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Abstract—Explaining decisions of black-box classifiers is
paramount in sensitive domains such as medical imaging since
clinicians confidence is necessary for adoption. Various explana-
tion approaches have been proposed, among which perturbation
based approaches are very promising. Within this class of
methods, we leverage a learning framework to produce our
visual explanations method. From a given classifier, we train
two generators to produce from an input image the so called
similar and adversarial images. The similar image shall be
classified as the input image whereas the adversarial shall not.
Visual explanation is built as the difference between these two
generated images. Using metrics from the literature, our method
outperforms state-of-the-art approaches. The proposed approach
is model-agnostic and has a low computation burden at prediction
time. Thus, it is adapted for real-time systems. Finally, we show
that random geometric augmentations applied to the original
image play a regularization role that improves several previously
proposed explanation methods. We validate our approach on a
large chest X-ray database.

Index Terms—Deep learning, Classification, Interpretation,
Explainable AI, Medical Images, Adversarial Example

I. INTRODUCTION

Deep neural models have enabled to reach high perfor-
mances on various applications and in particular in medical
image analysis [1]. In this field, additionally to high accuracy,
it is critical to provide interpretative explanations of the system
decision since the clinicians’ confidence in the system is at
stake [2]. Thus, several methods were proposed to address
the visual explanation problem, ranging from saliency maps
[3]–[6] and class activation mapping methods [7], [8] to
perturbation maps [9], [10]. However the problem is still open
since there is no general consensus on their performances.
Independently, under the motivation of model safety, several
methods were proposed to generate ”fake” images that ”fool”
classification algorithms. Such ”fooling” images are generated
either by the addition of a small perturbation on top of the
input image [11]–[13], or as a complete new image, very close
to the input [14]. Most of these works point out that adversarial
generation allows to study the model robustness and fragility
but very few make links with the explainability problem.

In this work, we propose to leverage adversarial generation
methods to produce interpretative explanation of classifier’s
decision. Inspired by [10] and [14] who both train model
to generate respectively explanation masks and adversaries,
we propose to train a model to generate images that capture
discriminative structures with the following key contributions:
• A new framework of explanation is proposed. We define

the explanation of a classifier’s decision as the difference
between a regularized adversarial example and the ”pro-
jection” of the original image into the space of adversarial
generated samples.

• We introduce a new optimization workflow that combines
the training of an adversarial generator and of a similar
generator that ”projects” the original image into the
adversarial space.

• We propose a new method that greatly improves the
use of several explanation methods as means to localize
decisive objects in the image: Namely, averaging of reg-
istered explanation results built upon random geometric
augmentations of the input image.

We validate our algorithm on a binary classification problem
(pathological/healthy) of a large database of X-ray chest
images. We compare our technique to state of the art ap-
proaches such as Gradient [3], GradCAM [8], BBMP [9],
Mask Generator [10].

II. RELATED WORK

Explaining classifiers decisions via some visual map has
been the subject of several contributions. We here classify in
three categories a selected few.

A. Back-propagation-based methods

These methods leverage, for neural networks and for a
given image, back-propagation of small variations of the
model’s prediction [3]. While providing interesting results,
these methods tend to produce noisy explanation maps since
any variations of the model’s output is considered. Many con-
tributions are thus focused on building sharper and smoother
explanation maps [4], [6], [15], [16]. In [7], explanation
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maps are produced by upsampling activations from the last
convolutional layer to the input image size, GradCAM [8]
(or its application in medical domain [17]), builds on this
work by computing the gradient of the output with respect
to the last convolutional layer (and not only with respect to
the model’s prediction) generating compelling results. For an
exhaustive review, the reader can refer to [18] and [19]. As
a limitation, these approaches are not model-agnostic (limited
to neural networks) and need access to intermediate layers.

