
Progressive Learning Algorithm for Efficient Person
Re-Identification

Zhen Li
Shanghai Grandhonor Information Technology Co.Ltd

Nanjing University of Aeronautics and Astronautic
Shanghai 200072, China

Email: lizh0019@gmail.com

Liang Niu
New York University

New York University Abu Dhabi
New York, NY 10003

Email: liang.niu@nyu.edu

Hanyang Shao
Shanghai Grandhonor Information Technology Co.Ltd

Shanghai 200072, China
Email: hansoluo757@gmail.com

Nian Xue*
New York University

New York University Abu Dhabi
New York, NY 10003

Email: nian.xue@nyu.edu

Abstract—This paper studies the problem of Person Re-
Identification (ReID) for large-scale applications. Recent research
efforts have been devoted to building complicated part mod-
els, which introduce considerably high computational cost and
memory consumption, inhibiting its practicability in large-scale
applications. This paper aims to develop a novel learning strategy
to find efficient feature embeddings while maintaining the balance
of accuracy and model complexity. More specifically, we find by
enhancing the classical triplet loss together with cross-entropy
loss, our method can explore the hard examples and build a
discriminant feature embedding yet compact enough for large-
scale applications. Our method is carried out progressively using
Bayesian optimization, and we call it the Progressive Learning
Algorithm (PLA). Extensive experiments on three large-scale
datasets show that our PLA is comparable or better than
the-state-of-the-arts. Especially, on the challenging Market-1501
dataset, we achieve Rank-1=94.7%/mAP=89.4% while saving at
least 30% parameters than strong part models.

I. INTRODUCTION

One key challenge in person re-identification (ReID) is
how to balance the tradeoff between accuracy and model
complexity. Person ReID aims to retrieve a given person
across a vast amount of videos, despite significant variations
under different surveillance cameras at different locations.
Some research studies [1], [2] have obtained the-state-of-
the-art accuracy on public datasets, at the cost of increasing
computational complexity and a large number of parameters.
For example, MGN [2] splits the network into one branch
for global feature and two other branches for local features,
resulting in 180MB inference memory per image (or 23GB per
batch of 128 images) which prevents it from being used on
resource-constrained platforms [3]. Another group of methods
[4], [5], [6] focus on scalable solutions that can support
real-time search across hundreds of hours of videos, with
simpler network and compact representation. However, the
performance of the second group degenerates quickly with the
simpler model structure.

Fig. 1: Training mini-batches consisting of easy, medium-
hard and over-hard examples. A red box indicates a person
that is different from the anchor sample, while a green box
indicates the same person. The hard examples are valuable
to train a high precision model but may lead to confusion
in the optimization. We propose progressive learning strategy
to solve this challenge, which first learns easy and medium-
hard examples. Note that training on over-hard examples is
circumvented if they are less beneficial than medium-hard
ones.

The goal of this paper is to learn an efficient model for
person ReID that can match the-state-of-the-art performance.
With the recent success [7], triplet loss is preferred by many
researchers because it does not require the images of the
sample person to collapse to a single cluster, so they can
potentially model the variations and different parts of the same
person. However, triplet loss mainly focuses on the question
of “how similar are the two images” [5] instead of “is this a
new person”, and often suffers from a weaker generalization
capability and slow convergence. In this paper, we believe
triplet loss and cross-entropy loss are complementary to each
other, and propose to integrate two loss into one framework.

In practice, optimizing triplet loss at large scale is not easy
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due to the difficulty of sampling good candidates of hard
triplets. When combining triplet loss with cross-entropy loss,
the optimization using stochastic gradient descents becomes
more difficult. A straightforward optimization may find an
inferior solution or even fail to converge. If we choose all the
easy examples, the model may not be discriminant enough.
But if we choose all hard examples, it will make it difficult
for the Stochastic Gradient Descent (SGD) optimizer to get
out of the local minimum, and the model may stop improving
in the early stage.

We believe the key to solve the difficult optimization
problem is to train the model in a progressive way. At the
beginning of the stochastic optimization process, we get more
simple samples in every batch, to make sure that most of them
could be recognized correctly. In the later, we focus on the
hard examples, and reduce the number of simple samples.
The resulted algorithm is to progressively learn the triplet
loss from simple samples to hard samples using the Bayesian
framework. We call this new approach as Progressive Learning
Algorithm (PLA). Fig. 1 shows the progressive learning in
different strategies. This approach can help to optimize not
only triplet loss but also the new composite loss for ReID
problems.

