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Abstract—The ability to handle large scale variations is crucial
for many real world visual tasks. A straightforward approach
for handling scale in a deep network is to process an image at
several scales simultaneously in a set of scale channels. Scale
invariance can then, in principle, be achieved by using weight
sharing between the scale channels together with max or average
pooling over the outputs from the scale channels. The ability of
such scale channel networks to generalise to scales not present
in the training set over significant scale ranges has, however, not
previously been explored. We, therefore, present a theoretical
analysis of invariance and covariance properties of scale channel
networks and perform an experimental evaluation of the ability
of different types of scale channel networks to generalise to
previously unseen scales. We identify limitations of previous
approaches and propose a new type of foveated scale channel
architecture, where the scale channels process increasingly larger
parts of the image with decreasing resolution. Our proposed
FovMax and FovAvg networks perform almost identically over a
scale range of 8, also when training on single scale training data,
and do also give improvements in the small sample regime.

I. INTRODUCTION

Scaling transformations are as pervasive in natural image
data as translations. In any natural scene, the size of the
projection of an object on the retina or a digital sensor
varies continuously with the distance between the object and
the observer. Convolutional neural networks (CNNs) already
encode structural assumptions about translation invariance and
locality. A vanilla CNN is, however, not designed for multi-
scale processing, since the fixed size of the filters together with
the depth and max-pooling strategy applied implies a preferred
scale. Encoding structural priors about visual transformations,
including scale or affine invariance, is an integrated part of
a range of successful classical computer vision approaches.
There is also a growing body of work on invariant CNNs,
especially concerning invariance to 2D/3D rotations and flips
(see e.g. [[1]-[3]). The possibilities for CNNs to generalise
to previously unseen scales have, however, not been well
explored. We propose that structural assumptions about scale
could, similarly to translation covariance, be a useful prior
in convolutional neural networks. Scale-invariant CNNs could
enable both multi-scale processing and predictable behaviour
when encountering objects at novel scales, without the need
to fully span all possible scales in the training set.
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One of the simplest CNN architectures used for covariant
and invariant image processing is a channel network (also
referred to as siamese network) [3]. In such an architecture,
transformed copies of the input image are processed in parallel
by different “channels” (subnetworks) corresponding to a set
of image transformations. If combined with weight sharing
and max or average pooling over the output from the chan-
nels, this approach can enable invariant recognition for finite
transformation groups.

An invariant scale channel network is a natural extension of
invariant channel networks for rotations [3]. It can equivalently
be seen as a way of extending ideas underlying the classical
scale-space methodology [4]|-[11] to deep learning. It should
be noted that a channel architecture for scale-invariant recogni-
tion poses additional challenges compared to recognition over
finite groups. First, scaling transformations are, as opposed to
2D or 3D rotations, not a compact group (intuitively, there
is no smallest or largest scale). Second, scaling implies a
change in image size and resolution for discrete image data.
The subject of this paper is to investigate the possibility for
CNNSs to generalise to previously unseen scales by means of
a scale channel architecture.

A. Contribution and novelty
The key contributions of our work are as follows:

e We perform a theoretical analysis of invariance and
covariance properties of scale channel networks.

e We present a new family of invariant foveated scale
channel networks.

« We evaluate different types of scale channel networks and
a standard CNN on the task of scale generalisation over
wide scale ranges, using a new variation of the MNIST
dataset with large scale variations.

o We demonstrate inherent limitations of previous scale
channel approaches.

o We show that our proposed foveated networks can enable
very good generalisation to unseen scales and improve-
ments in the small sample regime.

This is, to our knowledge, the first study to evaluate and
demonstrate means for CNNs to generalise to unseen scales
over significant scale ranges.

B. Related work

In classical scale-space theory [4]-[11], a multi-scale rep-
resentation of an input image is created by convolving the



image with a set of rescaled Gaussian kernels and Gaussian
derivative filters, which are then often combined in non-linear
ways. The scale channel networks described in this paper can
be seen as an extension of this philosophy of processing an
image at all scales simultaneously, but using deep non-linear
feature extractors learned from data.

CNNs can give impressive performance but they are sen-
sitive to scale variations. Performance degrades for scales
not present in the training set [[12]-[14]], different network
structure is optimal for small vs large images [14] and it is
possible to construct adversarial examples by means of small
translations rotations and scalings [12], [[13[]. State-of-the-art
CNN based object detection approaches all employ different
mechanisms to deal with scale variability, e.g. branching off
classifiers at different depths [15], learning to transform the
input or the filters [16], [17], or using different types of
image pyramids [18]-[20]]. The goal of these approaches has,
however, not been to generalise to previously unseen scales
and they lack the structure necessary for true scale invariance.

Examples of handcrafted scale invariant hierarchical de-
scriptors are [21], [22]. We are, here, interested in combining
scale invariance with learning. There exist some previous
work aimed explicitly at scale invariant recognition in CNNs
[23]-[26]. These approaches have, however, either not been
evaluated for the task of generalisation to scales not present
in the training set [24]-]26] or only across a very limited
scale range [23]]. Previous scale channel networks exist, but
are explicitly designed for multi-scale processing [27], [28]
rather than scale invariance or have not been evaluated with
regard to their ability to generalise to unseen scales over any
significant scale range [18]], [23].

II. THEORY

In this section, we will introduce a mathematical framework
for scale channel networks based on a continuous model of
the image space. This model enables straightforward analysis
of the covariance and invariance properties of the channel net-
works that are later approximated in a discrete implementation.
We, here, generalise previous analysis of invariance properties
of channel networks [3]] to scale channel networks. We fur-
ther analyse covariance properties and additional options for
aggregating information across transformation channels.

A. Images and image transformations

We consider images f : RY — R that are measurable
functions in L., (R") and denote this space of images as V.
A group of image transformations corresponding to a group G
is a family of image transformations 7, (g € G) with a group
structure. We denote the combination of two group elements
g,h € G by gh and the cardinality of G as |G|. Formally,
a group G induces an action on functions by acting on the
underlying space on which the function is defined (here the
image domain). We are here interested in the group of uniform
scalings around zy with the group action

(Ssaf)(@) = f(x), 2" =Si(x —m0) + 20, (1)

where S, = diag(s). For simplicity, we often assume zo = 0
and denote S, as Ss corresponding to

(Sof)(x) = f(S, ' x) = fo(x). )

We will also consider the translation group with the action
(where 6 € RY)

(Ds f)(&') = (=),

B. Invariance and covariance

' =x+4. 3)

Consider a general feature extractor A : V — K that maps
an image f € V to a feature representation y € K. In our
continuous model, K will typically correspond to a set of
M feature maps (functions) so that Af € VM. This is a
continuous analogue of a discrete convolutional feature map
with M features.

