
Video Lightening with Dedicated CNN Architecture 

Li-Wen Wang, Wan-Chi Siu, Life-FIEEE, Zhi-Song Liu, Chu-Tak Li and Daniel Pak-Kong Lun, SrMIEEE 

The Hong Kong Polytechnic University, Hong Kong, China 

Abstract— Darkness brings us uncertainty, worry and low 

confidence. This is a problem not only applicable to us walking in 

a dark evening but also for drivers driving a car on the road with 

very dim or even without lighting condition. To address this 

problem, we propose a new CNN structure named as Video 

Lightening Network (VLN) that regards the low-light 

enhancement as a residual learning task, which is useful as 

reference to indirectly lightening the environment, or for vision-

based application systems, such as driving assistant systems. The 

VLN consists of several Lightening Back-Projection (LBP) and 

Temporal Aggregation (TA) blocks. Each LBP block enhances 

the low-light frame by domain transfer learning that iteratively 

maps the frame between the low- and normal-light domains. A 

TA block handles the motion among neighboring frames by 

investigating the spatial and temporal relationships. Several TAs 

work in a multi-scale way, which compensates the motions at 

different levels. The proposed architecture has a consistent 

enhancement for different levels of illuminations, which 

significantly increases the visual quality even in the extremely 

dark environment.  Extensive experimental results show that the 

proposed approach outperforms other methods under both 

objective and subjective metrics.  
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I. INTRODUCTION

In order to resolve the problem of walking or driving in the 
dark environment, we may make use of visual aid (including 
small devices such as mobile phones), which is more easily or 
commonly available as compared with dedicated approaches 
such as infrared detection. Since each video composes of a 
sequence of images frames. Let us start with the problem of the 
image with bad lightening conditions. Images captured with 
insufficient illumination conditions usually have bad visual 
quality, such as low contrast, dim color, etc. Information 
among the low-light images faces substantial degradation that 
reduces its utility value. There could be possible solutions for 
taking photos in the low-light conditions, such as, using flash, 
increasing the sensitivity of the camera sensor (ISO) and taking 
photos with longer exposure time. However, these solutions 
have significant limitations: Flash may not be allowed in some 
public place, like cinema, museum, exhibition, etc.  Higher 
camera sensitivity often brings noticeable noise in the dark 
regions. Longer exposure time is impractical for video 
capturing. Burst processing takes multiple low-light images 
under different exposures at a short time, and then combines 

them to obtain a large dynamic range. However, it cannot be 
generalized for enhancing low-light videos. Hence, it may be 
inevitable to obtain low-visibility images in low-light 
conditions. Enhancing such low-light images not only gives us 
a better visual quality but also gives benefit to vision-based 
systems, like autonomous driving, vision-based place 
recognition, etc. 

Researchers have proposed several methods to enhance the 
visible quality of the low-light images. Histogram Equalization 
(HE) [2, 7]   method can rearrange the frequency of pixel 
intensity to obey uniform distribution, which significantly 
increases the dynamic range of the low-light images. However, 
changing directly the pixel values may cause color shift 
problems. Retinex-based methods [10]  decompose the low-
light image into two elements: reflectance and illumination 
map. The reflectance is the inherent attribute of the scene that 
is stable under different illumination conditions, while light 
information in the illumination map is different for low- and 
normal-light images. By adjusting the illumination map, the 
low- and normal-light images can be converted into each other. 
Other methods [11, 12] adopt dehazing theory which regards 
one image as a combination of scene information, ambient light, 
and refraction. Through enhancing the refraction map, it can 
predict the normal-light estimation for the low-light image.  

