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Abstract—A common approach in multi-task learning is to
encourage the tasks to share a low dimensional representation.
This has led to the popular method of trace norm regularization,
which has proved effective in many applications. In this paper,
we extend this approach by allowing the tasks to partition
into different groups, within which trace norm regularization is
separately applied. We propose a continuous bilevel optimization
framework to simultaneously identify groups of related tasks
and learn a low dimensional representation within each group.
Hinging on recent results on the derivative of generalized matrix
functions, we devise a smooth approximation of the upper-level
objective via a dual forward-backward algorithm with Bregman
distances. This allows us to solve the bilevel problem by a
gradient-based scheme. Numerical experiments on synthetic and
benchmark datasets support the effectiveness of the proposed
method.

I. INTRODUCTION

Multi-task learning (MTL) addresses the problem of lever-
aging information across multiple related task in order to
facilitate learning. There have been various ways to define
task relatedness. In this paper we follow the MTL framework
outlined in [1] where dependencies among a set of linear
regression tasks are exploited through a trace norm regular-
ization problem. It encourages the regression vectors to lie on
a low dimensional subspace, thereby constraining the tasks to
share a low dimensional representation – see also [2], [3] for a
discussion. More precisely, [1] learn the tasks by minimizing
the following objective function

T∑
t=1

Êt(wt) + λ‖W‖tr, (1)

over the matrix W = [w1, . . . , wT ] ∈ RP×T of regression
vectors of the different learning tasks, where Êt is the empirical
error for task t (e.g. the square error), λ > 0 is a regularization
parameter and ‖W‖tr denotes the trace norm (sum of the
singular values) of W .

A key insight in MTL is that leveraging similarities between
the tasks reduces the amount of data needed to learn each
individual task. However, when not all the tasks are related,
MTL could cause negative transfer between the tasks and
degrades performance (see e.g. [4]). A natural approach to
overcome this problem is to weaken the task relatedness
assumption, allowing the tasks to partition into groups, so
that tasks are related within each group but not across. In the
context of MTL methods based on trace norm regularization,

this means that the regularizer in (1) would be replaced by
the sum of the trace norm restricted to the sub-matrices of
regression vectors belonging to the tasks in the prescribed
partition. However, in practice, one does not know a priori
the group structure and this needs to be inferred from data.
Identifying the groups of related tasks may be a key step not
only in order to decrease the prediction error but also to help
model interpretability.

Related Work. The idea of simultaneously learning groups of
related tasks and their parameters is not new and has drawn
significant attention within the multitask and transfer learning
literature. The closest work to our contribution probably traces
back to [5], where the authors proposed an alternate mini-
mization scheme in order to simultaneously find the regression
matrix and the groups of related tasks. A related method has
been devised in [6] to handle the case where all the tasks
parameters within a group share the same sparsity patterns.
Among other approaches, a popular technique consists in
expressing the regression matrix as the product of two low
rank matrices: a variable-latent matrix and a latent task matrix
whose sparsity patterns will permit to a posteriori discover
the groups [7], [8]. Yet another line of work is clustering the
tasks based on similarity of tasks parameters, in the spirit of
k-means clustering, see e.g. [9], [10]. The idea of formulating
hyper-parameter optimization, and in particular the problem of
learning task relationships, via bilevel optimization has been
considered in [11] but in a different context.

Contributions and Outline. We show that the problem of
learning how multiple tasks are related can be tackled by
extending the smooth bilevel framework proposed in [12],
[13], originally devised for vector problems, to a matrix
setting. This methodology, which we review in Section II-A, is
based on solving two nested optimization problems, a lower-
level problem which optimizes over the matrix of task param-
eters, and an upper level problem, defined via the solution
of the lower problem, which optimizes over hyperparameters
defining the group structure. Here, we embrace the idea of [12]
to replace the lower-level problem with a smooth dual forward-
backward algorithm with Bregman distances and make several
advances.

First, by elaborating on recent results on the Fréchet deriva-
tive of generalized matrix functions, we i) design a smooth



proximity operator for generalized matrix functions in Sec-
tion II-B, ii) provide an efficient computation of upper-level
gradient in Section II-C and iii) prove convergence guarantees
of the bilevel scheme in Section II-D. Second, we extend in
Section II-E the classical bilevel cross-validation model to k-
fold cross-validation and then show empirically that this leads
to better generalization. Numerical experiments illustrating the
good performance of the proposed method on synthetic and
real datasets are reported in Section III.