A feature extractor A is covariant to a transformation group
G (formally to the group action) if there exists an input
independent transformation 7; that can align the feature maps
of a transformed image with those of the original image

A(Tyf) = Tg(Af) 4)

forall g € G and f € V. Thus, for a covariant feature extractor
it is possible to predict the feature maps of a transformed
image from the feature maps of the original image.

A feature extractor A is invariant to a transformation group
G if the feature representation of a transformed image is equal
to the feature representation of the original image

A(Tyf) = A(S) (5)
for all g € G and f € V. Invariance is thus a special case of
covariance where 7, is the identity transformation.

C. Continuous model of a CNN

Let ¢ : V — VMr denote a continuous CNN with k layers
and M, feature channels in layer i. Let () represent the
transformation between layers ¢ — 1 and ¢ such that

(0D f)(x,c) = (011 ... 000 fY(x,c),  (6)

where ¢ € {1,2,... M} denotes the feature channel and ¢ =
#®). We model the transformation #(*) between two adjacent
layers ¢~V f and ¢")f as a convolution followed by the
addition of a bias term b; . € R and the application of a
pointwise non-linearity o; : R — R:

(@ ) (x,¢)

M; 1

(i=1) _ (1) _
Dl R AT

m=1

= 0;

)

where g,(ﬁ)_yc € Li(RY) denotes the convolution kernel that
propagates information from feature channel m in layer ¢ — 1
to output feature channel c in layer . A final fully connected
classification layer with compact support can also be mod-
elled as a convolution combined with a non-linearity oy, that
represents a softmax operation over the feature channels.



Fig. 1: Foveated scale channel networks. a) Foveated scale channel network that process an image of the digit 2. Since
each scale channel has a fixed size receptive field/support region in the scale channels, they will together process input regions
corresponding to varying sizes in the original image (circles of corresponding colors). b) This corresponds to a type of foveated
processing, where the center of the image is processed with high resolution, which works well to detect small objects, while
larger regions are processed using gradually reduced resolution, which enables detection of larger objects. c) There is a close
similarity between this model and the foveal scale space model [29], which was motivated by a combination of regular scale
space axioms with a complementary assumption of a uniform limited processing capacity at all scales.

D. Scale channel networks

The key idea underlying channel networks is to process
transformed copies of an input image in parallel, in a set of
network ‘“channels” (subnetworks) with shared weights. For
finite transformation groups, such as discrete rotations, using
one channel corresponding to each group element and applying
max pooling over the channel dimension can give an invariant
output code. For continuous but compact groups, invariance
can instead be achieved for a discrete subgroup.

The scaling group does, however, imply additional chal-
lenges, since it is neither finite nor compact. The key question
that we address here, is whether a scale channel network can
still support invariant recognition.

We will define a multi-column scale channel network A :
V' — VMk for the group of scaling transformations S by using
a single base network ¢ : V' — VM to define a set of scale
channels {¢s}ses

(¢sf)(x’c) = (¢sz)(x?c) = ((bfs)(x’c)’ ®)
where each channel thus applies exactly the same operation
to a scaled copy of the input image (see Figure [Th). We will
denote the mapping from the input image to the scale channel
feature maps at depth i as T'(9) : V — Y MilS|

(T f)(@,e,8) = (8 ) (@, 0) = (VS8 f)(w,0). (9)
A scale channel network invariant to the continuous group
of uniform scaling transformations S = {s € R;} can be
constructed using an infinite set of scale channels {¢s}scs-
The following analysis also holds for a set of scale channels
corresponding to a discrete subgroup of the group of uniform
scaling transformations such that S = {~*|i € Z}, v > 1.

The final output A f from the scale channel network is an
aggregation across the scale dimension of the last layer scale

channel feature maps. In our theoretical treatment, we combine
the output of the scale channels by the supremum

(Asupf) (2, ¢) = sup [(¢sf)(z,c,5)] . (10)
S

Other permutation invariant operators such as averaging oper-
ations, could also be used. For this construction, the network
output will be invariant to rescalings around xy = 0 for all
x such that (Agupf)(z,¢) = (AsupSsf)(z,¢) (global scale
invariance). This architecture is appropriate when characteris-
ing a single centered object that might vary in scale and it is
the main architecture we explore in this paper. Alternatively,
one may instead pool over corresponding image points in the
original image by operations of the form

(A )(z,¢) = sup{ (s f)(Ssz, )} (11)

se
This descriptor instead has the invariance property
(AL N (@o,0) = (A Ss.00f) (0, €) for all o, ie.

when scaling around an arbitrary image point, the output at
that specific point does not change (local scale invariance).
This property makes it more suitable to describe scenes with
multiple objects.

1) Scale covariance: Consider a scale channel network
A (I0) that expands the input over the group of uniform
scaling transformations S. We can relate the feature map
representation T'(Y) for a scaled image copy S;f for t € S
and its original f in terms of operator notation as

(COS, f)(x,c,s) = (6 Sif) (. c)
= 0V S, S f)(@,c) = (8 Souf)(w, )
= (08 f)(@,c) = (D f)(x,c,st),

where we have used the definitions (8) and (9) together with
the fact that S is a group. A scaling of an image thus only
results in a multiplicative shift in the scale dimension of the
feature maps. A more general and more rigorous proof using

12)



an integral representation of a scale channel network is given
in Section [IEE

2) Scale invariance: Consider the scale channel network
Asup @) that selects the supremum over scales. We will show
that Agyp is scale invariant i.e. that

(Asup Stf)(xa C) = (Asupf)(x7 c).