Learning-based approaches have attracted enormous 
attention. Especially, the Convolutional Neural Networks 
(CNNs) have achieved impressive results in various vision-
based tasks, e.g. classification [14], segmentation [1], super-
resolution [15], etc. Benefited from the back-propagation 
theory and powerful computational ability of GPUs, the CNN-
based methods have excellent learning ability. They can 
automatically learn and refine the feature representations of 
huge training datasets. The learning-based feature shows more 
discriminative power than those hand-craft features of the 
conventional approaches. Some CNN-based methods have 
been proposed for low-light image enhancement. Methods like 
Retinex-Net [9] and LightenNet [6] are based on the Retinex 
theory. They firstly use a CNN model to decompose the low-
light image into illumination and reflectance. By using another 
CNN model to refine the illumination map, the low-light image 
can be enhanced for better visual quality. However, it is 
difficult to define the ground-truth maps for the decomposition 
process, which limits the performance of the enhancement. 
Other approaches, like EnlightenGAN [13], adopt the 
Generative Adversarial Network (GAN) [16] structure. Each 
GAN consists of a generator network and a discriminator 
network. The generator is responsible for predicting a fake 
normal-light image (estimation) for the input low-light image, 
while the discriminator needs to distinguish the fake normal-
light images from a set of real normal-light images. During the 
training stage, the two networks will beat against each other, 
which constrains the visual quality of the predicted normal-
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light images. In other words, the generator will learn the 
mapping from low- to normal-light conditions. However, the 
two networks have completely different objectives, which 
makes the training process unstable. For low-light video 
enhancement, there are only few works on it. MBLLEN [17] 
hierarchically used 3-D convolution to extract features from the 
low-light frames and enhances them by an encoder-decoder 
structure. [18] investigates the temporal information of static 
scenes. It assumes that there is only a slight motion between 
video frames, which limits the generalization ability in real 
scenes. ViDeNN [19] proposes a realistic noise model for low-
light video denoising, but lacks illumination enhancement. 
Although recent methods have achieved certain progress, the 
usage of temporal information is still in its fancy stage. 

In this paper, we focus on video enhancement in low-light 
conditions. Based on the idea of enhancing the video frame 
iteratively and handling the motion in a multi-scale way, we 
propose a new CNN structure, i.e., the Video Lightening 
Network (VLN). It achieves remarkable enhancement for the 
low-light videos, as shown in Fig. 1. The novelty of the 
proposed method is listed below: 

• Video Lightening Network (VLN): The proposed method 
is based on our residual model to enhance a low-light frame 
with the support of neighboring video frames. It contains 
several lightening and temporal aggregation blocks that 
enhance the low-light frame accumulatively. Our VLN is 
compared with several state-of-the-art approaches with 
comprehensive experiments under both subjective and 
objective measures. 

• Back-Projection theory for video enhancement: Based 
on the idea of enhancing video frames iteratively, we 
propose a Lightening Back-Projection (LBP) block that 
iteratively finds the mapping relation between low- and 
normal-light domains. It is the first work that successfully 
introduces back-projection theory for low-light video 
enhancement. 

• Temporal Aggregation:  We propose a Temporal 
Aggregation (TA) block that investigates the spatial and 
temporal relationships among adjacent frames. To handle 

multi-level motions, several TAs work in a multi-scale way 
which progressively compensates the motion. 

The rest of the paper is organized as follows: Section II 
gives our model of the low-light video enhancement firstly, and 
then presents our proposed method (the VLN). Section III 
shows our experimental results, and Section IV concludes the 
paper. 

II. METHODOLOGY 

A. Overview 

Low-light video enhancement is a fundamental video 
processing task that aims to reconstruct the normal-light (NL) 
videos from low-light (LL) inputs. Frames from LL videos 
usually have lower pixel values and more noise compared with 
those in the NL condition. For video processing, adjacent 
frames are strongly correlated. Using more video frames can 
bring more information that benefits noisy control and detail 
reconstruction. Instead of enhancing a LL video frame Xt 
individually, the VLN takes advantage of the information from 
2N neighboring frames (i.e., from Xt-N to Xt+N). We consider 
the relationship between the LL frame Xt and its corresponding 
NL frame Yt as: 

 Yt = Xt + E(Xt) – n(Xt) (1) 

where E(⋅) is an enhancing operator that estimates the 
lightening residual. n(⋅) is the additive noise of the LL frame. 
CNN is a powerful machine-learning tool that can be used to 
approximate the mapping function F(⋅) from the LL domain Xt 
to NL domain Yt.  The optimization can be formulated as: 

 F = argminF( ||Yt  - F(Xt)||2 + Ω(F) ) (2) 

where ||⋅||2  represents the L2-norm distance between the 
estimation F(Xt) and the ground-truth NL frame Yt.  Ω(⋅) 
denotes the regularization term.  