Notations. Throughout the paper, we set, for every n ∈ N,
[n] = {1, . . . , n} and � : RT × RP×T → RP×T , θ �
W = [θ1w1 · · · θTwT ]. We define the sampling operator
X : RP×T → Rn1 × · · · × RnT such that

XW =

X1w1

...
XTwT

 , X(t) =

 x
>
t,1
...

x>t,nt

 ∈ Rnt×P .

In addition, we denote by ιC the indicator function of a set
C, meaning the function taking value zero in C and +∞
otherwise. Finally, we let 2C be the power set of C.

II. TASKS GROUPING VIA BILEVEL OPTIMIZATION

Firstly, we cast the problem of learning the groups of tasks
into the bilevel optimization framework outlined in [12], [13].
Secondly, we extend the algorithmic solution to the matrix
setting by designing a smooth proximity function. Finally, we
report the algorithmic solution, provide convergence guaran-
tees and propose an extension to handle multiple data splits.

A. Bilevel framework

Let P ≥ 1 be the dimension of the feature space and
T ≥ 1 be the number of tasks. For every task t ∈ [T ], we let
(xt,i, yt,i)1≤i≤nt ∈ (RP × R)nt and (x

(val)
t,i , y

(val)
t,i )1≤i≤nt ∈

(RP × R)nt be the t-th training set and validation set, re-
spectively. We encapsulate the task-grouping structure into an
hyperparameter θ, belonging to the set

Θ =

{
[θ1 · · · θL] ∈ [0, 1]T×L

∣∣∣ L∑
l=1

θl = 1T

}
defining at most L groups. This parameter is a relaxation of a
binary variable which is equal to one if the t-th task belongs
to the l-th group, and 0 otherwise. The bilevel problem is
formalized as follows.

Problem II.1 (Bilevel Problem). Solve

minimize
θ∈Θ

U(θ) ≡ C(Ŵ (θ)) (2)

where C(W ) = 1
2‖y

(val)−X(val)W‖2F is the validation error
and where Ŵ (θ) solves the lower-level problem

minimize
W∈RP×T

L(W, θ) ≡ f(W ) + g(AθW ), (3)

with {
f(W ) = 1

2‖y −XW‖2F + ε
2‖W‖

2
F ,

g(Z) = λ
∑L
l=1‖Zl‖tr,

(4)

where f : RP×T → R is convex and smooth, g : RL×(P×T ) →
R is convex and nonsmooth, ε > 0, and Aθ : W 7→ (θ1 �
W, . . . , θL � W ) is a linear operator defining the group
structure.

In Problem (II.1), the lower-level problem estimates Ŵ (θ)
given some group structure θ, while the upper-level problem
finds θ such that Ŵ (θ) minimizes the validation error. Note
that a penalty term ε

2‖W‖
2
F is added to the lower-level

problem in order to ensure the uniqueness of Ŵ (θ).
Now, since in Problem II.1 the solution Ŵ (θ) is in general

not available in closed form, in practice one has to design
an iterative procedure converging to Ŵ (θ) that is properly
stopped, say, at the Q-th iterate W (Q)(θ). It can be approached
by several proximal splitting methods, e.g., the Condat-V u
primal-dual algorithm [14], [15]. However, they would involve
the proximity operator of the trace norm, ultimately leading to
a nonsmooth updating mappings. In order to circumvent this
issue, since the lower-level objective is strongly convex, we
embrace the idea of [12] and solve the dual problem of (3) by
a forward-backward algorithm with Bregman distances [16],
[17]. Then the primal solution is recovered by the primal-dual
relationship. The resulting bilevel problem is the following.

Problem II.2 (Approximate Bilevel Problem). Given a maxi-
mum number of inner iterations Q ∈ N, some step-size γ > 0
and a Legendre function Φ, solve

minimize
θ∈Θ

U (Q)(θ) ≡ C(W (Q)(θ)) (5)

with
for q = 0, 1, . . . , Q− 1⌊
W (q)(θ) = ∇f∗

(
−A∗θU (q)(θ)

)
U (q+1)(θ) = proxΦ

γg∗
(
∇Φ(U (q)(θ)) + γAθW

(q)(θ)
)

W (Q)(θ) = ∇f∗
(
−A∗θU (Q)(θ)

)
,

(6)
where f∗ and g∗ are the Fenchel conjugates of f and g
respectively and where the Bregman proximity operator reads

proxΦ
γg∗(V ) = argmin

U∈RL×(P×T )

γg∗(U) + Φ(U)− 〈U, V 〉. (7)