First, (12) gives {6 (Sif)}ses = {0} ()}ses. Then, we
note that {st}ses = St = S. This holds both in the case
when S = R, and in the case when S = {y!|i € Z}. Thus,
we have

13)

(DS, 1) (@, ) bses = {8 F) (@, ¢)}ses

= {60 f)(@,0)}ses, (14)

i.e. the set of outputs from the scale channels for a transformed
image is equal to the set of outputs from the scale channels for
its original image. For any permutation invariant aggregation
operator, such as the supremum, we have that

(Asup So f) (x,¢) = ggg{wi’?f)(x, )}

= Slelg){(qﬁgk)f)(x,c)} = (Asupf)(xv 0)7 (15)

and, thus, A is invariant to uniform rescalings.

E. Proof of scale and translation covariance using an integral
representation of a scale channel network

We, here, prove the transformation property

TR (2, s,¢) = (TDf) (2 + SsSixy — Sixa, st,c)  (16)
of the scale channel feature maps under a more general
combined scaling transformation and translation of the form

hz') = f(xz) for

' = Si(x —x1) + 1o a7

corresponding to

h(z) = f(S; H(z — z2) +21) (18)
using an integral representation of the deep network. In the
special case when z; = x2 = =z, this corresponds to a
uniform scaling transformation around z (i.e. Sy, ). With
1 = xg and xo = xo + I, this corresponds to a scaling
transformation around x( followed by a translation Ds.
Consider a deep network ¢(?) @) and assume the integral
representation (7)), where we for simplicity of notation incorpo-
rate the offsets b; . into the non-linearities o; .. By expanding
the integral representation of the rescaled image h (I8), we
have that that the feature representation in the scale channel
network is given by (with My = 1 for a scalar input image):

(PDR)(z, 5, ¢) = {definition ©)} = (k) (z,c)

= {definition ®)} = (¢V hy)(z, ¢) = {equation ()}
= (9(")9(1'*1) 0P R (x, c) = {equation @}

= 0Oj,c § / 0i—1,m; § / .
{ERN &i—1ERN

m;_1=1

My
O1,ma (g; /&ERN he(x —& — &1 — - — &) ¥

gml,mg (51) dfl grrzh 11),m1 (gl 1) dgl 1

gt (&) dg; (19)

Under the scaling transformation (I7)), the part of the integrand

hs(x — & — &1 — -+~ — &) transforms as follows:
he(x —& — &1 — - — &)
= {hs(z) = h(S; 'x) according to definition (2)}

=h(S; M @ —&— &1 — - — &)
= {h(x) = f(S; "(x — x2) + 21) according to }
=[S ST (@ =& — &t — -+ — &) — Sewa + S,Sim1)
= {S:S; = S, for scaling transformations }
= f(S5M (x4 SsSpwr — Sswa — & — &1 — -+ — &1))
= {fs(z) = f(S;'2) according to definition }
= fst(® + SsSiw1 — Ssx2 — & — i1 — - = &1). (20)

Inserting this transformed integrand into the integral represen-
tation (I9) gives

(W) (2, s,¢) =
M; 1

= 0i,c E / Oi—1,m; E /
my—=1" & ERY my_1=1"&i-1ERY
Mo
O1,ms, E / fst(x + SsStx1 — Sswa—
mi=1 £1ERN
§i—&ic1— =&)X

97(r2,m2 (51) dgl .97(nZ 1,m4 (51 1) dg? 1

9% (&) dg; | 2y



which we recognize as

(F(i)h)(l‘ s,¢)
190D 0POW fop) (2 + 5. Sy —
o fst)( + 84S — Ssxa,C)
(Z)f)(a?JrS Sixq — Ssxa, €)

PO f)(x + 838wy — Sea, st, ¢)

551'2, C)

= (0"
=(
=(¢
= ( (22)

and which proves the result. Note that for a pure translation
(S =1, x1 = xg and x5 = x¢ + J) this gives

(TDDs f)(z,c,5) = (D f)(x — 8,6, 5, c).

Thus, translation covariance is preserved in the scale channel
network but the magnitude of the spatial shift in the feature
maps will depend on the scale channel.

(23)

F. Relations to scale-space theory

In classical scale-space theory [4]-[11], a multi-scale rep-
resentation of an input image is created by convolving the
image with a set of rescaled and normalised Gaussian kernels.
The scale channel networks described in this paper are based
on a similar philosophy of processing an image at all scales
simultaneously, although the input image, as opposed to the
filter, is expanded over scales. For continuous image data, a
representation computed by applying a fixed size filter to a
set of rescaled input images is computationally equivalent to
applying a set of rescaled and scale-normalised filters to a
fixed size input (as done when computing a Gaussian scale-
space representation). The two representations are related
through a spatial rescaling and an inverse mapping of the
scale parameter s — s~! (see Appendix . For discrete
image data, a similar relation holds approximately, provided
that the discrete rescaling operation is a sufficiently good
approximation of the continuous rescaling operation.

A key difference compared to classical scale-space represen-
tations is that non-linear feature extractors learned from data
are used as opposed to the mathematically derived Gaussian
derivatives and differential invariants. The outputs from the
scale channels do, however, still constitute a (non-linear)
scale-covariant multi-scale representation, which implies that
e.g. maxima over scale are preserved, although shifted to a
different scale channel, when an input image is rescaled.

The use of supremum, or for a discrete set of scale channels,
max-pooling, (see further Section over the outputs of the
scale channels is structurally similar to classical methods for
scale selection, which detect maxima over scale of scale-
normalised filter responses [30], [31]. Here, max pooling is,
however, done over more complex feature responses, already
adapted to detect specific objects, while classical scale se-
lection is performed in a class-agnostic way based on low-
level features. This makes max-pooling in the scale channel
networks also closely related to more specialized classical
methods that detect maxima from the scales at which a super-
vised classifier delivers class labels with the highest posterior
[32]], [33]]. Average pooling over the outputs of a discrete set of

scale channels (Section is structurally similar to methods
for scale selection that are based on weighted averages of
filter responses at different scales [[34]], [35]. Although there is
no guarantee that the learned non-linear features will, indeed,
take maxima for relevant scales, one might expect training to
promote this, since a failure to do so should be detrimental to
the classification performance of these networks. In case the
learned features correspond to partial Gaussian derivatives of
some orders, then the application of these filters to all the scale
channels is, in fact, computationally equivalent to applying
corresponding scale-normalised Gaussian derivatives to the
original image (see Appendix [B).