B. Video Ligthening Network (VLN) 

Fig. 2 illustrates the architecture of the proposed Video 
Lightening Network (VLN). It takes three LL frames (Xt-1, Xt 

and Xt+1) as input, and predicts the NL estimation for the 
middle frame (Ŷt). The VLN consists of six Lightening Back-
Projection (LBP) blocks and five Temporal Aggregation (TA) 
blocks (we will present the details later). 
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Figure 2. Architecture of the proposed Video Lightening Network (VLN). The rectangles denote operations and the cubes denote the feature maps. LBP 

denotes the Lightening Back-Projection block (see Section II-C for details). TA represents the Temporal Aggregation block (see Section II-D for details) 



As shown in Fig. 2, three LL frames firstly go through a 
convolutional process to obtain shallow feature representations 
(for the first Conv. on the left-hand side, each frame is 
processed by 36 filters, with filter size of 3×3×3, stride of 1, 
and the padding of 1).  Subsequently, the channels are 
squeezed to select key features (the second Conv. on the left-
hand side, each frame is processed by 12 filters, with the filter 
size of 3×3×36, the stride of 1, and the padding of 1). The 
frames then go through a U-shape architecture that consists of 
six LBP processes (see Section II-C for details) and four TA 
operations (see Section II-D for details). The left-hand side 
path acts in a contracting way, where there is a down-sampling 
process (“DS” in Fig. 2) after each LBP. We double the 
channels of the feature maps at each down-sampling operation 
through doubling the numbers of convolutional filters. The 
down-sampling operation is done via a convolution operation 
where each frame (e.g., the feature size is W×H×C, where W, 
H and C denote the size of width, height and channels 
separately) is processed by 2C filters, with filter size of 3×3×C, 
stride 2, and padding 1. The right-hand side path works in an 
expansive way that up-samples the feature map with several 
up-sampling (“US” in Fig. 2) processes. We reduce the number 
of the feature maps by half at each up-sampling process. The 
up-sampling process is done via a deconvolution layer, where 
the input feature map (e.g., the size is W×H×2C) is processed 
by C filters, with the filter size of 4×4×2C, stride 2, and 
padding 2. For the left- and right-side paths, the LBPs work in 
different ways. The LBPs at the left-hand-side path process 
each frame individually. In other words, there is no sharing of 
information among the adjacent frames on the left-side path. 
After the aggregation process of the TA blocks, information 
among different frames is fused and investigated. Then, the 
LBPs at the right-hand side path focus on the lightening 
process of the targeted middle frame. For low-light 
enhancement, both local and global information are useful, 
where global information can benefit the problem of 
illumination change, and local information can enhance details. 
Through these down/up-sampling processes, the LBPs (to be 
discussed in Section II-C) work in a multi-scale way that 
benefits the whole enhancing process. Besides, we add extra 
concatenations (the gray dotted arrows in Fig. 2) to migrate 
information from the former LBPs to the latter ones.  

 After the processing of the U-shape architecture, we can 
obtain the features for enhancing the LL frame Xt. We regard 
the enhancement as a residual learning task and adds a short 
connection (purple dotted arrow in Fig. 2) to migrate the 
shallow features of Xt. The setting of residual learning 
simplifies the goal of the U-shape network which makes it 
learn the residual between Yt and Xt, i.e., E(Xt) – n(Xt) of Eqn. 
1. Finally, the VLN combines (the last TA block on the right-

hand side) the results and predicts (the last Conv. block on the 
right-hand side) the NL estimation for the middle frame, i.e., 
Ŷt. 

C. Lightening Back-Projection (LBP) Block 

Our previous work on image (Deep Lightening Network 
(DLN) [3, 30]) has presented the advantages of LBP block in 
single low-light image enhancement. The LBP block is a basic 
processing module in our VLN network. Let us briefly explain 
the principle and structure of it. For low-light enhancement, the 
objective is to find the mapping function from LL domain to 
the NL domain. Similarly, it is obvious that there is an inverse 
mapping (darkening) from NL domain to the LL domain. Fig. 3 
shows the structure of our LBP block which iteratively lightens 
and darkens the input LL frames. The procedure can be 
described as: a lightening operator L1 firstly takes the LL frame 
Xt as input, then predicts its NL estimation Ỹt. 
Homogeneously, a darkening operator D can map the NL 
estimation Ỹ back to the LL domain (i.e., X̃t). The estimated 
LL frame X̃t should be close to the LL input Xt. We measure 
the differences (RLL) between them, which can be lightened 
(L2) in the NL domain (R̃NL). Based on the previous lightening 
result Ỹt, it can refine the NL estimation by Ŷt= Ỹt + R̃NL. 
Besides learning the direct mapping from the low-light domain 
to the normal-light domain (Ỹt), we use the proposed LBP 
block to lighten and darken the frame iteratively. It learns an 
additional residual term (R̃NL) in the NL domain that can refine 
the NL estimation (Ŷt= Ỹt + R̃NL). The iterative structure 
divides the LL enhancement into lightening and refining 
operations, which decreases the burden of the lightening 
operation and increases the training efficiency of the whole 
architecture. The procedure can be formulated as the following 
equation: 

 )))((()(ˆ
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where λ1 and λ2 are two balanced coefficients that are acted by 
a 1-by-1 convolutional layer. Each of the lightening (L1, L2) 
and darkening (D) operations is implemented by a 
convolutional layer (the convolutional layer has C filters, 
where C is the number of channels of Xt. Each filter has the 
size of 3×3×C, the stride of 1, and the padding of 1,).  