We highlight that the objective U (Q) is a nonconvex function
whose properties depend on the choice of the Legendre
function Φ. Indeed, since C and ∇f∗ are smooth, then U (Q)

is smooth provided that the proximity operator proxΦ
γg∗ is

smooth too. Designing a smooth proximity operator is the
cornerstone of the proposed method and will be investigated
in the next section. Having a smooth objective U (Q) permits
to address its minimization by a projected gradient algorithm
of the form

θ(0) ∈ Θ is chosen arbitrarily
for k = 0, 1, . . . ,K − 1⌊
θ(k+1) = ProjΘ(θ(k) − β∇U (Q)(θ(k))),

(8)

where ProjΘ denotes the projection onto Θ and β > 0 is the
step-size chosen as β = 1/L where L is estimated as follows.



Remark II.1 (Estimation of Lipschitz constant). In practice,
we estimate a Lipschitz constant L computationally by sam-
pling 5 random groups θ(1), . . . , θ(5), i.e.,

L = max
1≤i<j≤5

‖∇U (Q)(θ(i))−∇U (Q)(θ(j))‖
‖θ(i) − θ(j)‖

. (9)

B. Smooth proximity operator of matrix function

In this section, we focus on the design of a smooth prox-
imity function proxΦ

γg∗ .
First, we recall that since g is the sum of L trace norms, then

g∗ is separable and equal to the indicator function of Bsp(λ)L,
where Bsp(λ) is the spectral ball of RP×T with radius λ.
Since g∗ is separable, we look for a function Φ separable as
well, that is, Φ: U 7→

∑L
l=1 φ(Ul) for some Legendre function

φ : RP×T → ]−∞,+∞]. Then it follows that

proxΦ
γg∗(V ) =

(
proxφıBsp(λ)

(V1), . . . ,proxφıBsp(λ)
(VL)

)
.

One usual choice is to consider φ = 1
2‖ · ‖

2 which leads to
proxφıBsp(λ)

being the projection onto the spectral ball Bsp(λ),
which is thus nonsmooth.

In order to find a smooth proximity function, we follow the
idea of [13], [12] and look for a Legendre function Φ such
that dom Φ = dom g∗. Here the novelty lies in the design of φ
such that domφ = Bsp(λ). To do so, we consider a Legendre
function acting on the singular values as follows.

Definition II.1 (Choice of Legendre function φ). Let U ∈
RP×T with singular value decomposition

U = A(U)diag[σ(U)]B(U)>,

where A(U) ∈ RP×P and B(U) ∈ RT×T are orthogonal
matrices, r = min(P, T ), σ(U) = (σ1(U), . . . , σr(U)) are
the singular values of U listed in decreasing order, and
diag[σ(U)] ∈ RP×T has the singular values of U on the
principal diagonal and zero entries otherwise. Then we define

φ : RP×T → ]−∞,+∞] , φ(U) =

r∑
i=1

κ(σi(U)), (10)

where κ : R→ ]−∞,+∞] is such that

κ(t) =

{
−
√
λ2 − t2 if |t| ≤ λ

+∞ otherwise.
(11)

For such choice, it is easy to prove that proxφıBsp(λ)
= ∇φ∗

where φ∗ denotes the Fenchel conjugate of φ. We recall from
[18, Proposition 6.2], that φ and φ∗ are differentiable in the
interior of Bsp(λ) and

∇φ(U) = A(U)diag[(κ′(σi(U)))1≤i≤r]B(U)>, (12)

∇φ∗(U) = A(U)diag[(κ∗′(σi(U)))1≤i≤r]B(U)>, (13)

where

κ′(t) = t/
√
λ2 − t2 and κ∗′(s) = λs/

√
1 + s2. (14)

Now, it only remains to prove that the mappings
∇φ : int(Bsp(λ)L) → RP×T and ∇φ∗ : int(Bsp(λ)L) →

RP×T are differentiable. However, contrary to the case con-
sidered in [12], here ∇φ and ∇φ∗ are generalized matrix
functions, that is, are defined through the singular value
decomposition [19], [20]. Thus, establishing their differentia-
bility and computing the corresponding derivatives is more
challenging. While some formula has been devised in specific
cases, e.g., for the SVD [21], [22], [23] and for diagonalizable
matrices [24], here we rely on a general result concerning the
Fréchet derivative of generalized matrix functions given in [25,
Theorem 3.5 and Corollary 3.10], which we recall below.