III. DISCRETE SCALE CHANNEL NETWORKS

Discrete scale channel networks are implemented by using a
standard discrete CNN as the base network ¢. For practical ap-
plications, it is also necessary to restrict the network to include
a finite number of scale channels S = {v'} g, . <i<r,...
The input image f : Z2 — R is assumed to be of finite support.
The outputs from the scale channels are, here, aggregated
using e.g. max pooling

(Amaxf)(z, ) = meax{(% )z, c,8)} (24)
or average pooling
(Aavgf)(l', C) = avg{((bsf)(zv & 5)} (25)

ses

We will also implement discrete scale channel networks that
concatenate the outputs from the scale channels followed by
an additional transformation ¢ : RSl — RM: that mixes
the information from the different channels

(Aconcf) (‘T, C)
= ¢ (160, 0), (Bea ) (@,) -+ (65, ), )]) . 26)

Acone does not have any theoretical guarantees of invariance,
but since scale concatenation of outputs from the scale chan-
nels has been previously used with the explicit aim of scale
invariant recognition [23]], we will evaluate it also here.

A. Foveated processing

A standard convolutional neural network ¢ has a finite
support region € in the input. When rescaling an input image
of fixed size/finite support in the scale channels, it is necessary
to decide how to process the resulting images of varying
size using a feature extractor with fixed support. One option
is to process regions of constant size in the scale channels
corresponding to regions of different sizes in the input image.
This results in foveated image operations, where a smaller
region around the center of the input image is processed
with high resolution, while gradually larger regions of the
input image are processed with gradually reduced resolution
(see Figure [Ib-c). We will refer to the foveated network
architectures Apax, Aavg and Acone as the FovMax network,
the FovAvg network and the FovConc network respectively.



B. Approximation of scale invariance

Foveated processing combined with max or average pooling
will give an approximation of the scale invariance in the
continuous model (Section [I[I-D2) over a limited scale range.
The numerical scale warpings of the input images in the scale
channels approximate continuous scaling transformations. A
discrete set of scale channels will approximate the represen-
tation for a continuous scale parameter. A possible issue is
problems at the scale boundaries of a finite scale interval.
Boundary effects can, however, be mitigated if the network
learns to suppress responses for both very zoomed in and
very zoomed out objects. If including a large enough number
of scale channels and training the network from scratch, this
is, in fact, a likely scenario, since the network will otherwise
classify based on use of object views that will hardly provide
useful information.

C. Sliding window processing in the scale channels

An alternative option for dealing with varying image sizes is
to, in each scale channel, process the entire rescaled image by
applying the base network in a sliding window manner. The
output from the scale channels can then be combined by max
(or average) pooling over space followed by max (or average)
pooling over scales

(Asw,maxf)(c) = max max{(¢s f)(z, ¢, 9)},

27
sES xz€Q ( )

where 0y = {sz|r € Q}. We will here only evaluate the
architecture using max pooling, which is structurally similar to
the popular multi-scale OverFeat detector [18]]. This network
will be referred to as the SWMax network. For this scale
channel network to support invariance, it is not enough that
boundary effects resulting from using a finite number of scale
channels are mitigated. When processing regions in the scale
channels corresponding to only a single region in the input
image, new structures can appear (or disappear) in this region
for a rescaled version of the original image. With a linear
approach this might be expected to not cause problems. For a
deep neural network, however, there is no guarantee that there
cannot be strong erroneous responses for e.g. a partial view of
a zoomed in object. We are, here, interested in studying the
effects this has on generalisation in the deep learning context.

IV. EXPERIMENTS
A. The MNIST Large Scale dataset

To evaluate the ability of standard CNNs and scale channel
networks to generalise to unseen scales over a wide scale
range, we have created a new version of the standard MNIST
dataset [36]. This new dataset, MNIST Large Scale, which is
available online [37]], is composed of images of size 112 x 112
with scale variations of a factor 16 for scale factors s € [0.5, §]
relative to the original MNIST dataset. The train and test sets
for the different scale factors are created by resampling the
original MNIST training and test sets using bicubic interpo-
lation followed by smoothing and soft thresholding to reduce
discretization effects. Note that for scale factors > 4, the full

digit might not be visible in the image. These scale values
are nonetheless included to study the limits of generalisation.
More details concerning this dataset are given in Appendix

B. Network and training details

The standard CNN is composed of 8 conv-batchnorm-ReLLU
blocks followed by a fully connected layer and a final softmax
layer. The number of features/filters in each layer is 16-16-16-
16-32-32-32-32-100-10. A stride of 2 is used in convolutional
layers 2, 4, 6 and 8. The reason for using a quite deep network
is to avoid a network structure that is heavily biased towards
recognising either small or large digits.

The FovMax, FovAvg, FovConc and SWMa scale channel
networks are constructed using scale channels with 4 conv-
batchnorm-ReLU blocks followed by a fully connected layer
and a final softmax layer. Rescaling within the scale channels
is done with bilinear interpolation and applying border padding
or cropping as needed. Batchnorm layers are shared across the
scale channels. The number of features/filters in each layer is
16-16-32-32-100-10. A stride of 2 is used in convolutional
layers 2 and 4. All scale channel architectures have around
70 000 parameters, while the baseline CNN has around 90 000
parameters.

All networks are trained with 50 000 training samples from
the MNIST Large Scale dataset for 20 epochs using the Adam
optimiser. During training, 15 % dropout is applied to the
first fully connected layer. The learning rate starts at 3e~3
and decays with a factor 1/e every second epoch towards a
minimum learning rate of 5¢~5. Results are reported for the
MNIST Large Scale test set (10000 samples) as the average
of training each network using three different random seeds.
The remaining 10000 samples constitute a validation set.
Numerical performance scores for Figures 2-5 are given in

Appendix [D]

C. Generalisation to unseen scales

We, first, evaluate the ability of the standard CNN and the
different scale channel networks to generalise to previously
unseen scales. We train each network on each of the scales 1,
2, and 4 and evaluate the performance on the test set for scale
factors between 1/2 and 8. The FovMax, FovAvg and SWMax
networks have 17 scale channels spanning the scale range
[%, 8]. The FovConc network has 3 scale channels spanning the
scale range [1, 4] The results are presented in Figure [2| We,
first, note that all networks achieve similar top performance
for the scales seen during training. There are, however, large
differences in the abilities of the networks to generalise to
unseen scales:

'We noted that batchnorm impairs performance when training the SWMax
network from scratch. We believe this is because the sliding window approach
implies in a change in the feature distribution when processing data of different
scales. We, therefore, train the SWMax network without batchnorm.

