of different color

spaces for pixel-level analysis and to segment the smoke [23].

2.1.3 Machine Learning-based Wildfire Detection

In previous studies involving machine learning [24], the pixels in a frame of footage

of fire were analyzed by integrating motion and Support Vector Machines (SVM) by em-

ploying wavelet coefficients. Background subtraction has long been used to evaluate the

existence of motion, so Chunyu [7] used it to identify candidate regions with optical flow

for motion and back-propagation neural network for classification.

Instead of using just classical convolutional neural networks, [25] also considers

the temporal aspect. Nanpeng et al. [26] uses binary patterns, optical flow and convolution
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network to detect the smoke. Indicative of the trend towards deep learning, a faster region-

based convolutional neural network was used in [27] to find possible wildfire regions. One

study [28] focused on separating the background from the smoke plume and detection using

a back-propagation neural network. Kim [29] proposed an approach that extracts and

classifies smoke features using deep normalization and a convolutional neural network made

up of 14 layers.

2.2 Contributions

Considering the available knowledge, the contributions of this thesis are the fol-

lowing:

• The introduction of a novel approach that detects wildfire smoke at the pixel level

from videos by integrating spatial and temporal features into a semi-supervised deep

learning-based video object detection technique.

• A means of mitigating the paucity of data by adopting an online training method that

focuses on a specific smoke video and transfers generic features to specific ones.

• An accounting of the physical parameter of haze, which impairs the visibility of smoke

in the sky during a wildfire.
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Chapter 3

Technical Approach

3.1 Overview

Fig. 1: Overall framework for the proposed method of wildfire smoke detection

The proposed work aims at segmenting the smoke plume in wildfire smoke videos

as soon as the smoke is visible, which is right after the incipient stage. In this section,

we propose our framework and its models. The architecture of our approach is divided
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into four major components: (1) the dark channel de-haze pre-processor, (2) the Dynamic

Optimal Frame (DOF) Module, (3) the dense optical flow module, and (4) the spatio-

temporal segmentation network. The second component is further divided into the salient

frame selection module and automatic mask annotation module. The fourth component

integrates spatial and temporal features using the output from (2) and (3). More detailed

information regarding the components is provided in Section 3.2.

For smoke detection, sensors, color, and various state-of the-art techniques have

been used in the analysis of sets of videos. Smoke is an anomaly that changes its shape

in every frame of a video, thus deep learning techniques can be useful to extract features

imperceptible to the human eye. Various deep-learning methods for the detection of wildfire

smoke have been proposed, but each lacked either the ability to detect smoke in the presence

of objects similar to the smoke, the use of temporal information, or the use of physical

parameters surrounding the smoke and the camera proximity to the smoke itself. We

developed a method that resolves these issues.

3.2 Detailed Framework

Figure 1 portrays the structure of the corresponding work.

3.2.1 Dark Channel De-Haze Pre-Processor

Haze is an obscurity occurring due to smoke, dust, or other particles suspended

in the atmosphere. Haze shadows smoke, making it inconspicuous. The video dataset in

our research is comprised of the videos taken from a camera mounted on a tower; most

of these videos include haze with a dense smoke plume. We eliminated the haze from the

video frames employing a de-hazing technique.

To get rid of the haze from the video frames, we adopted a state-of-the-art tech-

nique: single image haze removal using dark channel prior [30]. In outdoor statistical

7



information, the regions in an image, excluding the sky, have low-intensity in one of the

channels (RGB), resulting in a haze-free image. The air light in a hazy image alters the

pixel intensity by compensating for the loss. For this study, we de-hazed the images using

a filter on each of the video frames before feeding it into the network. From here on, all

referrals to video are to haze-free videos.

The objective of the algorithm used here is to derive a haze-free image. The dark

channel [30] for an arbitary image with x as its coordinates can be defined as:

Jdark(x) = minyεΩ(x)(mincε{r,g,b}J
c(y)) (1)

where Jc is the intensity for the RGB channel, the Ω(x) is the local patch. The dark

channel is the minimum value for all RGB channels and all the pixels that exist in that

patch. Mathematically, the hazy image can be defined as

I(x) = J(x)t(x) + A(1− t(x)) (2)

where I, J, and A represent the hazy image, haze-free image, and the atmospheric light,

respectively. The t(x) represents the transmission light, which depends on two factors —

scene depth and scattering coefficient of the atmosphere.