The training process of LBP is guided by a global loss 
function at the end (see Section II-E), which constrains the 
output of the LBP in the NL domain. Considering the addition 
is a simple compensate operation, we can infer that its two 
inputs are in the same NL domain. Similarly, the input of LBP 
is in the LL domain, and the residual term after the subtraction 
should be in the same LL domain. Then, the convolutional 
layers are trained to convert the frame between the LL and NL 
domains (i.e., lightening or darkening). 

D. Temporal Aggregation (TA) Block 

Although the adjacent frames are strongly correlated, there 
are inevitable differences among them which is caused by 
moving objects, the motion of the camera, noise, etc. To utilize 
the information among the neighboring frames, we propose a 
novel TA block which aims to work for spatial-temporal 
feature aggregation through a multi-scale way. 

To take the bottom TA block of Fig.2 as an example, it 
takes the result of the left-bottom LBP block as the input. As 
we mentioned before, the left-hand side path processes three 

Figure.3. Lighten Back-Projection (LBP) Block 
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frames (Xt-1, X t and X t+1) individually. For each frame, it 
obtains a feature map with the size of W×H×C. As shown in 
Fig. 4, the input features (independent features in Fig. 4) of the 
bottom TA block have the size of W×H×3C. It is firstly 
processed by a convolution layer that has 3C filters, with the 
filter size of 3×3×3C, the stride of 1, and the padding of 1. For 
the first two dimensions of the filters (3×3 at the spatial plane), 
the filters work on 3×3 regions to investigate the spatial 
relation of the feature map. Note that, due to the previous 
down-sampling process, each value at the feature map 
corresponds to the effect of a region of the three original 
frames, and the 3×3 filter can capture the temporal motion of 
these consecutive frames. The input (independent features at 
Fig. 4) consists features of 3C channels, where every “C 
channels” is from one input frame (frames t-1, t and t+1). 
Parameters of the third dimension (3C, the channel dimension) 
give the effect of the temporal information, which estimates the 
importance and correlations of the features of the three adjacent 
frames. Through the spatial and temporal fusion of the first 
convolutional layer, information of adjacent frames is fused 
that forms our aggregated features, as shown in Fig. 4. 

The VLN aims to reconstruct NL estimations Ŷt from its 
LL observation Xt and two neighboring frames Xt-1 and Xt+1. 
The two neighboring frames provide additional information 
that benefits the reconstruction. However, most of the 
additional information is redundant, and even some 
information will degrade the result as noise and distorting 
motion. After the previous spatial-temporal aggregation, it is 
essential to extract and digest valuable information from the 
aggregated raw features. Different channels store the 
information from different feature descriptors. By investigating 
the channel-wise dependency, it can estimate the importance 
(weight) for different channels [31]. As shown in Fig. 4, the 
aggregated map (with the size of W×H×3C) is squeezed at the 
spatial plane through an average process (the “Ave. pool” in 
Fig. 4) to extract global representations (1×1×3C). Then, two 
fully-connected layers are used to estimate the weight of each 
channel (the “2 fc.” in Fig. 4, where the first fully-connected 
layer has C/16 neurons and the second fully-connected layer 
has C neurons). To bring the weight into effect, it expands the 
weight (size: 1×1×3C) by repeating the values at the spatial 
plane (the size becomes W×H×3C) before multiplying to the 
aggregated features. Finally, a 1×1 convolutional layer (filter 
size is 1×1×3C, with the stride of 1, padding of 1) prepares 
features for the following process. 

Multi-scale Motion Compensation: The TA block can 
handle the motion of a small 3×3 region of the feature map. 
However, the motions are at different levels, especially in the 
driving scene. There are four TA blocks in the U-shape 
structure, that work on different scales. The feature size of the 
left-bottom TA block is eight times (after three down-sample 
modules, 1/8=(1/2)3) smaller than the original frame size, while 

the size is sequentially doubled after the up-sampling processes 
in the right-side path.  The multi-scale settings can benefit the 
capacity of handling motion at different levels.  