Lemma II.1 (Generalized Daleckii-Krein formula). Let V =
A(V )diag[σ1(V ), . . . , σr(V )]B(V )> be the singular value
decomposition of a matrix V ∈ RP×T , where A(V ) ∈
RP×P , B(V ) ∈ RT×T , and r = min(P, T ). Let h :
[0, b[ → R be differentiable such that h(0) = 0 and
σ(V ) ⊂ [0, b[. Then, the generalized matrix function h� : U 7→
A(U)diag[(h(σi(U)))1≤i≤r]B(U)> is differentiable at V and
its Fréchet derivative at V , applied to the direction E ∈
RP×T , is

∇h�(V )[E] = A(V )
(
F [h](V ) ◦ Ê(V )

+G[h](V ) ◦Υ(Ê(V ))
)
B(V )>, (15)

where the symbol ◦ denotes the Hadamard product of
matrices; Ê(V ) = A(V )>EB(V ); the linear operator
Υ: RP×T → RP×T is a generalization of the transpose
operator; F [h](V ) ∈ RP×T and G[h](V ) ∈ RP×T are
appropriate symmetric matrices depending on the singular
values of V (the precise expressions of those matrices are
borrowed from [25, Theorem 3.8]).

Therefore, it follows from Lemma II.1 that the generalized
matrix functions ∇φ and ∇φ∗ are Fréchet differentiable and,
for any E ∈ RP×T ,

∇2φ(V )[E] = A(V )
(
F [κ′](V ) ◦ Ê(V )

+G[κ′](V ) ◦Υ(Ê(V ))
)
B(V )> (16)

and

∇2φ∗(V )[E] = A(V )
(
F [κ∗′](V ) ◦ Ê(V )

+G[κ∗′](V ) ◦Υ(Ê(V ))
)
B(V )>. (17)

C. Hypergradient computation
Now that U (Q) is smooth, we address the computation of

its gradient ∇U (Q), called hypergradient in this context. The
overall procedure, reported in Algorithm 1, is made of two
steps. First, the output W (Q) of algorithm (6) is computed by
using the formulas (12)–(13) and (14). Second, we embrace
a reverse mode differentiation algorithm where one needs to
subsume formulas (16)-(17).

Overall, the computational load of the hypergradient is
mostly due to the required 4QL singular value decompositions
of matrices of size P × T . This number can be halved by
storing the decompositions during the solving of the lower-
level problem.



D. Convergence guarantees

We prove that the sequence generated by (6) with the Leg-
endre function stated in Definition II.1 uniformly converges
to Ŵ (θ). In addition, by elaborating on [12, Theorem 2.1],
one additionally have convergence of the approximate bilevel
scheme to the exact one as the number of inner iterations
grows.

Theorem II.1. The sequence {W (Q)(θ)}Q∈N generated by
(6), where Φ is defined through the separable Hellinger-like
function (10)-(11), converges to the minimizer Ŵ (θ) of the
lower-level objective in Problem II.1 for any step-size 0 <
γ < ελ−1‖Aθ‖−2. In addition, if γ = ελ−1‖Aθ‖−2/2, then
for every Q ∈ N

1

2
‖W (Q)(θ)− Ŵ (θ)‖22 ≤

2λε−2‖Aθ‖2

Q
DΦ(Û(θ), U (0)),

where DΦ is the Bregman distance associated to Φ, i.e., (∀U ∈
dom Φ, ∀V ∈ int dom Φ),

DΦ(U, V ) = Φ(U)− Φ(V )− 〈∇Φ(U), U − V 〉. (18)

Moreover, the approximate Problem II.2 converges to the exact
Problem II.1 in the sense thatinfθ∈Θ U (Q)(θ) −→

Q→+∞
infθ∈Θ U(θ)

argminθ∈Θ U (Q)(θ) −→
Q→+∞

argminθ∈Θ U(θ),
(19)

where the latter is meant as set convergence, i.e.,
max{dist(θ̂, argminU) | θ̂ ∈ argminU (Q)} → 0 as Q →
+∞.

Proof. We follow the reasoning done in [12, Section A.2]
which itself relies on the results of [16], [17]. We are only
left with proving that the Legendre function φ is λ−1-strongly
convex and hence Φ too. To do so, for every E ∈ RP×T and
V ∈ RP×T , by successively making use of Lemma II.1, the
inequality Êi,j(V )Êj,i(V ) ≥ − 1

2 (Êi,j(V )2 + Êj,i(V )2), and
the fact that F [κ′](V ) and G[κ′](V ) are symmetric, one can
prove that

〈E,∇2φ(V )[E]〉F≥
∑
i6=j≤ν

(
Fi,j [κ

′](V )−Gi,j [κ′](V )
)
Êi,j(V )2

+
∑

(i,j) Fi,j [κ
′](V )Êi,j(V )2.