B. Iterative perturbation-based methods

The principle of this approaches is to exploit the effects
of perturbations to the input image on the model’s output
[15]. For instance, LIME [20] proposes a local explanation by
perturbing random segments of the input image and training a
linear classifier to predict the importance of each segment for
the classifier’s prediction.
The authors of [9] take this idea further by defining their
explanation maps as the result of an optimization procedure
over the input image and the model to explain. Considering a
fixed perturbation, their approach consists in learning the maps
that maximally impact the model or on the contrary the maps
that enable to preserve its performance. Similarly, building on
[21] for the medical imaging domain, [22], [23] adopt a similar
optimization formulation but focus on the perturbations. They
use generative methods to, respectively, perturb pathological
images by local in-painting healthy tissues within pathological
images or completely reconstructing a healthy image.
As noisy outputs is a major concern within these methods,
some authors focus on regularization terms [24] and others
filter gradients during back-propagation [25]. Different op-
timization formulations were also introduced [26], [27]. In
[28], an explanation is generated through features perturbation
at different levels of the neural network. In [12], [29] the
optimization problem is revisited as an adversarial example
generation, where the adversarial perturbation is sought in a
regularized and restricted space.
Note that all these methods have in common the necessity
to solve, for each image, an optimization problem in order
to produce an explanation map. This translates into a high
computational cost, as several iterations are needed for con-
vergence (often inappropriate when a real time response is
expected). Moreover, since the optimization problem is solved
for every image, over-fitting issues arise. Explanation maps
often contain features not linked to the models’ behaviour
but only to the image being processed. Strong and elaborated
regularization is thus a necessity.

C. Trained perturbation-based methods

In order to alleviate computational needs of iterative
perturbation-based methods, [10] proposes to evolve to an
optimization problem on the whole database, thus learning
a masking model. In medical imaging, [30] uses the same
approach on a single class problem. Despite the benefits of
this optimization strategy, two main drawbacks remain. First,
perturbations are provided as parameters to be set and adapted

manually. Their choice is impacted not only by the database
and the considered classifier but also by the training of this
classifier (e.g. a random noise perturbation has no effects on
models trained to be robust to this noise). Since perturbations
are manually selected, residual adversarial artefacts (without
any link to the explanation) are still generated. Second, a costly
hyperparameters tuning is needed to control the size of the
generated explanation masks.

III. METHODOLOGY

We present our methodology to generate explanations for
image classification outcomes. As for the methods exposed
in section II, our explanation is given as a visual explanation
map where higher values code for more important areas on the
image w.r.t to the classifier decision. For the sake of simplicity,
we present the rationale behind our approach in the case of a
binary classification problem, the extension to the multi-class
case being presented in section III-C. Let fc be the studied
classifier outputting a classification score in the range [0, 1] .
Without loss of generality, we assign label 1 (resp. label 0) to
an input image if its classification score (fc value) is over 0.5
(resp. under 0.5). In the case of a different threshold one can
apply for instance a piece-wise linear transformation to fc to
satisfy this condition.

A. Explanation through similar and adversarial generations

1) Adversarial naive formulation: A naive, yet novel,
approach to reach our objective is to combine a trainable
masking model [10] with adversarial perturbations for visual
explanations [12]. The visual explanation map is then given
by the difference between the input image and its adversary.
This method is no longer dependent on the choice of a
perturbation function since the adversarial sample ”learns”
this perturbation. For an input image x we define the naive
explanation as

Enaivefc (x) = |x− ḡa(x)| (1)

where ḡa is a model obtained via a training process with the
goal of ”fooling” the classifier fc while producing an image
”very close” to x, written as follows:

ḡa = argmin
ga

Ex [‖x− ga(x)‖2]

s.t. fc(ga(x)))=1−fc(x)
(2)

The mean value is taken over a training data set. Generating
a visual explanation using (1) and (2) effectively counterbal-
ances drawbacks of [10] & [12] but despite the regularization
expected from the learning process, visual explanations are
often corrupted by noise, highlighting regions which clearly
should have no impact on the classifiers decision (see sec-
tion V-B).

2) Similar-Adversarial formulation: Why does the naive
formulation generate incoherent visual explanations? We argue
that the flaw resides in the definition of explanation as ex-
pressed in equation (1). Comparing the original image with its
generated adversarial sample exposes the method to a risk of
reconstruction error. Some details of the original image can be



absent from the generated adversarial sample. However these
details are not discriminative for the classifier in the sense
that their sole presence would not change the classification
score. More formally, the adversarial sample belongs to the
target space of ḡa (χa) which is different from the space of
original images (χo). The comparison between x and ḡa(x)
inherits from the differences between χo and χa and these
differences are not explicitly linked to the explanation problem
by Equation (2). Since we do not have control on the original
image space χo, we propose to mitigate this reconstruction risk
by defining the explanation mask as the difference between the
adversary ḡa(x) and the closest element to x in χa on which
fc returns the same value as x. We call this element the similar
image and it is denoted by ḡs(x). ḡs is the function mapping
images to their similar counterparts. The rationale is to reduce
the reconstruction error so that Efc(x) only contains values
related to the classifiers’ decision and reads