>The FovConc network performs considerably worse when including too
many scale channels or spanning a too large scale range. Since we are more
interested in the best case rather than the worst case scenario, we, here, picked
the best network out of a large range of configurations.
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Fig. 2: Generalisation ability to unseen scales for a standard CNN and the different scale channel network architectures. The
networks are trained on digits of scale 1 (trl), scale 2 (tr2) or scale 4 (tr4) and evaluated for varying rescalings of the test set.
We note that the CNN (a) and the FovConc network (b) have poor generalisation ability to unseen scales, while the FovMax
and FovAvg networks (c) generalise extremely well. The SWMax network (d) generalises considerably better than a standard
CNN, but there is some drop in performance for scales not seen during training.

1) Standard CNN: The standard CNN shows limited gener-
alisation ability to unseen scales with a large drop in accuracy
for scale variations larger than a factor \/2. This illustrates that,
while the network can recognise digits of all sizes, a vanilla
CNN includes no structural prior to promote scale invariance.

2) The FovConc network: The generalisation ability of the
FovConc network is quite similar to that of the standard
CNN, sometimes slightly worse. The reason for limited gen-
eralisation is that although the scale channels share weights,
when simply concatenating the outputs from the scale channels
there is no structural constraint to support invariance. This is
consistent with our observation that spanning a too large scale
range or using too many channels degrades generalisation for
the FovConc network. For scales not present during training,
there is, simply, no useful training signal to learn the correct
weights in the fully connected layers combining the scale
channel outputs. Note that our results are not contradictory to
those previously reported for a similar network structure [23],
since they train on data that contain natural scale variations
and test over a quite narrow scale range. What we do show,

however, is that this network structure is not scale invariant.
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Fig. 3: Varying the sampling density of the scale channels.
FovMax and FovAvg networks spanning the scale range [%, 8]
are trained with varying spacing between the scale channels
(2, 21/2 and 21/%). All networks are trained on scale 2. There
is a significant increase in the performance when reducing the
spacing between the scale channels from 2 to 2'/2 while the
effect of a further reduction to 2'/* is small.

3) The FovAvg and FovMax networks: We note that the
FovMax and FovAvg networks generalise very well, indepen-
dently of which scale the network is trained on. The maximum



difference in performance in the scale range [1,4] between
training on scale 1, scale 2 or scale 4 is less than 0.2 percentage
points for these network architectures. Importantly, this shows
that, if including a large enough number of scale channels
and training the networks from scratch, boundary effects at
the scale boundaries do not prohibit invariant recognition. For
the FovAvg and FovMax networks, we also investigate how
densely it is necessary to sample the scale channels for good
performance. The result is presented in Figure 3] Accuracy is
considerably improved when decreasing the distance between
consecutive channels from a factor 2 (5 channels) to a factor
of 2'/2 (9 channels), while a further reduction to 2'/4 (17
channels) provide very small additional benefits.

4) The SWMax network: We note that the SWMax network
generalises considerably better than a standard CNN, but
there is some drop in performance for scales not seen during
training. We believe that the main reason for this is, here, that
since all scale channels are processing a fixed sized region in
the input image (as opposed to for foveated processing), new
structures might leave or enter this region when an image is
rescaled. This might lead to erroneous high responses for un-
familiar views (Section [[TI-C). We also noted that the SWMax
networks are harder to train (more sensitive to learning rate
etc) compared to the foveated network architectures as well as
more computationally expensive. Thus, while the FovMax and
FovAvg networks still are easy to train and the performance is
not degraded when spanning a large scale range, the SWMax
network seems to work best for spanning a more limited scale
range where fewer scale channels are needed (as was indeed
the use case in [18])).

D. Multiscale vs. single scale training

All the scale channel architectures support multiscale pro-
cessing although they might not support scale invariance.
We, here, test the performance of the different scale channel
networks when training on multiscale training data. For the
FovMax, FovAvg and FovSW network, the same scale channel
setup (17 channels) is used as for single scale training. For the
FovConc network, 5 scale channels spanning the scale range
[%, 8] are used, since this setup gives better results compared
to the previous setup with 3 channels.

The results are presented in Figure f] The difference be-
tween training on multiscale and single scale data is striking
for the standard CNN and the FovConc network. It can,
however, be noted that the FovConc network does generalise
slightly better than a standard CNN outside the scale range it is
trained on. For the SWMax network, including multiscale data
improves generalisation somewhat for larger scales but impairs
generalisation somewhat for smaller scales. The difference in
generalisation ability between training on a single scale or
multiscale image data is almost indiscernible for the FovMax
and FovAvg networks.

E. Generalisation from fewer training samples

Another scenario of interest is when the training data does
span a relevant range of scales, but there are few training

samples. Theory would predict a correlation between the
performance in this scenario and the ability to generalise to
unseen scales. To test this prediction, we trained the standard
CNN and the different scale channel networks on multi scale
training data spanning the scale range [1,4], while gradually
reducing the number of samples in the training set. Here, the
same scale channel setup with 17 channels spanning the scale
range (1, 8] is used for all the architectures. The results are pre-
sented in Figure [5] We note that the FovConc network shows
some improvement over the standard CNN. The SWMax
network, on the other hand, does not, and we hypothesise that
when using fewer samples, the problem with partial views of
objects (see Section might be more severe. Note that
the way the OverFeat detector is used is the original study
[18], is more similar to our single scale training scenario,
since they use base networks pretrained on ImageNet. The
FovAvg and FovMax networks show the highest robustness
also in this scenario. This illustrates that these networks can
give improvements when multiscale training data is available
but there are few training samples.