Finally, by distinguishing multiple cases depending on the
values of F [κ′](V ) and G[κ′](V ), we get 〈E,∇2φ(V )[E]〉F ≥
λ−1‖E‖2 which completes the proof.

E. Extension to multiple splits

Formally, one can consider all the possible splittings of the
dataset D, i.e.,

minimize
θ∈Θ

∑
I∈2D

CD\I(ŴI(θ))

where

CD\I = 1
2‖y|D\I −X|D\I · ‖2F ,

ŴI(θ) solves minimize
W∈RP×T

LI(W, θ),
.

(20)

Algorithm 1 Hypergradient computation (HyperGrad)
Require: Training set Dtrn = (Xt, yt)1≤t≤T , validation set Dval =

(X
(val)
t , y

(val)
t )1≤t≤T , number of inner iterations Q, group struc-

ture θ, initial point U (0) (optional)

Initialization
If U (0) is not provided, then let U (0)(θ) ≡ 0 ∈ RP×T×L.

Solving the lower-level problem
Let Dt = X>t Xt + εIdP for t = 1, . . . , T .
for q = 0 to Q− 1 do
W (q)(θ) =

(
D−1

t

(
X>t yt −

∑L
l=1 θl,t � u

(q)
t,l (θ)

))
1≤t≤T

V (q)(θ) =
(
∇φ(U (q)

l (θ)) + γθl �W (q)(θ)
)

1≤l≤L

U (q+1)(θ) =
(
∇φ∗

(
V

(q)
l (θ)

))
1≤l≤L

end for
W (Q)(θ) =

(
D−1

t

(
Xt
>yt −

∑L
l=1 θl � u

(Q)
t,l (θ)

))
1≤t≤T

.

Computing the hypergradient
Z(Q)(θ) =

(
D−1

t X
(val)>
t (X

(val)
t w

(Q)
t (θ)− y(val)

t )
)

1≤t≤T
,

H̃(Q) = −
(
θl � Z(Q)(θ)

)
1≤l≤L

,

H(Q) = −
(
U

(Q)
l (θ)� Z(Q)(θ)

)
1≤l≤L

.
for q = Q− 1 to 0 do
S(q) =

(
∇2φ∗(V

(q)
l (θ))[H̃

(q+1)
l ]

)
1≤l≤L

,

Z(q)(θ) =
(
D−1

t

∑L
l=1 θt,l � s

(q)
t,l

)
1≤t≤T

,

H̃(q) =
(
∇2φ(U

(q)
l (θ))[S

(q)
l ]− γθl � Z(q)(θ)

)
1≤l≤L

,

H(q) = γ
(
− U (q)

l (θ) � Z(q)(θ) + S
(q)
l �W (q)(θ)

)
1≤l≤L

+

H(q+1).
end for

Ensure: Hypergradient ∇U (Q)(θ) = H(0), dual variable U (Q)

with LI(W, θ) = 1
2‖y|I−X|IW‖22 + ε

2‖W‖
2
F +λ

∑L
l=1‖θl�

W‖tr. Here a fraction I of the data is picked to form the
training set while the rest of the points D\I is assigned to the
validation set. Note that this formulation fits Problem II.1 by
replacing Ŵ (θ) with the concatenation of parameter matrices
[ŴI(θ)]I∈2D . Hence, Theorem II.1 also encompasses the
case of multiple splittings. Interestingly, this formulation is
amenable to a stochastic optimization procedure that we will
exploit in Section III-A. Notice that this corresponds to k-fold
cross validation when I is restricted to belong to one of k
equal sized partitions of D.

III. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments support-
ing the effectiveness of the proposed method.

A. Cross-validation vs. Monte-Carlo cross-validation

We compare four variants of the proposed method reported
in Algorithm 2. If not mentioned otherwise, we set Q = 500
inner iterations, ε = 10−3 and momentum βk = 0 for k ∈ N∗.
• (CV) corresponds to the standard case of bilevel cross-

validation where the inner-level problem and outer-level
are optimized over fixed training and validation set,
respectively.
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Fig. 1. Comparison of the average covariance matrix θ>θ obtained by bilevel cross-validation (CV), Monte-Carlo cross-validation (MCCV), Monte-Carlo
cross-validation with warm restart (MCCV+WR) and alternate optimization (Alternate). It shows that (MCCV+WR) better captures the grouping of the tasks
into 3 groups while (Alternate) fails to identify the groups.