Efc(x) = |ḡs(x)− ḡa(x)| (3)

Denoting χs the target space of ḡs, both ḡs and ḡa are built
through a joint optimization process aiming to make χs and
χa as ”close” as possible while satisfying fc(ḡs(x)) = fc(x)
and fc(ḡa(x)) = 1− fc(x):

(ḡs, ḡa) = argmin
gs,ga

Ex

 dχo,χs(x, gs(x)) +
dχo,χa(x, ga(x)) +
dχs,χa

(gs(x), ga(x))

+ d(gs, ga)

s.t

fc(gs(x)))=fc(x)

fc(ga(x)))=1−fc(x)
(4)

where dχo,χs
, dχo,χa

and dχs,χa
are distance functions be-

tween elements of the different image spaces while d(gs, ga) is
a measure between the two functions. Henceforth, we refer to
ḡs and ḡa as the similar and adversarial generators respectively.

B. Weaker formulation: Objective function

We propose to solve a weak formulation of the previous
constrained optimization problem (4). We search for both sim-
ilar and adversarial generators as minimizers of the following
unconstrained problem

(ḡs, ḡa) = argmin
gs,ga


Ex

 Ld(x, gs(x), ga(x)) +
Lfc(x, gs(x), ga(x)) +
Lreg(x, gs(x), ga(x))


+ Ls,a(gs, ga)


(5)

Ld is a similarity loss that accounts for the term dχo,χs +
dχo,χa

+ dχs,χa
in equation (4) and enforces the proximity

between x, gs(x) and ga(x). Lfc , the classification loss, is
a weak formulation of the classification constraints in (4)
enforcing the similarity between fc(x) and fc(gs(x)) and
their dissimilarity with fc(ga(x)). Ls,a enforces the similarity
between gs and ga (d(gs, ga)). In addition to the terms
of (4), Lreg acts on the difference (gs(x)− ga(x)) to enforce
regularity. An embodiment of optimization problem (5) when

using neural networks is given in Figure 1 (see section IV-C).
We next specify the choices made in our method for each of
the terms in Equation (5).

Fig. 1. Overview of Duo AE (Top) and Single AE (Bottom)

1) Similarity Loss Ld: Is defined as

Ld(x, gs(x), ga(x)) =

α1 ‖x− gs(x)‖2 +
α2 ‖x− ga(x)‖2 +
α3 ‖gs(x)− ga(x)‖2 +
α4 ‖gs(x)− ga(x)‖1

(6)

where parameters α1, α2, α3, α4 ∈ R adjust the importance
attached to the different terms. Combining L1 and L2 norms
to enforce similarity between gs(x) and ga(x) produces better
results experimentally (as in [14]).

2) Classification Loss Lfc : Is defined as

Lfc(x, gs(x), ga(x)) =
β1Lbce(fc(x), fc(gs(x))+
β2Lbce(1− fc(x), fc(ga(x))

(7)

where β1, β2 ∈ R are weighting parameters and Lbce is the
binary cross entropy loss. This term accounts for the weak
formulations of constraints in (4), favoring classifier fc to act
on gs(x) as it acts on x and in the opposite manner for ga(x).

3) Generator Loss Ls,a: Is a measure of the distance
between the two generators. In the particular case (see sec-
tion IV-C) where they both are neural networks (parameterized
by ws and wa respectively) we used the following metric

Ls,a(gs(., ws), ga(., wa)) = γ

∥∥∥∥∥∑
k

wks − wka

∥∥∥∥∥
2

(8)

where we assume generators gs and ga to have the same
architecture. γ ∈ R is a weighting parameter. Note that metrics
used in GANs to measure discrepancies between distributions
[31] may also be considered.