V. SUMMARY AND CONCLUSIONS

We have presented a theoretical analysis of covariance and
invariance properties of continuous scale channel networks.
Moreover, we performed an experimental evaluation of differ-
ent types of discrete scale channel networks on the task of gen-
eralising to unseen scales over wide scale ranges. The tested
networks include a new family of scale channel networks that
combine foveated processing with max or average pooling
over the scale channels (the FovMax and FovAvg networks).
The experimental evaluation illustrates the strong invariance
properties of these networks in practice and limitations of
previous approaches and vanilla CNNs. We believe that our
proposed foveated scale channel networks will prove useful
in situations where a simple approach that can generalise to
unseen scales or learn from small datasets with large scale
variations is needed. This type of foveated scale invariant
processing could also be included as subparts in more complex
frameworks dealing with large scale variations.

A more overarching aim of this study have been to test
the limits of CNNs to generalise to unseen scales over a
wide scale range. The key take home message is a proof
of concept that such generalisation is possible if including
structural assumptions about scale in the network design.

APPENDIX

A. Relations between scale channel networks and scale-space
theory

We, here, discuss in more detail the relationship between the
representations computed in a (continuous) scale channel net-
work and the representations computed within classical scale-
space theory. Although a multi-layer scale channel network
will compute more complex non-linear features, it is enlight-
ening to investigate whether the network could learn to express
operations similar to those used within the classical scale-
space paradigm. This will increase our confidence that scale
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Fig. 4: Multiscale image data. All networks are trained on digits in the scale range [1,4] (tr1-4) and evaluated for varying scale
factors in the test set. The difference in generalisation ability between training on multiscale and single scale data (dotted lines)
is striking for both the CNN and the FovConc network. For the FovMax and FovAvg networks, the difference is negligible
between multiscale and single scale training, which illustrates the strong invariance properties of these networks.
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Fig. 5: Training with smaller training sets with large scale
variations. All network architectures are evaluated on their
ability to classify data with large scale variations while re-
ducing the number of training samples. Both the training and
test set here span the scale range [1,4]. The FovAvg network
shows the highest robustness when decreasing the number of
training samples followed by the FovMax network.

channel networks could be expected to work well together
with e.g. max-pooling over scales.

1) Preliminaries: In classical scale-space theory, a scale-
space representation of an input image f : RN — R is defined
as [7]:

Laio)= [ fa-ugtuoydn, @)
ueRN
where g : RY x Rt — R denotes the (rotationally symmetric)
Gaussian kernel
1 —x?
T;0) = ————e27 (29

g(x;0) (Vzro ) )
and we use o as the the scale parameter compared to the more
commonly used ¢ = o2, From this representation, a family of
Gaussian derivatives can be computed as

Ly (2;0) = Ope L(;0) = ((Ozag (5 0)) * f(-)) (@),

where n € 7Z and we use multi index notation o =
(a1, --an) such that Opa = O, a1---0, .~. The scale-
covariance property of the scale-space representation also

(30)

transfers to such Gaussian derivatives, and these visual primi-
tives have been widely used within the classical computer vi-
sion paradigm to construct scale-covariant and scale-invariant
feature detectors and image descriptors [34], [38]-[46]. One
way to achieve scale invariance is to first perform scale
selection and then e.g. extract features at the identified scale.
Scale selection can be done by comparing the magnitudes of
~v-normalised derivatives [30]:

a&‘)‘ = ar“,’yfnorm = t|a['y/2 Opa = 0—|0‘"Y Opa (3D
with v € [0,1] as a free parameter and |o| = g + -+ +
an. Such derivatives are guaranteed to take maxima at scales
corresponding to the relevant physical scales of objects in the
image. We will here consider the maximally scale-invariant
case with vy =1

Do = 119,50 (32)
and show that scale channel networks will compute something
similar to such scale-normalised derivatives. First, we will,
however, consider the relationship between multi-scale repre-
sentations computed by applying a set of rescaled kernels to a
single scale image and representations computed by applying
the same kernel to a set of rescaled images.

2) Scaling the image vs scaling the filter: Since the scale-
space representation can be computed using a single convo-
lutional layer we, here, compare with a single layer scale-
channel network. We consider the relationship between repre-
sentations computed by:

(i) Applying a set of rescaled and scale-normalised filters
(this corresponds to normalising filters to constant L-
norm over scales) h: RV — R

o) = o h(%)

= (33)

to a fixed size input image f(x):

Li(r;s) = (f ha)(x) = /

ueRN

f(u) hs(z — u) du,

(34)
where the subscript indicates that A might not necessarily
be a Gaussian kernel. If A is a Gaussian then L; = L.



(i) Applying a fixed size filter h to a set of rescaled input

images
Mi(ais) = (fxh)e) = [ L)~ ) du,
u€RN
(35)
with "
fula) = 15 (36)

This is the representation computed by a single layer in
a (continuous) scale channel network.

It is straightforward to show that these representations are
computationally equivalent and related by a family of scale
dependent scaling transformations. We compute using the
change of variables u = sv, du = sNdv:

Ly(w;s) = (f * hs)()

/u o Je G )i

= (for x W)(Z,s7).

Comparing this with (35) we see that the two representations
are related according to

(37

Ly(x;8) = Mh(g;sfl). (38)
We note that the relation (38) preserves the relative scale
between the filter and the image for each scale and that
both representations are scale covariant. Thus, to convolve a
set of rescaled images with a single scale filter, as done in
the scale channel networks, is computationally equivalent to
convolving an image with a set of rescaled filters that are
L+-normalised over scale. The two representations are related
through a spatial rescaling and an inverse mapping of the scale
parameter s — s~ 1. Note that it is straightforward to show,
using the integral representation of a scale channel network
(7), that a corresponding relation between scaling the image
and scaling the filters holds for a multi-layer scale channel
network as well.

The result implies that if a scale channel network
learns a feature corresponding to a Gaussian with the standard
deviation o, then the representation computed by the scale
channel network is computationally equivalent to applying the
family of kernels

a2

2(s0)2

= —F (39)
(V2rso)N

to the original image, given the complementary scaling trans-

formation (38) with its associated inverse mapping of the scale

parameters s — s~ . Since this is a family of rescaled and L -

normalised Gaussians, the scale channel network will compute
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a representation computationally equivalent to a Gaussian
scale-space representation.

B. Relation between scale channel networks and scale-
normalised derivatives

We, here, describe the relationship between scale channel
networks and scale-normalised derivatives. Assume that a scale
channel network in some layer learns a kernel that corresponds
to a Gaussian derivative. We will show that when this kernel
is applied to all the scale channels this correspond to a
normalisation over scales of the kernels that is equivalent to
applying scale-normalised derivatives at different scales in a
scale-space representation of the original image.