To extract the re-contructed image we need to compute: dark channel prior, atmo-

spheric light and, transmission map with refinement. We computer the dark channel prior

centered at x on every 15 patch in the image. Transmission can be calculated as (1 - local

patch) * the dark channel of normalized haze image. Here, local patch after experimenta-

tion is 0.95. For refined transmission map, we use soft mating which is calculated using a

Laplacian matrix and a sparse linear system. The average of the pixels that constitute of

the top 0.1 percent brightest pixels in the dark channel in the original frame are used to

compute the atmospheric light. After computing these values, we use equation 2 to recover

the scene radiance.
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3.2.2 Dynamic Optimal Frame (DOF) Module

As mentioned in 3.1, our spatio–temporal segmentation network requires two an-

notated frames that help the network fine-tune the already-trained model for the specific

video. This brings into focus two things: (1) the salient frame selection module and (2) the

automatic mask annotation tool.

For the salient frame selection module, we have two options: either we use the first

two frames of the video or we specify particular frame numbers for annotating. Thus, for

(1), we adopt the technique BubbleNet [31], which introduces the frame selection. There is a

substantial difference in the performance between frames, and the appearance of the object

varies significantly from frame-to-frame, so for better features, we must select a particular

frame.

The deep learning-based bubble-sorting algorithm compares two frames and swaps

them according to their performance. This prediction is not solely dependent on the per-

formance: random frame references are used that impact the prediction every time they are

altered. The pre-trained ResNet-50 [32] processes input feeds into four fully connected layers

with descending neurons and prediction layers. The output gives the relative performance

prediction and the frame for the next module to evaluate.

The label loss (the notation is kept the same [31]) is defined for the performance

label of a frame and includes the Intersection over Union (IOU) and the contour accuracy

(C). IOU is defined as the area of intersection over the area of the union of the predicted

smoke and its annotated ground truth, whereas closed set of contours of predicted smoke

and its annotated ground truth. The loss is expressed as

yi :=
1

n

n∑
k=1

IOUk + Ck (3)
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After the annotation for the ith frame, the performance on the kth frame is given by IOUk+

Ck for n-frames, and, yi gives the label for the ith frame.

Automatic Mask Annotation Tool: The spatio–temporal segmentation network

requires two annotated frames to predict the segmentation of the whole video. We also need

to select a particular frame that improves accuracy, as mentioned above. However, manually

annotating a particular frame is a tedious task. We used Region Based Convolutional Neural

Network (Mask-RCNN) [33] as our automatic mask annotation tool. Mask R-CNN is an

extension to the framework Faster R-CNN and is a benchmark network for segmentation.

In addition to the bounding box, Mask R-CNN provides pixel-level segmentation. Rather

than by converting it to a vector, the output from each Region of Interest (ROI) provides

a mask to preserve the spatial location. Thus, in ROIPool, the inputs from the region

proposal network (RPN) were made to fit the feature map, resulting in misalignment. In

Mask RCNN, ROIAlign takes the proposal and splits it into bins. The bilinear interpolation

is used to find the values for the points sampled in each bin. The RPN aims at finding the

objects in the image by scanning over the anchors for detection.

For each sampled region of interest at the time of training, a multi-task loss is

given as

L = Lcls + Lbox + Lmask (4)

where Lcls is the classification loss and Lbox is the bounding box loss. Lmask gives the

average binary cross-entropy loss. The mask branch predicts the mask for every class

without competition amongst classes.

We exploit this information by adopting it in our technique to automatically output

binary segmented results. To annotate the frames for the segmentation network, we require

two frames: we take the frame previously obtained from the salient frame selection module

and the frame that comes just before it.
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3.2.3 Dense Optical Flow Module

Optical flow provides the gradient of the vertical and horizontal axis. To compute

the temporal features we used the state-of-the-art dense optical flow considered good for

video segmentation techniques. The dense optical flow is less computationally expensive

compared to other advanced flow techniques. We used dense flow because it provides the

flow vectors of all the pixels in a frame. Since our intent is to deliver detection as precise

as possible, we disregarded the little computational cost that comes with dense flow.

We were inspired by the Farneback [34] for his work on motion estimation tech-

niques of interesting features. Quadratic polynomials are used to approximate the frame

windows. To compute the displacement fields, the coefficients yielded by quadratic polyno-

mials are used that after a series of refinement provide the dense optical flow vectors.

To generate the flow vector, we input the frames corresponding to the frame num-

bers given by the annotated image module. This vector represents the motion between the

two frames. This is further used as input for the segmentation network.

3.2.4 Spatio-Temporal Segmentation Network

To gain familiarity with the internal blocks, we have to first understand the flow of

the framework. In this study, the segmentation is a fully convolutional network that takes in

a total of five inputs: the two frames, their corresponding segmentation annotations, and the

corresponding flow images generated by the salient frame selection module, the automatic

mask annotation tool, and the dense optical flow, respectively. The output comes out in

the form of smoke masks generated for the whole video.