Using the framework of PLA, this paper found an efficient
way to integrate different branches in the ReID network
structure. We used one shared convolutional network (i.e., the
ResNet-50 [8]) for each image. Note that almost all previ-
ous works used different convolutional networks for separate
branches. The proposed architecture significantly reduces the
computational cost and model complexity. The backbone is
not altered and the feature maps after global pooling are fed
to 1× 1 convolution, producing two global features which are
evaluated using cross-entropy loss and triplet loss, respectively.
It is convenient to deploy the inference model due to its
compact nature.

Our approach enjoys a good balance of model complexity
and accuracy. Our model is almost as efficient as ResNet-50
based DaRe [9], and can finish inference (batch size 128) of
17,000 images in a second, using 1 GTX 1080Ti card, while
still obtaining comparable accuracy with the-state-of-the-arts.
On the challenge Market1501 dataset, our single query model
without reranking achieves the Rank-1 score of 93.7%.

This paper is structured as follows. In Section 2, we review
the related works. The proposed PLA is elaborated in Section
3, followed by the extensive experiments in Section 4 which
validates the superiority of PLA in the balance of accuracy and
resource requirement. Finally, Section 5 concludes this work.

II. RELATED WORK

Deep learning models for ReID can be categorized into
global models and part models. Global models utilize only
global features, typically after global pooling operations, with-
out analyzing regions of feature maps. In contrast, part models
typically learn various local features in spatial domain of
feature maps.

Fig. 2: Overview of the proposed ReID network architecture.
“Anc.”, “Pos.” and “Neg.” represent anchor image, positive
images that belong to the same identity and negative images
that belong to different identities, respectively.

A. Global model

A breakthrough for the ReID task is triplet loss [10] by
which the CNN network weights are optimized until the fea-
tures belonging to each identity lie closer compared to features
from different identities. The main difficulty of learning person
ReID models using the triplet loss is the mining of hard
triplets, as otherwise it will frequently produce disappointing
results, or even worse, selecting over-hard triplets will result
in an unstable training process [5].

So far, a large number of variants of the triplet loss have
been proposed to improve the ReID performance [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [5] regardless of
the network structure. The triplet loss has become the de facto
standard of the loss function in ReID deep learning networks.
In [9], Deep Anytime Re-ID (DaRe) is proposed which is a
resource-aware ReID architecture that combines pooled feature
maps from multiple convolutional network layers. The com-
posite loss function consists of per-stage losses and final-stage
triplet loss. The ResNet-50 based DaRe approach achieves
88.5% Rank-1 accuracy on the Market-1501 dataset, which is
a milestone of the ReID approaches based on global feature.
GP-reid [21] discusses a set of good practices for person
ReID, especially for using global features and triplet loss, and
achieves promising results. In this work, we will show that, by
generalizing the triplet loss, it has more potential for learning
ReID model by global features.

B. Part model

In order to relieve the problem of detection misalignment
and background clutter, a rich body of works have tried to
utilize local features in deep learning networks, with the entire
CNN parameters being optimized in an end-to-end manner
[22], [23], [24], [15], [25], [1], [26], [27], [28], [6].

The main idea of attention model is to evaluate region-level
or pixel-level attention map, and implement the importance
weighing on feature maps in the middle of the CNN network
before global pooling. For region-level attention [22], [23],
[24], some works utilize empirical knowledge about human



bodies [15], [25], [1], [29], some acquire region by region
proposal methods [27], [22] while others do not rely on the
structural information or region proposal but the attention
task is achieved during deep learning [24], [26]. In order
to further reduce the impact of the background clutter, some
attention models are proposed to locate the body part in either
middle-level or fine-grained pixel-level [23], [28], [20], [6].
The attention models typically improve ReID performance but
require more computation and memory.

As an alternative to implement part models, a multi-branch
architecture has been proposed to learn an ensemble of net-
work branches which improves the accuracy compared with
any single branch setting [29], [1], [2], [6], [30]. A typical
work is Part-based Convolutional Baseline (PCB) [1] which
applies uniform partition strategy and concatenates region-
level local features to form the output composite feature. The
authors of [6] proposed a multi-branch architecture HA-CNN
in which the global branch learns the global feature while each
of the three local branches aims to learn the discriminative
local features for its corresponding image regions. Deep-
Person [30] is proposed to model the spatial dependency of
body parts by Long Short-Term Memory (LSTM) in an end-
to-end way. The recent work Multiple Granularity Network
(MGN) [2] consists of one global and two local branches
from res conv4 layer with independent parameters, which
can boost each other. MGN can achieve outstanding perfor-
mance exceeding all previous methods, achieving a milestone
of 96.6% Rank-1 accuracy on Market-1501 dataset with a
reranking technique. However, the multi-branch architecture
usually requires even more computation and memory resources
than the part-model based attention methods impeding its
practicality in deployment.