4) Regularization Loss Lreg: Is defined as

Lreg(x, gs(x), ga(x)) = λ
∑
i∈Rd

∥∥5 (gis(x)− gia(x)
)∥∥

2
(9)

where parameter λ ∈ R controls the relative importance of
Lreg with respect to the other terms of L (5) and d is the
dimension of the output space of the generators. This term acts
as Ls,a favoring the proximity of gs and ga and regularizes
the explanation map (3).

C. Multi-class situation

Weak optimization problem (5) can be adapted to the multi-
class problem by modifying Lfc to account for a vector valued
fc = [fci ]i∈[|1,···N |] function. This boils down to modifying
term (7) adapting CW loss of [12], [14] into

Lfc =
β1 max(max

i 6=l
(fci(gs(x)))− fcl(gs(x)),−κ)+

β2 max(fcl(ga(x))−max
i6=l

(fci(ga(x))),−κ)

(10)
where index l is defined by argmax

i
([fci(x)]) corresponding

to the class selected by the classifier on input x. κ is a strictly
positive margin.

D. Explanation and augmentations

As our visual explanation is defined as the difference
between two generated images, we suggest to regularize the
output of our explanation method by averaging all outputs on
random geometrical transformations of the input image. Thus,
discriminative regions against reconstruction errors are further
enforced. This average reads:

Efc(x) =
1

N + 1

[
Efc(x) +

N∑
i=1

ψ−1i (Efc(ψi(x)))

]
(11)

where ψi are random geometric transformations such as
rotations, translations, zoom, axis flip, etc. This particular
regularization can be applied to all other visual explanation
techniques (see section V-B).

In the following sections, we denote by xs = ḡs(x),
xa = ḡa(x) the output of similar and adversarial generators
respectively.

IV. EXPERIMENTS

A. Datasets

We tested our approach on a publicly available Chest X-rays
dataset for a binary classification problem. The Chest X-rays
dataset comes from the RSNA Pneumonia Detection Challenge
dataset which is a subset of 26,684 exams in dicom taken
from the NIH CXR14 dataset [32]. We only extracted healthy
and pneumonia cases from the original dataset. The resulting
database is composed of 14,863 exams: 6,012 pneumonia -
8,851 healthy. We split the dataset into 3 random groups (80%,
10%, 10%) : train (11,917) - validation (1,495) - test (1,451).
X-rays exams with opacities contain bounding box ground
truth annotations.

B. Classifier Set Up

The classification model whose decisions need to be ex-
plained consists of a ResNet50 [33]. We adapt the last layers of
the ResNet50 network in order to tackle a binary classification
task (healthy/pathology). We transfer the pre-trained backbone
layers from Imagenet [34] to our binary classifier. Then, the
network is trained on the whole training set for 50 epochs with
a batch size of 32. We use the Adam optimizer [35] with an
initial learning rate of 1e-4. Original X-rays are resized from
1024x1024 to 224x224 and normalized to [0, 1]. We also used
zoom, translations, rotations and vertical flips as random data
augmentations. The binary classifier achieves an AUC of 0.974
on the test set.

C. Generative Explanation Model

For the similar and adversarial generators, as in [14],
[36], generators roughly follows the UNet architecture [37].
We propose two different types of generators: (i) Duo AE
(Figure 1 - Top): gs and ga are two separated UNet auto-
encoders. (ii) Single AEi (Figure 1 - Bottom): gs and ga share
a same auto-encoder part that captures image structure for both
generators. They differ by two identical convolutional neural
networks connected at the end of the common autoencoder.
Index i indicates the number of convolutional layers in the
separated CNN.

Generators take as input the same image as the classifier
with 3 channels and dimensions 224x224. Both generators are
trained simultaneously for 70 epochs with a batch size of 8 for
Single AEi and 4 for Duo AE , with the same augmentations
used for the classifier. Adam optimizer is used with an initial
learning rate of 1e-4, and we reduce the learning rate by 3 each
time the loss does not decrease after 3 epochs. Through trial
an error we selected the objective loss function (5) parameters
providing the best results and summarized them in Table I.