1) Preliminaries: Gaussian derivatives in terms of Hermite
polynomials: As a preparation for the intended result, we
will first establish a relation between Gaussian derivatives and
probabilistic Hermite polynomials. The probabilistic Hermite
polynomials He,,(z) are in 1-D defined by the relationship

Hen () = (—1)"e"*/2 9, (e*z"‘/?) (40)
implying that
Opn (e_‘”2/2) = (—1)"He,(x) e /2 41)
and
D (6_7”2/2"2) = (—1)”Hen(§)e-w2/2ozgin. 42)
Applied to a Gaussian function in 1-D, this implies that
Oyn (9(; 0)) =
= \/21—71_031" (671’2/202)
1" T
= (o") Hen(g)g(m; o). (43)

2) Scaling relationship for Gaussian derivative kernels:
Let us assume that the scale channel network at some layer
has learned a kernel that corresponds to a Gaussian partial
derivative at some scale o:

aa:"‘g(‘r7 J) =
=0,01,00 oong(T; 0) = goorgee on (w3 0)  (44)

For later convenience, we write this learned kernel as a scale-
normalised derivative at scale o for v = 1 multiplied by some
constant C":

h(z) = CJa1+a2+..'+aNgl_‘l)fll_;2.“w;N (z; o). (45)
Then, the corresponding family of equivalent kernels h(z) in
the dual representation (34), which represents the same effect
on the original image as applying the kernel h(z) to a set



of rescaled images fs(z) = f(x/s), provided that a comple-
mentary scaling transformation and the inverse mapping of the
scale parameter s — s~ ' are performed, is given by

1 T
hS(SU) = SW h(*)
C a1 toags+ta CU-
— N 1+az Ngwflgggzmw%zv(g, o). (46)
Using Eq. with
1 s o , )
P 0) = e e Ty /20 47
T o e
4 ) (V2ro)N 47)
in N dimensions, we obtain
C +ao+t-+ gt
hs((ﬂ) = —_ gM1Ta2 OéN(il)al Qs an
L2 T2 TN
H ap\_ H ao\l— ) .. H a v
‘ 1(30) 62(50) eN(sa)
1 ey L
( QWU)N gitast-tan
= € (so) e aN (e testtay
.rl JZ'Q Z'N
H a\' H as\ T ...H an(—
e 1(80') € 2(80') e N(SO—)
# ef(xf+z§+...+x?v)/282az 1 |
( 27TSU)N (50’)061+0t2+~~+ozN
(43)

Comparing with #3), we recognize this expression as the
scale-normalised derivative

(49)

@1 X2
1 Iz

hs(x) = C (so)*rtoettang 20N (x; so0)

of order & = (a1, g, ... ay) at scale so.

This means that if the scale channel network learns a partial
Gaussian derivative of some order, then the application of
that filter to all the scale channels is computationally equiv-
alent to applying corresponding scale-normalised Gaussian
derivatives to the original image at all scales, given the
complementary scaling transformation (38) with its associated

inverse mapping of the scale parameters s > s~ 1.

Specifically, this result implies that a scale channel network
that combines the multiple scale channels by a max pooling
operation over scales will have a similar function as scale
selection performed by detecting global extrema of scale-
normalised derivatives over scales, and thus share similarities
to classical methods for scale selection [38], [47]].

While this result has been expressed for partial derivatives,
a corresponding results holds also for derivative operators that
correspond to directional derivatives of Gaussian kernels in
arbitrary directions. This result can be easily understood from
the expression for a directional derivative operator J.» of order
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n=mny+ns+---+ny in direction e = (ey, ea, ...
el =Vel+es+- - +e} =1

,en) with

Deng(z; 0)
= (61 Opy + €204, + -+ +en abe)ng(x; 0)
n

2. <a1!a2! aN!>

artaz+-tan=n
N 1 Y2 N
coeyN 01072 .. 0N g

[e 5PN D)
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n
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anN .
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(50)

Since the scale normalisation factors o!® for all scale-
normalised partial derivatives of the same order || = oy +
a9 + -+ ay = n are the same, it follows that all linear
combinations of partial derivatives of the same order are
transformed by the same multiplicative scale normalisation
factor, which proves the result.

C. The MNIST Large Scale dataset

We, here, give a more detailed description of the MNIST
Large Scale dataset. The original MNIST dataset [36] contains
28 x 28 resolution images of centered handwritten digits. The
MNIST Large Scale dataset is derived from the MNIST dataset
by rescaling the original MNIST images. The resulting dataset
contains 112 x 112 resolution images with scale variations of
a factor of 16. The scale factors s relative the original MNIST
images are s € [%,8]. The dataset is illustrated in Figure @

To create an image with a certain scale factor s, the original
image is first rescaled/resampled using bicubic interpolation.
The image range is then clipped to [0, 256] to remove possible
over/undershoot resulting from the bicubic interpolation. The
resulting image is embedded into an 112 x 112 resolution
image using zero padding or cropping as needed.

Large amounts of upsampling tends to result in discreti-
sation artefacts. To reduce the severity of such artefacts, the
images are post-processed with discrete Gaussian smoothing
[48] followed by non-linear thresholding. The standard devia-
tion of the discrete Gaussian kernel varies with the scale factor
as o(s) %s. After smoothing, the image range is rescaled
to the range [0, 255].

As a final step, an arctan non-linearity is applied to sharpen
the resulting image, where the final image intensity I,,; is
computed from the output of the smoothing step I;,, as:

—b))

2
It = — arctan(a(l; 5D
0

with @ = 0.02 and b = 128.

Note that for scale factors > 4, the full digit might not be
visible in the image. These scale factors are included to enable
studying the limits of generalisation when the entire object is
no longer visible (typically the digits are fully contained in
the image for s < 4\@).

All training data sets are created from the first 50 000 images
in the original MNIST training set, while the last 10000
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Fig. 6: Samples from the MNIST Large Scale dataset. The MNIST Large Scale dataset is derived from the original MNIST
dataset [36] and contains 112 x 112 sized images of handwritten digits with scale variations of a factor of 16. The scale factors
relative the original MNIST dataset are in the range % (top left) to 8 (bottom right).

images in the original MNIST training set are used to create
validation sets. The testing data sets are created by rescaling
the 10000 images in the original MNIST test set. For the
multi-scale datasets, scale factors for the individual images
are sampled uniformly on a logarithmic scale in the range
[smina SnLaz]-

The specific datasets used for the experiments in this paper
are available online [37]].