E. Loss function 

Given three LL video frames (Xt-1, Xt, and Xt+1), the VLN 
predicts the NL estimation for the middle frame (Ŷt). We 
regard the low-light video enhancement as a supervised 
learning task where the input LL frames (Xt-1, Xt, and Xt+1) and 
NL target (Yt) are known during the training process. The loss 
function is defined to measure the difference between the 
estimation Ŷt and its ground truth target Yt. Considering that 
using the L1-norm loss may cause the blur problem, we include 
a refinement term, “λ⋅||cp(Ŷt)-cp(Yt)||2”, as shown in Eqn.4, 
which makes uses of the content perceptron loss cp(⋅). The 
whole loss function is shown in the following equation: 

 Loss(Ŷt , Yt) = ||Ŷt -Yt||1 + λ⋅||cp(Ŷt) - cp(Yt)||2 (4) 

where cp(⋅) is defined as the feature maps from relu3_3 layer 
of the VGG-16 [20]. In other words, the estimation Ŷt and the 
ground truth Yt are processed by the VGG-16 network. We 
then measure the L2-norm distance between their features from 
the layer relu3_3. The VGG-16 network was trained at 
ImageNet for image classification, where the extracted feature 
has discrimination power for recognizing different contents 
(objects). Some research works were done to verify its 
perceptual power through experiments [21]. λ is a balanced 
coefficient (it was set to 0.01 in our experiment). 

III. EXPERIMENTAL RESULTS 

A. Implementation Details 

Cameras cannot capture two videos simultaneously under 
different illuminations, which makes it impossible to obtain the 
LL-NL video pairs. However, a CNN model consists a large 
number of trainable parameters which require a huge dataset 
for the training process. Note that because videos captured with 
normal lighting (NL) condition contain nearly all scene 
information of the corresponding LL ones, we can simulate the 
LL videos from the NL ones by a reasonable synthesis method.   

1) Simulation of Low-light Videos 

Based on our low-light enhancement model (Eqn. 1), there 
are two main differences between LL(X) and NL(Y) videos: 
E(X) and n(X), where E(X) is regarded as the content 
degradation and n(X) is the additional noise. After comparing a 
set of LL and NL videos subjectively, we found that content 
degradation mainly due to saturation and contrast. The noise 
looks like Gaussian noise. Then, the LL video simulation 
pipeline can be designed as follows. The code of this LL-
simulation pipeline will be released. 

Saturation and contrast degradation:  Insufficient 
illumination increases the difficulty of distinguishing different 
colors by the sensor. The low-contrast detail is easily degraded 
by the darkness. Therefore, videos in LL conditions always 
have dim color and weak contrast. We reduce the saturation 
and contrast to simulate such degradation. This method is 
similar to the controls on a color TV (by the Pillow  [22] 
package). We degraded the saturation by interpolating between 
the input NL frame Yt and its grayscale version Yt

(grayscale), 
using a control factor a (as shown in Eqn. 5). Similarly, the 
contrast is degraded by interpolating between the input Yt

(-clr) 
and a gray image Gt

(gray) (as shown in Eqn. 6), where the gray 

Figure.4. Temporal Aggregation (TA) Block. The rectangles denote 
operations and the cubes denote the feature maps. 
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value is determined by the mean of the original image's 
grayscale version. 

 Yt
(-clr) = aYt +(1-a)Yt

(grayscale)
 (5) 

 Yt
* = bYt

(-clr) + (1-b)Gt
(gray)

 (6) 

where Yt
(-clr) denotes the frame after color degradation. Yt

* 
represents the frame after both color and contrast degradation. 
a and b are two control factors that are randomly selected from 
0.3 to 1. 

Brightness degradation: Another significant difference 
between the LL and NL videos is the brightness. A LL video 
usually have lower pixel values and narrow dynamic ranges, 
which can be simulated by the linearized Gamma 
transformation [23]. After the saturation and contrast 
degradation, we decrease the brightness of the previous result 
Yt

* that can be formulated as:  

  )(
)(*)(*

i

t

i

t YX =  (7) 

where Xt
* and Yt

* denote the tth degraded frame and the result 
after the saturation and contrast degradation. The pixel value is 
compressed to [0, 1]. i ∈{R,G,B} is the RGB channels of the 
image. α ~ U (0.9, 1), β ~ U (0.5, 1) and γ ~ U (1.5, 5) are the 
factors that control the brightness of the simulated frames (all 
settings are the same as [23]). 