III. LEARNING COMPOSITE FEATURE EMBEDDING

A. Network Architecture

In the proposed plain CNN architecture, the ResNet-50 [8]
backbone is used for learning the main discriminative ability.
The architecture is shown in Fig. 2, where the feature vectors
after global pooling are fed to 1 × 1 convolution, producing
1024-dim features. These features are evaluated using cross-
entropy loss and triplet loss, respectively, and concatenated to
form the final 2048-dim feature embeddings. The details of
loss function and optimization will be discussed in subsection
III-B and III-C.

We have conducted preliminary experiments on a single
embedding, i.e., the 2048-dim feature after global pooling,
with both losses. However, the performance is not as good as
training two separate embeddings with the two different loss
functions respectively. The main reason is that cross-entropy
loss and triplet loss are formulated quite differently, and two
heads after global pooling are necessary to boost each other.

B. Loss Function for Progressive Learning

As commonly defined in the triplet loss based feature em-
bedding methods [7], [17], [5], the goal of metric embedding
learning is to learn a mapping from image data to semantic

features. We use θ to denote the network parameters. The
function g (θ) is usually implemented using CNN, which
is a non-linear mapping. The metric measure is defined as
Di,j = D (gθ (u) , gθ (v)) : RD × RD → R.

The original form of triplet loss is defined as a large margin
nearest neighbor (LMNN) loss [10]:

LLMNN (θ;X) = (1− µ)
∑
ya=yb

Da,b (1)

+ µ
∑
a,b,n

ya=yb 6=yn

[m+Da,b −Da,n]

where a and b denote samples in the same class, and µ and
m denote the weighting factor and the margin parameter,
respectively. The LMNN loss is essentially a weighted sum
of the intra-class Euclidean loss and a variation of the hinge
loss.

Hermans et al. [5] extended triplet loss by introducing the
“batch hard” triplet loss which is defined as follows:

LBH (θ;X) =

P∑
l=1

∑
a,b

ya=yb=l

[
m+ maxDa,b − min

yn 6=ya
Da,n

]
+

(2)
where a and b belong to the same label ya ∈ [1, . . . , P ], n
belongs to a different label with yn 6= ya. Each label contains
K images, forming a batch of P × K images for training.
Note that the batch parameters K and P are constrained by
the memory size, which may limit the discriminative ability of
the triplet loss strategy. The selected triplets are derived from
a small subset of the input data, thus the “hardest” (defined
by max and min operations for hardest positive and hardest
negative, respectively) can be considered as moderate triplets,
which is neither too hard nor too easy for learning with the
triplet loss.

In this work, we introduce two progressive parameters p
and k to control the optimization of triplet loss. Suppose k ∈
[1, . . . ,K], p ∈ [1, . . . , P ], and Largestk (·) and Smallestp (·)
denote the operations to find the k-th largest value of Da,b in
the batch and p-th smallest values of Da,n, respectively. Then
we can generalize the batch hard triplet loss as

Lk,pGBH (θ;X) =

P∑
l=1

∑
a,b

ya=yb=l

ln
(

1 + em+Tk,p(a,b,n)
)

(3)

Tk,p (a, b, n) = Largestk (Da,b)− Smallestp
yn 6=ya

(Da,n) (4)

The generalized batch hard loss can define triplets at any hard
level, by adjusting the parameters k and p. When k = p = 1
the generalized batch hard loss is exactly the same as the batch
hard loss defined in Eq. 2. When k > 1, easier examples
are selected for training, thus the unstable training situation is
alleviated.

Our final objective is the composite loss with the cross-
entropy loss and the generalized batch hard triplet loss as



follows:

Lk,p (θ;X) = Lsoftmax (θ;X) + λLk,pGBH (θ;X) (5)

where λ is a predefined weight for generalized triplet loss
as an regularization to the conventional cross-entropy loss. In
order to determine its value, we have made a joint Bayesian
optimization on parameters in subsection III-C, and the λ ∈
[0, 2] is set dynamically.