To detect the exact position of the smoke and to visualize its movement, we used

a segmentation technique to identify localized smoke pixel-by-pixel. While remarkable seg-

mentation techniques exist, segmenting the foreground object in a video is a challenging
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task. Our work adopts a semi-supervised one-shot video object segmentation technique

OSVOS [35]. This technique was chosen in part for its simplicity and adaptability.

The next step is to segment the foreground object—the smoke—from the back-

ground given the condition that the annotated frames provide. Choosing two video frames

instead of one allows us to exploit the temporal information. The CNN architecture is

based on VGG [36], a five-stage network whose layers have been modified to extract the

pixel level detection. It includes convolutional and Rectified Linear Unit (ReLU) layers

with upscaling and downscaling wherever required. In the end, we get a single output by

linearly fusing the feature maps with the size of the image, which, in our case, is 320× 240.

In cases where the salient frame selection module outputs the first and last video frame, we

include padding. Focusing on the detection as a whole, bounding boxes are generated with

the segmented smoke plumes. We use the cross-entropy loss for the binary classification in

the segmentation network, as adopted from [35], as follows:

Loss(Z) = −
∑
jεip

logP (yj = 1|X;Z)−
∑
jεin

logP (yj = 0|X;Z) (5)

With X as the input, Z represents the trainable parameters,yj represents the binary label,

ip , and in are the negative and positive labels, respectively.

One-shot video object segmentation uses offline and online training where the

model moves from learning generic object segmentation to fine-tuning to a specific object.

We apply it to our advantage in smoke detection by creating a model to learn general features

for different smoke plumes, but can fine-tune its learning for a specific smoke video. The

advantage of this is that smoke takes different shapes and can often look different in a

different video; thus, the fine-tuning gives it an extra edge for detecting smoke.
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Chapter 4

Experimental Setup and Results

4.1 Dataset

Fig. 2: Frames of the video dataset
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We required two sets of data: the smoke video data is used for training and testing

the segmentation network and the smoke image dataset is required to train the automatic

mask annotation module, as explained in Section 3. Numerous public datasets are available,

Videos Ratio of smoke Size of smoke

Train video 1 0.116 104 × 86

Train video 2 0.035 73 × 37

Train video 3 0.209 102 × 158

Train video 4 0.193 146 × 102

Train video 5 0.039 38 × 79

Train video 6 0.081 69 × 91

Validation video 1 0.038 39 × 75

Test video 1 0.101 54 × 144

Test video 2 0.261 119 × 168

Test video 3 0.031 46 × 53

Test video 4 0.244 280 × 67

Test video 5 0.023 52 × 34

TABLE 1: Different ration/sizes of smoke for each video

some of which include synthetic smoke created inside buildings. But to provide results that

approximate reality, we used mostly smoke video datasets from [37, 38, 39, 40]. These

datasets were chosen because they all have a forest background and, the smoke varies from

video to video in terms of density and shape. The dataset also includes videos at various

distances, which helps create a solution that assists in the detection of various sizes of

smokes. We also annotated a few videos using online annotation tools. Each video frame

was 320 × 240. We divided the dataset so that it consisted of 1050 frames for training,

and, to improve the results, we used scale and flip-data augmentation. This brought the

total to 3500 frames. Each video has 150 frames. To determine the train–test division, we

14



evaluated the size of wildfire smoke in order to include small and large smoke plumes in

both the training and testing dataset.

4.2 Evaluation

To quantitatively measure the performance of our framework, we evaluated the

following metrics: True Positives (TP), True Negatives (TN), False negatives (FN), and

False Positives (FP). IOU was previously defined in Section 3. Pixel Accuracy (Acc) mea-

sures the correctly classified pixels in an image, and precision, F1, and recall metrics are

some common metrics we evaluated. The metrics from the testing videos were averaged. It

is important to remember that we wanted to detect on a pixel level. This evaluation shows

the variation of each pixel from the ground truth.

IOU =
1

h× w ×m× k

m∑
l=1

k∑
i=1

target ∩ prediction

target ∪ prediction
(1)

Acc =
1

h× w ×m× k

m∑
l=1

k∑
i=1

TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2× Precision ∗Recall

Precision + Recall
(5)

There are k frames in the m videos. The h and w represent the height and width of the

frame. To evaluate the precision, recall, and F1 score, we determined the closeness of the

boundary of the foreground object and its ground truth.