TABLE I
SELECTED PARAMETERS FOR COUPLES OF GENERATORS

Model name α1 α2 α3 α4 β1,2 γ λ

Duo AE (TV) 1 1 1 0 0.001 0 0.2
Duo AE (W,TV) 1 1 1 0 0.001 0.1 0.2
Single AE1 (TV) 1 1 1 0 0.001 0 0.2
Single AE1 (W) 3 1 1 0.2 0.001 0.1 0

Single AE1 (W,TV) 1 1 1 0.2 0.001 0.1 0.2
Single AE2 (W) 3 1 1 0.2 0.001 0.2 0

Single AE2 (W, TV) 3 1 1 0.2 0.001 0.2 0.2

D. Augmentation during generator’s prediction

During generator’s prediction, for each image x, we gener-
ate 10 augmented images (xi)i∈[|1,10|] with random geometric
transformations of parameters described in Table II

E. Method Evaluation

Generators Evaluation
The evaluation is achieved on the classifier’s test set. For
similar and adversarial generators ḡs and ḡa, we respectively
evaluate the similarity between x, xs and xa. Structural



TABLE II
AUGMENTATION PARAMETERS

Transformation value(s)
Rotations range (◦) [−5, 5]

Height shift range (pixels) [−10, 10]
Width shift range (pixels) [−10, 10]

Zoom range [0.9, 1]
Random horizontal flip (True, False)

Random vertical flip (True, False)

Similarity Index (SSIM), as well as the Peak Signal to Noise
Ratio (PSNR) are used to evaluate the similarity between
pair of images. For the classification purpose, we compute
the area under the ROC curve between the rounded value of
the classifier predictions R(fc(x)) (resp. R(1 − fc(x))) and
fc(xs) (resp. fc(xa)).

Interpretability Evaluation
In state of the art methods and more specifically in medical
imaging, a visual explanation is considered as interpretable
if: (i) The highlighted regions coincide with discriminative
regions for humans. In our classification problem, salient
regions should overlap opacity regions where the pathologies
are found. (ii) The highlighted regions coincide with context
regions that are also discriminative for humans. We can
quantitatively assess the overlap between explanation map and
ground truth annotations by conducting a weak localization
experiment. We use two metrics to evaluate the localization
performance: the intersection over union (IOU ) and an es-
timated area under the curve (AUCLoc). We compute the
intersection over union between the ground truth mask MGT

and the thresholded explanation mask MEi, as defined in (12).

IoUi =
MGT ∩MEi

MGT ∪MEi
(12)

where MGT is the binary mask included inside the ground
truth bounding box annotation, and MEi is the binary mask
obtained when we threshold the explanation mask Efc at the
i-th percentile pi:

MEi =

{
1 Efc ≥ pi
0 otherwise (13)

We also measure the precision and the sensitivity of the
localization for different thresholds pi in order to compute
the area under the precision and recall curve as introduced in
[38]:

AUCLoc =
∑
i

Pi(Ri −Ri−1) (14)

where Pi = MGT∩MEi

MEi
, Ri = MGT∩MEi

MGT
and i ∈ [|1, 100|].

Our estimation of AUCLoc differs from [38] as we only
compute the metrics over the hundred values of percentile
instead of all sorted values of the explanation map.
We also compute a partial AUCLoc for percentiles between 80
and 100 as it is more representative of the volume occupied
by the ground truth mask MGT . We show some statistics of
the bounding box annotations in Table III.

We compare our proposed method to the naive one (see
section III-A) and to the following state of the art approaches:
Gradient [3], Smooth-Gradient [4], Input Gradient [5], Inte-
grated Gradient [6], GradCAM [8], BBMP [9], Mask Gen-
erator [10] and Perceptual Perturbation [12]. The best BBMP
results are reached when looking for a mask at 56x56 and with
Gaussian blur perturbation. The mask Generator follows the
UNet architecture described in [10], but we remove the class
selector and adapt the objective function to a single class prob-
lem. The best results are obtained when we generate a mask
at size 112x112 and then upsample it to image dimensions.
For Perceptual perturbation which is not model-agnostic, we
regularize the first ReLU layer of each convolution block of
the ResNet50 classifier. We also adapt the optimization to a
single class problem.

TABLE III
OPACITIES BOUNDING BOX STATISTICS

Metrics Height (pixels) Width (pixels) Area Ratio (%)
Min 13 13 0.5
Max 171 91 25.3
Mean 71.8 47.5 7.3

Median 67.8 46.8 6.3

V. RESULTS & DISCUSSION

A. Generator evaluation

For the different architectures and optimization tested,
both generators gs and ga reach high performance in term
of classification. As shown in Table IV, similar images are
almost all classified as the original ones, as the AUCs almost
reaches 1. Adversarial images achieve better adversarial
attacks either when the network (Single) or the weights
regularization (W) causes the generators gs and ga to be close
to each other (Table IV). They even outperform the naive
approach (Adv. AE (TV)) where ga is trained without gs.