In practice, our loss function can be calculated efficiently.
Following [5], we form batches by randomly sampling P
classes and randomly select K images of each class. Given
PK embeddings, we can compute their pairwise distance and
sort them in O(PK log(PK)). Then for each sample, we
can select the k-th largest value from all positive distances
Da,b with ya = yb, and p-th smallest value from all negative
distances Da,n with ya 6= yn. In our experiments PK is as
small as 128, for which the sorting algorithm finishes in a
short time. Overall our computation cost is comparable with
that in [5].

C. Progressive Learning Based on Bayesian Optimization
As we can see from the previous section, the progressive

parameters p and k are crucial to train the ReID model. When
k = 8, the optimizer selects easy examples for every batch.
When k = 1, the hardest example is selected for optimization.

Intuitively we could choose k = 8 at the beginning of the
optimization and then k = 1 later for progressive learning.
This incremental nature allows the training to first discover
a stable solution for easy triplets and then shift attention
to increasingly finetune weights to discriminate hard triplets,
while avoiding over-hard triplets if they have no benefits.
However, such a holistic approach cannot decide when and
how often we shall adjust k, and cannot suggest whether we
shall adjust other hyper-parameters λ,m accordingly. In this
paper, we employ Bayesian optimization [31] to adjust p, k
as well as the other hyper-parameters. Bayesian optimization
provides a general framework for minimization of non-convex
objective functions, by which the parameters can be jointly
optimized by iteratively updating the probabilistic model based
on previous exploration.

Suppose w = (λ,m, k, p) denotes all the hyper-parameters
for our progressive learning. Define f (θ;w;X) as the
non-linear function that maps CNN parameters θ, hyper-
parameters w, and input data X to the objective func-
tion. As Bayesian optimization is used here to determine
the hyper-parameters only, f (θ;w;X) is briefed as f (w)
in this work. Assume f (w) follows a Gaussian process
which is parameterized by a mean function µ (·) and a
covariance kernel K (w1,w2) : f ∼ GP (µ (·) ,K (·, ·)),
then its mean and covariance are µ (w) = E [f (w)]
and K (w1,w2) = E [(f (w1)− µ (w1)) (f (w2)− µ (w2))],
respectively. By Gaussian distribution, KB (w1,w2) =

1

(2π)
d
2 |B|

1
2
exp

(
− 1

2w
T
1 B
−1w2

)
, and B is the bandwidth ma-

trix calculated from given samples.
Denote wi = (λi,mi, ki, pi) as a set of hyper-

parameters. For N sets of such parameters we denote

Algorithm 1 Training the ReID model based on PLA.

Input: A fixed-size mini-batch consisting of P = 16 randomly
selected identities and K = 8 randomly selected images per
identity from the training set.
Output: The optimal hyperparameter w∗ along with the well
trained CNN.
Initialization: Randomly initialize N sets of hyper-parameters
W = {w1,w2, · · · ,wN} where wi = (λi,mi, ki, pi),
λi ∈ [0, 2], mi ∈ [−0.1, 0.3], ki ∈ [1, 8], pi ∈ [1, 16] for
i = 1, · · · , N .
Repeat

for each hyperparameter i = 1 to N do
Exploration: Backpropagate CNN in 20 epochs and evalu-

ate the loss L according to Eq. 3 and Eq. 5, and evaluate the
Bayesian objective f (wi).

Restoration: CNN weights are restored to that before 20
epochs of exploration.

end for
Exploitation: Based on f (W) , obtain a new improved

candidate w
′

and update Gaussian process according to Eq. 6
and Eq. 8, and add w

′
to W.

Backpropagate to update CNN weights for 300 epochs based
on the new hyperparameter ŵ and the feed-forward loss L;

Save the model with lowest loss L for the current hyperpa-
rameter ŵ;
Until maximum epochs (M = 3, 000) reached

W = {w1,w2, · · · ,wN} , and the corresponding f (W) =
{f (w1) , f (w2) , · · · , f (wN )}. The posterior belief of f at
a new candidate ŵ is given by

f̃ (ŵ) ∼ GP (µ (ŵ) +4µ,K (ŵ)−4K)

4µ = K (ŵ,W)K (W)
−1

(f (W)− µ (W))

4K = K (ŵ,W)K (W)
−1K (W, ŵ)

(6)

where K (W) = K (W,W) for brief.
Let w

′
denote the best candidate evaluated so far, then the

expected improvement of a candidate ŵ is defined as

EI (ŵ) = E
[
f
(
w
′
)
− f̃ (ŵ)

]
+

(7)

which can be efficiently computed in closed form:

EI (ŵ) = (K (ŵ)−4K)
1
2 (ZΦ (Z) + φ (Z)) (8)

where Z =
(
µ̃f (ŵ)− f

(
w
′
))

/ (K (ŵ)−4K)
1
2 , and Φ (·)

and φ (·) are the standard normal cumulative distribution
function and probability density function, respectively.