Additive Gaussian Noise: Gaussian Noise is a widely-used 
noise model that shows great generalization ability in image 
and video denoising field. It needs to add the noise to degrade 

videos through nXX +=
*

tt , where tX denotes the simulated 

LL video frame. n~N(0, δ), and δ controls the noise level (we 
randomly selected δ from 0 to 0.001 in our experimental work). 

2) Experiment Settings 

Berkeley Deep Drive (BDD) [24] dataset is a widely used 
dataset that contains 100,000 HD video sequences of driving 

experience. We 
selected seven video 
sequences (five 
sequences for training 
and two sequences for 
testing) in ideal NL 
conditions, where 
each sequence lasts 
for 40 seconds (about 
1,200 frames, 30 fps). 
To build a LL-NL 

frame pair, we randomly selected three consecutive NL frames, 
and simulated the corresponding LL frames through the same 
LL-simulation procedure as the above. Let us refer to the 
architecture of our VLN network. We randomly initialized the 
weights with normal distribution and biases equal to zero as in 
[25]. We adopted the Adam [26] optimization method with 
momentum of 0.9, weight decay of 0.0001. The learning rate 
was set as 0.0001. We randomly cropped 256*256 patches 
from the LL and NL frames as the training pair. For each 
iteration, the mini-batch size was set to 20, and the model was 
trained for 500 epochs. All experiments were conducted 
through a PC with two NVIDIA GTX2080Ti GPUs. 

There is no objective evaluation method in the field of low-
light video enhancement, which makes it difficult to compare 
with other approaches. We believe that the predicted NL 
estimations should be close to the ground-truth NL frames. So 
we can evaluate it by measuring the difference between 
estimation and ground truth ones. Peak Signal-to-Noise Ratio 
(PSNR) and Structure SIMimarity (SSIM) are two widely used 
evaluation measures in the image restoration field [15, 27, 28]. 
We adopt them as the objective measurement. Subjectively, we 
will also make a visualization comparison for videos originally 
taken in a dark environment. We will compare the proposed 
method with many approaches, including conventional 
approaches (Adaptive Histogram Equalization [2] (AHE), 
BIMEF [4], LIME [5]) and CNN-based approaches 
(LightenNet [6], LLNet [8], Retinex-Net [9], EnlightenGAN 
[13]). In order to make the comparison as fair as possible, we 
have made use of their desired settings for the possible best 
performance.  

B. Evaluation on the Synthesis Dataset 

 Different scenes may under different illuminations, which 
could produce inconsistent brightness of video sequences.  
Therefore, the LL video enhancement method should be robust 

Figure 5. Simulated LL Videos under different illuminations (frame: 10), 
where the maximum brightness is 255. 
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TABLE I. SIMULATION PARAMETERS OF 

DIFFERENT ILLUMINATION LEVELS 

 Slight 
dark 

Middle 
dark 

Extreme 
dark 

β 0.9 0.8 0.6 

α 0.98 0.95 0.93 

γ 2 3 4 

Satur. 0.8 0.6 0.4 

Contrast 0.8 0.6 0.4 

 

TABLE II.  COMPARISON OF DIFFERENT METHODS ON DIFFERENT ILLUMINATIONS 
(RED: BEST; BLUE: THE 2ND

 BEST, GREEN: THE 3RD
 BEST) 

 
 

Highway Cityscape 
Average 

Slight dark Middle dark Extreme dark Slight dark Middle dark Extreme dark 

Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

AHE [2] 13.578 0.812 9.332 0.482 6.581 0.161 17.465 0.800 11.089 0.398 8.184 0.111 11.038 0.461 

BIMEF [4] 17.414 0.920 13.119 0.722 8.732 0.343 21.869 0.964 14.784 0.737 9.911 0.224 14.305 0.652 

LIME [5] 21.438 0.921 17.102 0.861 12.599 0.628 18.391 0.862 19.611 0.815 14.343 0.446 17.247 0.756 

LightenNet [6] 16.154 0.867 13.742 0.823 13.868 0.759 15.966 0.814 17.160 0.760 13.024 0.383 14.986 0.734 

LLNet [8] 20.451 0.896 21.932 0.860 15.409 0.697 19.380 0.869 17.967 0.723 13.221 0.505 18.060 0.758 

Retinex-Net [9] 15.147 0.810 17.237 0.851 14.911 0.726 12.996 0.652 18.387 0.788 14.482 0.468 15.527 0.716 