Algorithm 2 Proposed BiGMTL
Require: Dataset D, number of groups L, momentum
[β0, . . . , βK−1] ∈ [0, 1]K , number of inner iterations Q,
number of outer iterations K.

Estimate L (see Remark II.1). Set α = 1/L.
Initialize θ(0). Set U(θ) ≡ 0 ∈ RP×T×L.

for k = 0 to K − 1 do
Randomly split D into Dtrn and Dval of equal size

Computation of the hypergradient
if warm-restart of the inner-level algorithm then

(∇U (Q)(θk), U) = HyperGrad(Dtrn,Dval, Q, θ
(k), U)

else
∇U (Q)(θk) = HyperGrad(Dtrn,Dval, Q, θ

(k))
end if

Upgrade the groups
gk+1 = βkgk + (1− βk)∇U (1)(θ(k))
θ(k+1) = PΘ(θ

k − αgk+1)
end for

Ensure: Group-structure θ(K)

• (MCCV) is a variant in the same spirit of Monte-Carlo
cross-validation where, at each outer-iteration k ∈ N,
a fraction of the data is randomly selected to form the
training set and the rest of the points is assigned to the
validation set. This method can be seen as a stochastic
optimization of the problem stated in Section II-E. For
the sake of simplicity, we choose sets of equal size.

• (CV+WR) and (MCCV+WR) are a computionnally ef-
ficient alternatives to (CV) and (MCCV), respectively.
They differs from the fact that they only operate a
single inner iteration, i.e., Q = 1, but perform warm-
restart of the inner-level algorithm. We set the momentum
parameter βk = (k−1)/k for k ∈ N∗ in order to perform
moving average gradient descent.

All four methods are compared on the following toy dataset.
Synthetic dataset We consider a synthetic dataset similar
to the one in [5]. It is made of T = 30 tasks arranged in
L = 3 groups of 10 tasks each. Using a randomly generated
orthogonal matrix of dimension P ×P , we build L orthogonal

subspaces (Hl)1≤l≤L of RP each one with a random dimen-
sion rl ≥ 2, such that

∑L
l=1 rl ≤ P . In each subspace Hl, we

randomly pick 10 vectors w∗t , so to form the oracle regression
matrix W ∗ = [w∗1 · · ·w∗T ] ∈ RP×T with T =

∑L
l=1 Tl. The

training, validation and test sets are designed as follows. For
each task t, the design matrix Xt ∈ RN×P , with N = 10
and P = 20, is first drawn according to a normal distribution,
and then normalized column-wise. The corresponding output
is defined according to yt = Xtw

∗
t + εt with εt ∼ N (0, σ2

t ),
where σ2

t = σ2
0Var[Xtw

∗
t ] and σ0 = 0.1, so to have the same

signal to noise ratio for each task. Notice that, contrary [5],
here we allow for groups of tasks whose rank is picked at
random at each realization.

In our experiment, we do not assume that the true number
of groups is known. Instead, we let the methods find at most
6 groups. The regularization parameter λ is selected on a grid
λ ∈ Λ = [10−2.5, . . . , 102.5] to minimize the validation error.
Results are averaged over 10 realizations and are presented in
Table I in terms of mean test error and relative group error
‖·−θ∗‖2F /‖θ∗‖F , where θ∗ denotes the oracle group structure.
The corresponding standard deviations are reported in between
parenthesis.
Overall, we have found a slight improvement in performing
Monte-Carlo cross-validation (MCCV) over standard cross-
validation (CV). The (MCCV+WR) strategy yields a large gain
in both test error and group recover at a much lower computa-
tional cost than (MCCV). This result is additionally supported
by the visual inspection of the average task covariance matrix
θ>θ, reported in Figure 1, showing a clearer grouping into 3
groups of 10 tasks each.

In order to quantify the computational gain of the proposed
variant (CV+WR) over (CV), we have conducted the following
experiment. For a fixed λ = 0.25, we have run the two
variants on the synthetic experiment for an increasing number
of tasks. Simulations were run on an Intel R© CoreTM i7-9750H
Processor at 2.60 Ghz. The average time per iteration is
reported in Figure 2 (left plot). Unsurprisingly, (CV+WR) is
about 500 times faster than (CV). We have found empirically
that both methods converge with a number of iterations of the
same order of magnitude (≈ factor 5), hence suggesting that
the variant (CV+WR) converges 100 times faster. We have
further investigated the time requirement of (CV+WR) by
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Fig. 2. Comparison between the proposed standard bilevel approach (CV)
with Q = 500 inner iterations and its variant (CV+WR). (Left) Average
execution time per iteration. (Right) Time requirement of the entire bilevel
scheme.