To evaluate if our proposed framework can consistently and accurately capture

various smoke plumes across multiple frames, we used 7-fold cross-validation. It tests the

effectiveness of our deep learning framework and makes it less bias, as all the smoke video

datasets can appear in the test and train sets. The groups in table 2 represent combinations
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Different Models Precision Recall Pixel Accuracy

Group 1 0.869 0.949 0.990

Group 2 0.996 0.876 0.986

Group 3 0.575 0.934 0.933

Group 4 0.962 0.933 0.994

Group 5 0.930 0.973 0.995

Group 6 0.630 0.750 0.970

Group 7 0.690 0.830 0.910

TABLE 2: 7-fold cross validation

of test videos. Group 2 had high precision, whereas group 5 showed high recall. For the

pixel accuracy, almost all the groups gave good results. In our case, detection of the smoke

plume is important, thus, recall is a better measurement than precision, which does not

account for the false negatives.

4.3 Experimental Setup

For the segmentation network, we used pre-trained VGG, trainable end-to-end, on

ImageNet [41] which is considered good for initialization. The parent network was a fully

convolutional network trained using our dataset. We used a learning rate of 10−4 training

with 15000 iterations as the total training loss of the model for the 20,000 iterations, as given

in Fig. 3 that saturates after 15000 iterations. We experimented with different threshold

values and drew a precision-recall curve, as shown in Fig. 4 and chose 0.65 as the threshold.

We took the batch size 6 on the NVIDIA GTX 1080Ti GPUs. For the online training, we

used one video to train for 500 iterations, which takes approximately 55 seconds to process.
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Fig. 3: Final loss of the framework

We could have used more iterations to improve on the accuracy, but there is a trade-off

between accuracy and time.

For the salient frame selection module, we used a pre-trained ResNet-50 on Im-

ageNet. After experimenting with a different number of reference frames, three reference

frames were used in addition to two comparison frames. To train our salient frame selection

module, we chose a small batch of six. The automatic mask annotation tool exploits pre-

trained weights from the COCO [42] dataset, which provides a broad-spectrum of features.

For training, we chose batch size 1. In order to prevent it from over-fitting, we chose 45

epochs. To increase our dataset, we used data augmentation that alters the input image

according to our requirements by using affine transformations and adding Gaussian noise

to alter the image. We used a 0.5 probability of flipping the images horizontally. The IOU

threshold used was 0.5 to decrease the false positives. Initially,we chose the top 90 anchors

and then amended it to 50 after refinement.

We tested our model on five different videos with various smoke plume sizes. The

videos each took 5.016 seconds on average, and each frame took approximately 4.16 mil-

liseconds.
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Fig. 4: Precision-recall curve

4.4 Results and Discussions

We expected our proposed approach to work such that the false positives and false

negatives are reduced. Moreover, detection at the pixel-level increases accuracy, which will

help obtain the exact location of a wildfire with the use of an efficient video camera. Table

3 and 4 show the results using our proposed method on the various smoke videos from our

test set. In Table 3, the metrics represent the average values for each video. These values

are pixel-level; i.e. for 118 true positives in a video, one corresponds to the average number

of smoke pixels correctly detected in a video. The intersection over union gives good results.

The high number of true positives and the pixel accuracy are used to evaluate the models

accurate detection. Table 4 represents the unbiased behavior of the model. The results

for the metrics may be improved, as our model works well with the regions in the smoke

that are dense. However, for some videos where we manually labeled the ground truth, we

chose to include the faintest smoke to improve detection. Table 5 represents the mean and
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Video True Positives False Positives IOU Pixel accuracy Precision Recall f1 score

video 1 118 4 0.974 0.973 0.872 0.831 0.850

video 2 100 0 0.991 0.991 0.913 0.908 0.910

video 3 142 21 0.942 0.945 0.743 0.765 0.753

video 4 131 25 0.867 0.870 0.698 0.706 0.701

video 5 114 2 0.990 0.990 0.869 0.949 0.907

TABLE 3: The mean quantitative metrics defined for videos from the smoke video test

dataset

Video True Positives False Positives IOU Pixel accuracy Precision Recall f1 score

video 1 0.128 0.257 0.015 0.014 0.045 0.044 0.036

video 2 0 0 0.004 0.004 0.034 0.040 0.032

video 3 0.302 0.591 0.023 0.025 0.051 0.045 0.039

video 4 0.496 0.777 0.025 0.023 0.034 0.046 0.024

video 5 0.093 0.186 0.004 0.004 0.043 0.018 0.027

TABLE 4: The standard deviation quantitative metrics defined for videos from the smoke

video test dataset

standard deviation of pixel accuracy; the training value is more compared to the test and

validation, as expected.