EnlightenGAN [13] 17.888 0.847 19.493 0.850 12.205 0.599 17.840 0.814 20.030 0.855 12.083 0.417 16.590 0.730 

VLN(proposed) 29.750 0.974 29.822 0.964 27.120 0.917 23.759 0.922 23.816 0.907 25.759 0.863 26.671 0.924 

Average 18.977 0.881 17.722 0.802 13.928 0.604 18.458 0.837 17.855 0.748 13.876 0.427 16.803 0.716 

 



to the illumination changes. To evaluate the robustness, two 
testing NL videos (one was captured at the highway, and the 
other was the cityscape) were synthesized for different 
illuminations: slight, middle and extreme dark. The settings are 
listed in TABLE I. Fig. 5 shows some examples of simulated 
testing videos. The video frames of highway (the average 
brightness is 101.86) are brighter than the cityscape’s (the 
average brightness is 84.13), as there are more buildings in the 
street.  By using the three settings, we obtained the LL videos 
in different illuminations. In the slight-dark case, the brightness 
is reduced by a half. The frames become slightly dark but the 
contents are still visible. In the middle-dark condition, the 
frames are darker than the slight ones, where only the salient 
contents are visible. We make use of the extreme dark 
condition to simulate the night, where nearly all contents are 
invisible and the frames are almost black (the average 
brightness is only 6.52 for highway and 2.40 for cityscape). We 
then tested different methods with the testing dataset.  

TABLE II shows the performance of different methods. For 
the evaluation indices (i.e. PSNR and SSIM), a larger value 
means the estimation is closer to the ground truth. Video 
frames with darker scene usually faces more substantial content 
degradation. The performance in extreme-dark cases is worse 
than the slight-dark ones (e.g., the average SSIM is 0.604 at the 
extreme-dark highway, but it is 0.881 at the slight-dark 
highway). It can be seen from the table that AHE and BIMEF 
are more sensitive to the illumination changes. For example, 
the BIMEF achieves 0.964 SSIM in slight-dark cityscape, but 
the performance reduces significantly that it obtains 0.224 
SSIM in the extreme-dark case. Learning-based approaches 
(LightenNet and Retinex-Net) were usually trained with huge 
datasets that contain scenes under different illuminations. It 
significantly improves the robustness of the methods. It can be 
seen from the table that the learning-based methods give a 
better estimation for the extreme cases compared with the 
conventional approaches (LightenNet achieves 0.759 SSIM at 
the extreme-dark highway). Our method is more robust and 
obtains consistent results in different illumination conditions.  

Ablation Study: To evaluate the effectiveness of the 
proposed structure, we made a comparison among different 
structures on a small validation dataset. It contains five short 
sequences (each contains ten frames), and we used the same 
simulation methods to simulate the NL frames to middle-dark 
illuminations. It can be seen from Table III that using image-
based DLN [3], which was our previous work, achieves 17.3 
dB PSNR at the validation dataset. The Plain-Net consists of 
ten stacked convolutional layers that achieve less PSNR (12.23 
dB) with more trainable parameters (Plain-Net: 1.04M, DLN: 
0.70M). The Residual [29] structure solves the gradient 
vanishing problem that only increases training efficiency. We 
composed a shallow “Residual-Net” that consists of seven 
residual blocks. It achieves similar performance as the PlainNet 
with slightly fewer parameters (0.89M). The U-Net [1] is 
initially designed for medical image segmentation that contains 
about 13.30M parameters. It achieves better performance (0.81 
SSIM) compared with PlainNet and Residual-Net. The DLN 
achieves similar SSIM (0.79) and required the fewest 
parameters (0.70M) among all approaches. The VLN which 
contains six LBP blocks achieves the highest (20.98 dB) PSNR 
with 4.96M parameters. The U-Net achieves 19.22 dB PSNR 
but requires a large number of parameters (13.3M) in the 

image-based experiments. It suggests the effectiveness of the 
proposed LBP structure. Let us also compare the U-Net with 
our proposed VLN for video-based enhancement. It is clear 
that adjacent frames benefit the LL enhancement, where the 
video-based U-Net increases the PSNR with 2.48dB (=21.70-
19.22). Our proposed VLN network contains four Temporal 
Aggregation (TA) blocks working at the features of different 
scales, which can investigate the temporal relationship among 
the adjacent frames. Compared with the image-based version, 
the video-based VLN improves the PSNR (from 20.98 dB to 
26.40 dB) and SSIM (from 0.82 to 0.95) to a large extent. 