TABLE IV
CLASSIFICATION AUC ON SIMILAR AND ADVERSARIAL IMAGES

Explanation method AUCs AUCa

Naive - 0.939
Duo AE (TV) 1.0 0.905

Duo AE (W,TV) 1.0 0.958
Single AE1 (TV) 1.0 0.961
Single AE1 (W) 0.998 0.952

Single AE1 (W,TV) 0.997 0.944
Single AE2 (W) 0.998 0.949

Single AE2 (W, TV) 0.998 0.952

For the similarity, both generators produce samples visually
highly similar to original images (see Figure 2 and Table V).
Similar images xs best perform for both SSIM and PSNR
when generators are not constrained by weight regularization.
At the opposite, adversarial images xa increase their similarity
to both x and xs when generators are constrained, and it
even outperforms the naive adversarial generator trained on



its own. In our case, the objective is to produce xs and xa
as close as possible in order to reduce non discriminative
differences, while having xs very close to x. As shown in
Table V, Single AE2 regularized with weights proximity (W)
produce highly similar samples xs and xa, while maintaining
a strong similarity between xs and x.

Fig. 2. Examples of original images with respective similar and adversarial
generated images. Case (1):fc(x) = 1.0 - fc(xs) = 0.999 - fc(xa) =
0.051 - PSNR between orignal and similar image PSNRos = 43.18 - PSNR
between orignal and adversarial image PSNRoa = 42.07 - PSNR between
similar and adversarial image PSNRsa = 52.75. Case (2): fc(x) = 0.978
- fc(xs) = 0.986 - fc(xa) = 0.34 - PSNRos = 46.30 - PSNRoa =
45.49 - PSNRsa = 56.39

TABLE V
SIMILARITY METRICS BETWEEN GENERATED AND ORIGINAL IMAGES

Explanation method x↔ xs x↔ xa xs ↔ xa
Metrics ssim psnr ssim psnr ssim psnr

Adv. AE (TV) - - 0.994 41.92 - -
Duo AE (TV) 0.996 44.07 0.987 39.47 0.994 43.89

Duo AE (W,TV) 0.995 41.99 0.987 39.08 0.995 44.26
Single AE1 (TV) 0.997 44.57 0.989 40.67 0.996 45.25
Single AE1 (W) 0.994 42.73 0.993 41.85 0.999 52.59

Single AE1 (W,TV) 0.992 41.79 0.991 41.35 0.999 54.55
Single AE2 (W) 0.995 43.61 0.994 42.42 0.999 52.26

Single AE2 (W, TV) 0.995 43.88 0.994 42.63 0.999 51.93

B. Weak localization evaluation

As shown in Table III, bounding box annotations of the
test set occupy from 0.5 to 25.3 % of the image with an
average occupation of 7.3%. For different generators and
regularizations, we accordingly list the results of the averaged
IOU for pi between the 80th and 100th percentile value in
Table VI, and total and partial AUCLoc in Table VII. Firstly,
Single AE clearly outperforms the Duo version for all IOU
and AUC scores. The Single AE approach compelled ga and
gs to capture the same information on the original image
by sharing a common autoencoder. As shown in Table V,
the proximity between x and xa as well as between xs and
xa is better for Single AE approaches. Then, the weights

TABLE VI
IOU SCORES AT DIFFERENT THRESHOLDS OF BINARIZATION -

COMPARISON ACROSS THE DIFFERENT GENERATORS ARCHITECTURES

Explanation method IOU
Percentile 80 85 90 95 98

Duo AE (TV) 0.190 0.182 0.164 0.122 0.070
Duo AE (W,TV) 0.188 0.184 0.170 0.132 0.079
Single AE1 (TV) 0.187 0.182 0.166 0.127 0.075
Single AE1 (W) 0.227 0.222 0.204 0.157 0.090

Single AE1 (W,TV) 0.234 0.235 0.220 0.171 0.099
Single AE2 (W) 0.240 0.245 0.229 0.172 0.095