Data sets Pixel accuracy SD in Pixel accuracy False positive ratio False negative ratio

Training 0.981 0.017 0.014 0.014

Validation 0.968 0.031 0.017 0.019

Testing 0.953 0.050 0.020 0.021

TABLE 5: Comparison between different data sets
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Figure 5 shows our model is able to precisely detect near or distant smoke plumes.

We also compared our results with state-of-the-art segmentation techniques that were

trained with and evaluated using our smoke dataset.

Model Mean IOU Mean F1 score

Our Model 0.95 0.82

OSVOS [35] 0.88 0.74

Unet [43] 0.55 0.73

Fpn [44] 0.79 0.65

LinkNet [45] 0.39 0.55

TABLE 6: Comparison of results

As can be seen in Table 6, the state-of-the-art technique did not perform well. One

of the reasons for this is that these techniques are not able to detect smoke when there is

haze because they do not use any haze removal techniques. Another reason is that smoke

is an anomaly and to detect it in a video, requires a network to understand the underlying

features in that particular video which they fail to extract.

Like any other approach based on assumptions, our proposed method has its limi-

tations. Detecting wildfire smoke at the pixel level works well for most wildfire videos, but

it may give confounding results in some extreme cases, such as when the smoke is adjacent

to the sky and becomes indistinguishable from the background. Such cases, however, do

not reflect early detection; early detection requires detecting the root of the smoke from in

between trees in a forest.
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4.5 Ablation

Here, we show our analysis of different measures justifying the proposed work.

Figure 6 gives a detailed analysis of the performance metrics of the combinations, which

are the following:

• Spatio–temporal segmentation network with dense optical flow module with the dy-

namic optimal frame module but without de-haze pre-processing and backbone ResNet-

101.

• Segmentation network with motion flow module and dynamic optimal frame module

but without de-haze pre-processing and backbone VGG.

• Spatio–temporal segmentation network with dense optical flow module and dynamic

optimal frame module as well as de-haze pre-processing and backbone VGG.

• Spatio–temporal segmentation network with dense optical flow module and dynamic

optimal frame module as well as de-haze pre-processing and backbone ResNet-101.

• Spatio–temporal segmentation network with dense optical flow module and without

dynamic optimal frame module but with de-haze pre-processing and backbone VGG.

To inspect each combination, we except all the metrics high except the false positives and

the false negatives. The incurred false positives reflect that the proposed framework alerted

for false wildfire smoke. This is a waste of resources. The false negative, on the other hand,

are incurred when the proposed work is unable to detect the smoke correctly.

All the combinations above used the spatio–temporal segmentation network. We

observed that all the combinations work better when used with VGG as a backbone for

the segmentation network rather than ResNet-101. The number of false positives increased

when the de-haze pre-processing was not included. Thus, for improved image quality, de-

hazing works well. The experiments also evaluated the addition of the automatic mask
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annotation tool for our proposed work. Although the performances of the combinations

without it are reasonable, there was a major decrease in false positives when it was used

in the correct combination. Furthermore, eliminating the temporal features decreased the

number of true positives, which defeats the sole purpose of detecting wildfire smoke. Finally,

the results show that the combination that is our proposed work outperforms the other

combinations.
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Fig. 5: The first row of frames correspond to the consecutive frames of a video of the smoke

above a forest fire. The second row is the output after pre-processing the original video

frames. The third row is the result obtained from the proposed method.
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Fig. 6: Data showing the results of the ablation study of each of the different techniques

using quantitative metrics. Temp: optical dense flow; dynamic optimal frame module;

ResNet-101; VGG backbone networks; De-haze: dark channel prior pre-processor; TP: true

positives; FP: false positives; IOU: intersection over union; Accuracy: pixel accuracy, F1:

F1 score defined in 4.2. All of the combinations include the spatio–temporal segmentation

network.
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Chapter 5

Conclusions

The proposed method aims to detect (and extinguish) wildfires in their incipient

stage. Previously techniques used an incorrect pixel-level for their detection. We solved this

problem by proposing a novel method for pixel-level detection of wildfire smoke in a video

integrating spatial and temporal features across multiple frames and taking into account

the physical parameter of haze surrounding the smoke. De-haze pre-processing improved

the results, as the removal of haze makes the smoke more visible. Moreover, online training

improved the results by helping to mitigate the paucity of the smoke data. We validated

our proposed work on several public datasets pertaining to different forest backgrounds and

smoke with different proximity from the camera using various metrics. The proposed work

is feasible and can be easily switched to live video detection. Additionally, details on the

exact location of the smoke can be helpful for extracting various smoke properties, such as

the strengths of the wind and its direction, and can further aid fire fighters.
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