Fig. 6 gives a visual comparison of different methods. It is 
clear that the visual quality of the LL frames can be improved 
after processing the LL enhancement. For example, the sign of 
the slight-dark cityscape (picture at the first row, sixth column) 
is difficult to identify originally.  After the enhancement, the 
contrast is increased that makes it easy to recognize the objects 
(see the remaining pictures of the sixth column). However, 
when the darkness level is increased (e.g., extreme-dark cases), 
the AHE and BIMEF give the estimations with narrow 
dynamic range (see the cars of the extreme-dark highway). 
Retinex-Net tends to predict brighter results but the estimations 
look like an oil painting. LIME and EnlightenGAN give better 
predictions for the slight- and middle-dark scenes, but the 
estimations for extreme-dark cases are with bad visual quality 
(see the signs of the extreme-dark cityscape). The proposed 
DLN has a consistent enhancement for different levels of 
illuminations (see the cars and signs of different illuminations), 
which suggests the robustness of the method. 

C. Evaluation on the Real Datasets 

An application of the low-light enhancement is able to 
assist drivers during the nighttime. To evaluate the 
generalization ability of the proposed method, we apply it for 
the real scenes. Our testing videos are from BDD dataset [24] 
that was captured by the driving recorder at night. Fig. 7 shows 
the comparisons among different methods.  It can be seen from 
Fig. 7 (a) that the LLNet produces many stains that decrease 
the visual quality. Retinex-Net [9] distorts the color 
information whose result looks like an artwork. The outputs of 
LIME and EnlightenGAN have satisfactory saturation and 
contrast. However, the enhancements amplify the noise which 
makes the frame mess (see the red rectangle area of Fig. 7 (a)). 
As we mentioned before, the proposed method is robust to 
different illuminations. Based on the spatial and temporal 
information of adjacent neighboring frames, the noise is 
suppressed that the visual quality of the reconstructed NL 
frames are improved. Our method produces a clearer result (see 
the proposed method in Fig. 7 (a)). It contains less noise and 

TABLE III. COMPARISON OF DIFFERENT STRUCTURES 

Method Input 
Structure* PSNR (dB) SSIM Para. (M) 

PlainNet SImage 12.23 0.57 1.04 
Residual-Net SImage 12.03 0.54 0.89 

U-Net [1] SImage 19.22 0.81 13.30 

DLN [3] SImage 17.30 0.78 0.70 
VLN SImage 20.98 0.82 4.96 

U-Net [1] Video 21.70 0.93 13.30 
VLN 

(proposed) Video 26.40 0.95 4.96 

* the type “SImage” denotes the method using single-image enhancement 
(the input is a single LL image), “video” means the enhancement is based 

on a set of adjacent frames (all using three LL frames). 

 



reasonable brightness, which provides a better view for driving. 
The video in Fig. 7 (b) is captured in a narrow alley. The scene 
is extremely dark and it is challenging to recognize cars on 
both sides. All LL enhancement methods can improve the 
brightness that makes the cars more visible. However, the 
result of the LLNet contains black-and-white stains. LIME [5] 
and EnlightenGAN [13] produce visible noise (the green 
rectangle area of Fig. 7 (b)). Our proposed method gives a clear 
result with good visual quality. Based on the temporal 
information, our method achieves better temporal consistency 
that is more stable than others.  

IV. CONCLUSION 

In this paper, we have introduced our proposed Video 
Lightening Network (VLN) for low-light video enhancement. 
We have proposed our Lightening Back-Projection (LBP) as a 
basic enhancing module that iteratively learns the mappings 
between low- and normal-light domain. To utilize the temporal 
information among adjacent frames, we have also proposed a 
novel Temporal Aggregation (TA) block, which investigates 
the spatial and temporal relations of a small region. Based on 
the hierarchically multi-scale features, the TAs can handle the 
motion of different levels. We have used both objective and 
subjective metrics to compare the proposed method with 
others. Extensive experimental results show that the proposed 
method outperforms others (both conventional and learning-
based) in quantitative and qualitative aspects. The proposed 

method provides a novel solution to resolve the problem of 
dark environment, which can be used in a wide range of 
applications. A possible application is to design an intelligent 
front windshield such that it can automatically be activated 
when driving in the dark environment. 

Ack.: This work is supported from the HKPolyU Consultancy Project 
P19-0319 for HKPC. 
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