Test err. (×10−2) Group err. (×10−1)
CV 3.923 (± 0.663) 6.60 (± 1.95)
CV+WR 3.769 (± 0.488) 4.27 (± 2.72)
MCCV 3.918 (± 0.707) 6.20 (± 2.90)
MCCV+WR 3.605 (± 0.536) 3.87 (± 3.09)
Alternate 4.417 (± 0.458) 13.67 (± 2.11)

TABLE I
COMPARISON BETWEEN BILEVEL CROSS-VALIDATION (CV),

MONTE-CARLO CROSS-VALIDATION (MCCV), THEIR VARIANTS WITH
WARM RESTART, NAMELY (CV+WR) AND (MCCV+WR), AS WELL AS AN

ALTERNATE OPTIMIZATION METHOD (ALTERNATE).

setting a stopping criterion based the mean norm difference
between two successive iterates θ. The tolerance is fixed to
10−4 and the corresponding execution times, averaged over
10 realizations, are reported in Figure 2 (right plot). These
indicate that (CV+WR), and thus also (MCCV+WR), are very
practical methods for solving large-scale problems. In the
following we restrict ourself to that variant denoted BiGMTL
for Bilevel Grouping for Multi-Task Learning.

B. Bilevel vs. alternate optimization

In order to further contrast our bilevel optimization proce-
dure, we have designed an alternating scheme to minimize the
lower-level objective function of Problem II.1 with respect to
W and θ, i.e.,

for k = 0, 1, . . . ,K − 1W (k+1) = minimize
W∈RP×T

L(W, θ(k))

θ(k+1) = minimize
θ∈Θ

L(W (k+1), θ)

(21)

In practice, each minimization step is replaced by an algorithm
which performs Q steps. This method is in the same spirit of
[5] which considered a trace norm square penalty instead. As
an aside, note that the latter model do not fit our proposed
bilevel framework since, to the best of our knowledge, we
cannot devise a smooth solver satisfying the assumptions of
[12, Theorem 2.1] when the trace norm is replaced by the
trace norm square.

Experiments are conducted on the previous synthetic dataset
for various values of Q, namely 1 (alternate gradient descent),
10, 50 and 500 (to mimic alternate minimization). Results are
provided in Table I and Figure 1 for the best choice of Q
and show that such alternating optimization poorly identify

the groups of tasks. Indeed, it mostly estimate either a single
group or two groups (tasks 1 to 10 and 11 to 30), thus missing
the existence of a third group. The bilevel scheme is thus key
to achieve both good test performance and group recovery.

C. Comparison with state-of-the art

We now compare the performance of the proposed method
against the following methods whose codes are available
online. All their hyperparameters are choosen thin grids to
minimize the validation error.
• (Whom) [5] is the closest work to our contribution. This

method is based on an alternating minimization procedure
which depends on a regularization parameter λ enforcing
trace norm square regularization and a smoothing param-
eter set to 10−3.

• (RMTL) The ”Robust Multi-Task Learning” model [26]
involves two regularization parameters. The first controls
the amounts trace norm penalty and thus plays the role
of our λ while the second specifies the amount of
regularization applied to detect outlier tasks.

• (GO-MTL) The ”Grouping and Overlap in Multi-Task
Learning” algorithm [7] requires to set 2 regularization
parameters and the number of latent tasks, which we
assume to be equal to our guess of number of groups
of tasks.

• (MeTaG) The ”Multi- Level Task Grouping” method [27]
aims to learn multi-level task groups by assuming that
there are H levels.

In addition, we compare to STL [1] and STL2 [3] which are
the counterpart of the proposed method and of [5], respec-
tively, when all the tasks are assumed to be related (i.e., single
group). The experiments are conducted on 10 realizations of
the synthetic dataset described in Section III-A as well on the
following benchmark datasets.
Animals with Attributes 2 [28]. This datasets consists of
37322 images of T = 50 animals classes with pre-extracted
ResNet features for each image. Each task consists of the
binary classification of one type of animal. We reduce the
feature dimensionality to 468 by using a PCA so as to retain
90% of the total variance. For each task, the data is then
normalized and split into balanced training, validation, and
test sets of 600 examples each such that there is an equal
number of samples from the positive and negative class. We
look for a partition of the animals into at most L = 10 groups.
Results are averaged over 10 splits.
Parkinson Disease [29]. This multi-task regression dataset is
obtained from biomedical voice measurements taken from 42
people with early-stage Parkinson’s disease. Each task corre-
sponds to the prediction of the symptom score of one patient
(so T = 42). The observation collects 19 continuous variables
including age, gender, time interval, and voice measurements.
We split the data in order to obtain an average of 50, 50 and
68 observations per task for the training, validation and test
sets, respectively. We look for a grouping of the tasks into
at most L = 10 groups. Results are averaged over 5 random
splits.