Single AE2 (W, TV) 0.248 0.250 0.232 0.173 0.097
With Augmentations

Duo AE (TV) 0.243 0.232 0.206 0.156 0.085
Duo AE (W,TV) 0.263 0.253 0.227 0.166 0.093
Single AE1 (TV) 0.262 0.249 0.218 0.156 0.086
Single AE1 (W) 0.262 0.254 0.233 0.181 0.105

Single AE1 (W,TV) 0.268 0.261 0.240 0.188 0.112
Single AE2 (W) 0.288 0.288 0.268 0.204 0.115

Single AE2 (W, TV) 0.292 0.292 0.272 0.206 0.115

regularization between similar path and adversarial path in-
troduced in (8) improves all the localization performance e.g.
from IOU90 = 0.166 to IOU90 = 0.220 for Single AE1

(TV). This is consistent with the findings in V. Total variation
regularization on the resulting explanation mask also slightly
increases IOU and AUC scores for Single AE1,2. In addition,
the Single generator with two convolutional layers (AE2)
performs better than the single-layer one (AE1).
Finally, the use of augmentations during generator’s prediction
improves localization scores for all cases e.g. up to 4 points
for IOU90 (Table VI), from 7 to 11 points for total and partial
AUCLoc (Table VII).

TABLE VII
ESTIMATED AUC SCORES FOR PRECISION-RECALL - COMPARISON

ACROSS THE DIFFERENT GENERATORS ARCHITECTURES

Explanation method Total AUC Partial AUC
Duo AE (W,TV) 0.257 0.162
Single AE1 (TV) 0.253 0.157
Single AE1 (W) 0.310 0.220

Single AE1 (W, TV) 0.325 0.239
Single AE2 (W) 0.325 0.248

Single AE2 (W, TV) 0.339 0.256
With Augmentations

Duo AE (W,TV) 0.362 0.263
Single AE1 (TV) 0.353 0.254
Single AE1 (W) 0.370 0.274

Single AE1 (W,TV) 0.381 0.287
Single AE2 (W) 0.405 0.322

Single AE2 (W, TV) 0.412 0.328

When compared to state of the art methods (Ta-
bles VIII, IX), Single AE2 (W, TV) achieves comparable
localization scores. Our method even slightly outperforms the
best performers Mask Generator and BBMP for IOU scores
for percentile thresholds from 80 to 95 %. It is also the case
for both partial and total AUC compared to the best state of
the art approaches: GradCAM, BBMP and Mask Generator.
Only Mask Generator and Gradient outperform or compete
with our method for IOU98. We can also note that the naive



explanation directly defined as the difference between xa and
x (Adv. AE (TV)) produces much poorer results.
However, when using augmentation during generator predic-
tion phase, our method outperforms all the others. Visual
illustrations are given in Figures 3 and 4 for cases where
the opacities are located either at one or two different posi-
tions. When thresholding heatmaps at the 95th percentile, our
method (Single AE) seems to generate less noisy masks than
other approaches including the naive one (Adv AE), while
capturing all discriminative structures. In addition, our method
is suitable for real time situation as suggests the generation
time per image of the explanation given in Table IX (on
NVIDIA GPU MX130).

TABLE VIII
IOU SCORES AT DIFFERENT THRESHOLDS OF BINARIZATION -

COMPARISON TO STATE OF THE ART METHODS

Explanation method IOU
Percentile 80 85 90 95 98
Gradient 0.203 0.199 0.187 0.152 0.097

Smooth Grad. 0.192 0.188 0.176 0.143 0.091
Input Grad. 0.191 0.185 0.170 0.136 0.086

Integrated Grad. 0.176 0.171 0.157 0.124 0.077
GradCAM 0.237 0.225 0.195 0.138 0.070

BBMP 0.233 0.226 0.204 0.154 0.087
Perceptual Perturbation 0.133 0.125 0.110 0.080 0.045

Mask Generator 0.222 0.219 0.208 0.169 0.103
Adv. AE (TV) 0.177 0.173 0.158 0.118 0.064