D. Numerical performance scores

We here present the numerical performance scores for the
experiments performed in this paper. The performance scores
for (i) generalisation ability to unseen scales (Figure [2) and
(ii) learning in the presence of large scale variability (Figure
M) are given in Table [ The performance scores when (iii)
varying the distance between consecutive scale channels for
the FovMax and FovAvg networks (Figure [3) are given in
Table [Tl The performance scores for (iv) learning from small
training sets with large scale variability (Figure [5) are given in
Table When evaluating how the performance varies with
the number of training samples, the first n samples from the
training set are used for training, while the full test set is used
for testing.
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TABLE I: Classification accuracy (%) as a function of the test set scale factor when training on single and multi-scale training
data. The table shows the performance for the different network architectures when trained on single scale training data (Figure
or multi-scale training data (Figure [4)) from the MNIST Large Scale data set. The networks are trained on either single scale
data of scale 1, 2 or 4 (trl, tr2, tr4) or multi-scale training data spanning the scale range [1,4] (tr14). The FovMax, FovAvg,
and SWMax networks all have 17 scale channels spanning the scale range [%, 8]. The FovConc networks have either 3 scale
channels spanning the scale range [1, 4] (3ch) or 5 scale channels spanning the scale range [%7 8] (5ch), since using fewer scale
channels improves the performance of this architecture in the setting with novel scale factors in the test set.

Scales 1/2 273 4 271 2 271 4 1 21 4 21 2 23 4 2 25 4 23 2 27 4 4 29 4 25 2 211 4 )
CNN trl 61.84 8531 96.10 98.73 99.32 98.50 85.36 52.61 36.82 28.55 22.38 19.04 1447 11.71 11.50 10.88 10.68
CNN tr2 1437 1581 22.17 33.42 5357 80.70 95.52 98.87 99.38 98.81 90.31 60.95 40.85 2991 23.69 19.26 16.68
CNN tr4 9.89 1041 1133 12.06 13.57 1596 18.54 2597 4493 76.62 95.19 98.96 99.40 98.71 9299 7421 47.63
CNN tr14 67.34 84.02 9371 97.38 98.70 99.12 99.23 99.29 99.34 99.32 99.31 99.05 98.45 95.40 81.25 56.65 38.17

FovAvg 17ch trl ~ 98.58 99.05 99.33 9939 99.40 99.39 99.38 99.36 99.35 99.31 99.22 99.12 9894 98.47 9620 89.17 71.31
FovAvg 17ch tr2  98.58 99.04 99.36 99.35 99.38 99.37 99.37 99.37 99.38 99.35 99.36 99.34 99.32 99.25 98.83 96.89 88.46
FovAvg 17ch tr4  97.65 98.68 99.14 99.17 99.28 99.26 99.28 99.27 99.30 99.32 99.35 99.37 99.39 99.34 9890 96.75 88.68
FovAvg 17ch trl4 98.78 99.17 9930 99.37 99.40 99.40 99.40 99.40 99.41 99.40 99.39 99.40 99.39 99.36 99.05 96.55 88.17
FovMax 17ch trl ~ 98.71  99.07 99.27 99.34 99.37 99.35 99.36 99.34 99.33 99.35 99.34 99.35 99.34 99.27 97.88 92.76 79.23
FovMax 17ch tr2  98.75 99.12 99.25 99.30 99.34 99.29 99.31 99.32 99.32 99.32 99.30 99.32 99.32 99.12 97.43 91.87 75.85
FovMax 17ch tr4  98.49 9897 99.18 99.25 99.28 99.31 99.29 99.30 99.29 99.30 99.30 99.30 99.31 99.28 98.33 92.39 77.01
FovMax 17ch tr14 98.71 99.13 9930 99.31 99.35 99.31 99.32 99.31 99.32 99.33 99.32 99.32 99.32 99.24 98.40 93.46 81.42
FovConc 3ch trl ~ 40.38 71.00 9434 98.83 99.28 98.61 89.29 60.43 3636 2291 1529 9.74 586 383 321 414 6.02
FovConc 3ch tr2 947 10.11 16.84 28.67 46.66 74.87 94.76 98.88 99.35 9855 89.35 61.24 39.84 27.52 18.44 14.68 13.08
FovConc 3ch tr4 5.49 3.68 1.29 1.08 129 273 923 2347 4524 7625 9525 98.98 99.35 9855 91.51 7229 50.07
FovConc 5ch tr2 1.84 2.66 7.89 2096 35.58 65.31 93.16 98.71 99.23 98.45 88.55 47.87 1748 696 4.13 4.09 6.21
FovConc 5ch tr14 7045 91.66 98.00 9895 99.22 99.26 99.26 99.25 99.25 99.25 99.23 99.22 99.19 9891 96.89 88.77 72.05
SWMax 17ch trl ~ 84.58 9523  98.10 98.59 98.78 98.51 98.49 9839 98.35 98.10 97.68 96.67 93.48 84.46 7031 56.19 43.17
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SWMax 17ch tr14 80.08 89.98 93.81 9536 96.53 96.67 95.83 95.62 96.53 96.99 97.47 98.15 98.55 97.14 8527 64.82 44.18

TABLE II: Classification accuracy (%) as a function of the test set scale factor for the FovMax and FovAvg networks when
varying the distance between consecutive scale channels. The table shows the performance for different test set scale factors
when training the FovMax and FovAvg networks spanning the scale range [i, 8] with varying distance between consecutive
scale channels (21/4, 21/2, 2). All networks are trained on single scale training data of scale 2 from the MNIST Large Scale
data set.
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TABLE III: Classification accuracy (%) as a function of
the number of training samples when training on multi-scale
training data. The table shows the performance of the different
network architectures when trained with a gradually reduced
number of training samples from the MNIST Large Scale
dataset (Figure [5). Both the training and test sets here span
the scale range [1,4]. The FovAvg, FovMax, FovConc and
SWMax networks all have 17 scale channels spanning the

scale range [3,8].
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