Synthetic (mse ×10−2) Animals (accuracy) Parkinson (mse ×10−1) MNIST (accuracy)
Proposed BiGMTL 3.65 (±0.50) 84.96% (± 0.90) 4.98 (±0.20) 95.00% (± 0.13)
STL [1] 4.41 (± 0.36) 83.55% (± 0.79) 5.01 (±0.15) 94.96% (± 0.09)
Whom [5] 5.29 (± 0.40) 84.72% (± 0.65) 5.03 (±0.16) 95.02% (± 0.11)
STL2 [3] 4.23 (± 0.30) 84.06% (± 0.82) 5.11 (±0.12) 94.76% (± 0.16)
RMTL [26] 4.23 (± 0.35) 74.04% (± 4.28) 5.08 (±0.19) 94.72% (± 0.10)
GO-MTL [7] 6.11 (± 0.70) 80.51% (± 0.73) 5.95 (±0.17) 94.96% (± 0.13)
MeTaG [27] 7.33 (± 0.40) 84.35% (± 0.80) 5.03 (±0.18) 95.01% (± 0.09)

TABLE II
RESULTS ON BENCHMARK DATA SETS. WE REPORT THE AVERAGE OVER MULTIPLE SPLITS AND THE STANDARD DEVIATION IN PARENTHESIS.

Proposed BiGMTL Whom GO-MTL
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Fig. 3. Mean group covariance matrix θ>θ on the synthetic experiment. Only the proposed method manages to clearly estimate the three groups of tasks.
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Fig. 4. Mean group covariance matrix θ>θ estimated on the Animals with Attributes 2 dataset.

MNIST digits [30]. This dataset is made of handwritten
digits represented by 28 × 28 variables. The images are
preprocessed with PCA to reduce the dimensionality to 64.
Each task corresponds to the binary classification of one digit.
The training and validation sets are made of 500 samples
respectively, while the test set is made of 1000 samples. We
look for a grouping into at most L = 10 groups. Results are
averaged over 10 splits.

Results are reported in Table II either in terms of mean
test error or mean test accuracy depending on the type of
problem at hand. Overall, the proposed (BiGMTL) methods
yields an improvement over the state-of-the-art methods while
no improvement was found on the MNIST dataset. This
result has to be contrasted by the fact the MNIST dataset
only involves very few tasks. We additionnally report in
Figure 3 and Figure 4 the average group covariance matrix

θ>θ estimated by some of the methods on the synthetic dataset
and Animals with Attributes 2 dataset, respectively. Notice
that while (BiGMTL) and (Whom) explicitly compute θ, (GO-
MTL) implicitly gets the group structure θ through the sparsity
patterns of the estimated latent task matrix. A visual inspection
shows that the covariance matrix of the proposed method is
more contrasted thus indicating that the groups found are more
robust to the choice of train-validation splitting. For the sake
of illustration purposes, we have reported in Figure 5 some
of the most recurrent groupings of animals estimated by the
proposed method. We believe that most of them make sense.

Note that in principle it is likely that more flexible models
such as [8] which yields many hyperparameters might yield
better performance. However, this is beyond the scope of the
paper as this would require very tedious grids searches. On
the contrary the proposed method only requires validation of



Fig. 5. Illustration of some of the most recurrent groupings of animals (top
and bottom) obtained by the proposed method.

a single hyperparameter, thus making it more practical for
larger scale settings as long as one can efficiently perform 2
SVDs per iteration. A MATLAB toolbox will be made publicly
available.

IV. CONCLUSION

We addressed the simultaneous learning of groups of related
tasks and their regression parameters. We framed this problem
within the framework of (approximate) bilevel optimization
outlined in [13], [12]. A key novelty of our approach is
to devise an efficient algorithm to compute the gradient of
the upper level objective, exploiting recent results on the
derivative of generalized matrix functions. We have provided
experimental results that indicate the advantage of working
with a variable number of groups over standard trace norm
regularization and previous state-of-the-art approaches. In par-
ticular, we observed that the groups found by our method
are robust to the choice of train-validation splitting. This
added to its low computational cost suggest that it would be
a promising candidate for interpretability purposes on large
scale experiments. A valuable direction of future research is
to provide learning bounds for the proposed method.
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