Adversarial vs Similar
Single AE2 (W, TV) 0.248 0.250 0.232 0.173 0.097

Adv. vs Sim. + Augment.
Single AE2 (W, TV) 0.292 0.292 0.272 0.206 0.115

Fig. 3. Examples of explanation maps generated by different methods in case
of a single ground truth bounding box annotation. Top row: the original image
with the explanation map and the ground truth bounding box. Bottom row:
Binary heatmaps for the 95th percentile

As an additional experiment, we apply the augmentation
technique to other state of the art methods that produce their
visual explanation in one shot. Localization results are listed
in Tables X and XI. All localization scores improve, while the
generation time per image remains adequate (see Table XI).
By using augmentations, we observe for all methods a gain
similar to that observed for our method. Our best method still

Fig. 4. Explanation maps generated by different methods in case of two
ground truth bounding box annotations. Top row: the original image with the
explanation map and the ground truth bounding box. Bottom row: Binary
heatmaps for the 95th percentile

TABLE IX
ESTIMATED AUC SCORES FOR PRECISION-RECALL AND COMPUTATION

TIME - COMPARISON TO STATE OF THE ART METHODS

Explanation method Total AUC Partial AUC Time (s)
Gradient 0.287 0.189 2.04

Integrated Grad. 0.244 0.146 1.93
GradCAM 0.324 0.235 0.78

BBMP 0.326 0.229 17.14
Perceptual Perturbation 0.180 0.084 30.74

Mask Generator 0.327 0.226 0.09
Adv. AE (TV) 0.238 0.145 0.10

Adversarial vs Similar
Single AE2 (W, TV) 0.339 0.256 0.05

Adv. vs Sim. + Augment.
Single AE2 (W, TV) 0.412 0.328 0.63

achieves better localization results for AUC metrics. For IOU,
Mask Generator outperforms our method for pi ≥ p95.

TABLE X
IOU SCORES AT DIFFERENT THRESHOLDS OF BINARIZATION -

COMPARISON TO STATE OF THE ART METHODS WITHOUT (TOP) AND
WITH (BOTTOM) AUGMENTATIONS

Explanation method IOU
Percentile 80 85 90 95 98

Gradient [1] 0.203 0.199 0.187 0.152 0.097
0.256 0.252 0.236 0.190 0.117

GradCAM [2] 0.237 0.225 0.195 0.138 0.070
0.271 0.263 0.244 0.190 0.105

BBMP [3] 0.233 0.226 0.204 0.154 0.087

Mask Generator [4] 0.222 0.219 0.208 0.169 0.103
0.259 0.264 0.259 0.221 0.137

”Naive” 0.177 0.173 0.158 0.118 0.064
0.239 0.230 0.208 0.156 0.087

Ours 0.248 0.250 0.232 0.173 0.097
0.292 0.292 0.272 0.206 0.115

VI. CONCLUSION

In this work, we introduce a new method to produce a visual
explanation of the classifier’s decision that leverages adver-
sarial generation learning. We propose to train simultaneously



TABLE XI
ESTIMATED AUC SCORES FOR PRECISION-RECALL AND COMPUTATION
TIME - COMPARISON TO STATE OF THE ART METHODS WITHOUT (TOP)

AND WITH (BOTTOM) AUGMENTATIONS

Explanation method Total AUC Partial AUC Time (s)

Gradient [1] 0.287 0.189 2.04
0.374 0.274 2.83

GradCAM [2] 0.326 0.235 0.78
0.397 0.302 5.09

BBMP [3] 0.326 0.229 17.14

Mask Generator [4] 0.327 0.226 0.09
0.404 0.308 0.68

”Naive” 0.238 0.145 0.10
0.325 0.232 0.75

Ours 0.339 0.256 0.05
0.412 0.328 0.63

a couple of generators to produce an adversarial image that
goes against the classifier’s decision, and a similar image that
is classified as the original one. We show that the differences
between the two images as well as the learning procedure helps
to better capture discriminative features. We have tested our
method on a binary classification problem in the medical do-
main. We have shown that our method outperforms state of the
art techniques in terms of weak localization, especially when
we introduced geometric augmentations during the generation
phase. Unlike some state of the art methods, our proposed
method is both model-agnostic and sufficient for real time
situation such as medical image analysis. Finally, we show
that random geometric augmentations applied to the original
image improves all the tested state of the art approaches.
In future works, we shall generalize our method to multi-
classification problems and apply it to 3D medical image
problems.
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