In each iteration of Bayesian optimization, a fixed-size
of new hyper-parameters are sampled where the one that
maximizes EI (ŵ) is chosen, and W is updated accordingly.
For more details, one can refer to [32].

Then the objective of the Bayesian optimization is deter-
mined by loss function in the last section. In practice, we find
when the composite loss decreases in a speed of relatively
15% of the previous loss, the training is healthy with good



hyper-parameters. So in our system, Bayesian optimization
minimizes the following objective function:

f (w) = |
L̄k,pt (θ;w;X)− L̄k,p

t′
(θ;w;X)

L̄k,pt (θ;w;X)
− ED| (9)

where L̄k,pt (θ;w;X) and L̄k,p
t′

(θ;w;X) are the average CNN
loss functions in the first 10 epochs and second 10 epochs of
the t-th exploration in Algorithm 1, ED is the expected drop
rate of the loss, which is empirically set to 0.15 as a healthy
training process.

The overall PLA is shown in Algorithm 1. The whole train-
ing procedure is end-to-end with the backbone of ResNet-50
which is pretrained from ImageNet, and the 1×1 convolutions
after global pooling are randomly initialized. Based on the
trained PLA model, a 2048-dim feature will be generated from
a query image to match features extracted from the gallery
images.

IV. EXPERIMENTS

In this section, we first introduce datasets and evaluation
protocols used in our experiments, then parameter setting and
performance analysis are provided. This is followed by experi-
mental results compared with other state-of-the-art methods. A
reranking technique [33] is a popular option to post-processing
to improve the ReID precision.

A. Datasets and Protocols

We perform all the experiments on three commonly
used benchmarks: Market-1501 [34], DukeMTMC-ReID [35]
(briefed as DukeMTMC), and CUHK03(D) & CUHK03(L)
[36] datasets. These ReID datasets are summarized in Table I.

Dataset Market1501 DukeMTMC CUHK03(D/L)
Identities 1,501 1,812 1,360
Bboxes 32,668 36,411 13,164
Camera 6 8 6

Train images 12,936 16,522 7,365/7,368
Train ids 751 702 767

Query images 3,368 2,228 1,400
Query ids 750 702 700

Gallery images 19,732 17,661 5,332

TABLE I: ReID Benchmark datasets used in our experiments.

We report Cumulative Matching Characteristics (CMC) at
Rank-1 accuracy and mean average precision (mAP) for all
the three datasets. On Market-1501 dataset, we evaluate our
method on two evaluation protocols: single-query using one
image as query, and multiple-query using more than one
images of one person in dataset to query. On CUHK03 dataset,
we follow the setting in [33] that splits dataset into 767 training
IDs and 700 test IDs, and report the performance on the test
set with unknown IDs. Note that this protocol is different from
the old setting [37], [38] with 1160 training IDs and 100 test
IDs, which the average of 20 trials of the random samples.
Although the old setting often leads to higher mAP or Rank-1

scores, it is not objective and suffers from the randomness. In
this paper, we only compare with the results using the new
setting as meaningful baselines.

B. Implementation Details

Similar to [5], all images are resized to 256×128 resolution
as a tradeoff between ReID efficiency and accuracy. For online
image augmentation, we first amplify by a factor 1.125, then
do a 256 × 128 random crop and a random horizontal flip
in the training process. Random erasing [39] is also used
which randomly (p = 0.5) masks parts of person to simulate
the cases of occlusion and missing body parts in a dataset.
We apply 10-crop test time augmentation for evaluations.
We use Principle Component Analysis (PCA) to reduce the
2048-dim feature embedding to 512-dim as post processing.
As to mini-batch size, according to preliminary experiments,
increasing the number of images per person can benefit the
final accuracy of the trained model. Moreover, by using the
proposed progressive learning algorithm, images from the
same person are required to contain various levels of hard
examples to optimize the training process. Considering the
GPU memory, we set P = 16, K = 8 to generate image
batches to feed into the model training process which is
different from [5] with P = 18 and K = 4. We use Adam
[40] as the optimizer and set β1 = 0.9 within 150 epochs and
β1 = 0.5 for remaining epochs, and β2 = 0.999. We adjust
the learning rate training schedule as proposed by [5]:

α(e)=

{
α0 if e ≤ e0
α0 × 0.001

e−e0
e1−e0 if e0 ≤ e ≤ e1

(10)

where we set α0 = 3× 10−4, e0 = 150 epochs, and e1 = 300
epochs.

The simulation environments are given as follows: Ubuntu
16.04, Intel® Xeon® CPU E5-2667 v4 @ 3.20GHz × 32, 64GB
RAM, and NVIDIA® GeForce® GTX 1080 Ti/PCIe/SSE2.

C. Ablation Study

Fig. 3: Using PLA on Market-1501 dataset. It can be seen that
PLA consistently improves the performance of both triplet loss
and composite loss under every evaluation metrics.

Effects on Loss Concatenation. In the proposed network
structure, after global max pooling of the ResNet-50 backbone,
the network is split into two heads, one for triplet loss and the
other for cross-entropy loss. Considering that triplet loss is a



Category Methods
Market1501(SQ) Market1501(MQ) CUHK03(D) CUHK03(L) DukeMTMC
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

part

HA-CNN[6] 75.7 91.2 82.8 93.8 38.6 41.7 41.0 44.4 63.8 80.5
Deep-Person[30] 79.6 92.3 85.1 94.5 - - - - 64.8 80.9

PCB[1] 77.4 92.3 - - 54.2 61.3 - - 66.1 81.7
PCB+RPP[1] 81.6 93.8 - - 57.5 63.7 - - 69.2 83.3

Aligned-ReID[29] 82.3 92.6 - - - - - - - -
MGN[2] 86.9 95.7 90.7 96.9 66.0 66.8 67.4 68.0 78.4 88.7

global

SVDNet[4] 62.1 82.3 - - 37.2 41.5 37.8 40.9 56.8 76.7
TriNet[5] 69.1 84.9 76.4 90.5 - - - - - -

GP-reid[21] 81.2 92.2 82.8 93.8 - - - - 72.8 85.2
DaRe[9] 74.2 88.5 - - 58.1 61.6 60.2 64.5 63.0 79.1

PLA 83.6 93.7 88.4 95.2 63.2 67.2 67.5 71.5 72.5 84.3

RK

Trinet [5] 81.1 86.7 87.2 91.8 - - - - - -
DaRe [9] 85.9 90.8 - - 71.2 69.8 73.7 72.9 79.6 84.4
MGN [2] 94.2 96.6 95.9 97.1 - - - - - -

PLA 89.4 94.7 92.9 95.7 77.2 75.5 81.0 79.6 80.1 87.0

TABLE II: Comparing PLA with different global and part models on all datasets. “RK” stands for reranking.

ranking function, while cross-entropy loss is a classification
target, their feature representations are different. Combining
them should have richer feature representation than each of
them alone. In our testing process, we used three variants of
the network head: 2048-dim feature with cross-entropy loss
only, 2048-dim feature with triplet loss only, and the 2048-dim
feature (concatenation of two 1024-dim feature embeddings).
Fig. 3 shows the effectiveness of loss concatenation on Market-
1501 dataset in terms of mAP and Rank-1 accuracy. Coupling
the feature concatenation method, the proposed progressive
learning algorithm brought significant improvements 4.4% for
mAP and 3.5% for Rank-1 compared to using triplet loss alone
on Market-1501 dataset.

Effects on Progressive Learning. Fig. 3 shows the ef-
fectiveness of progressive learning on Market-1501 dataset.
With the proposed PLA, the triplet feature embedding achieved
mAP and Rank-1 accuracy of 81.1% and 91.2%, respectively,
outperforming the accuracies using each type of loss with
2048-dim feature without PLA. We found progressive learning
and concatenated feature embedding, when used together, pro-
duced the best results. This indicates the progressive learning
is effective to learn more accurate and robust representation
of person identities.

Effectiveness on Training Convergence. To illustrate the
robustness of our loss function on the convergence perfor-
mance, we use the same ResNet-50 backbone as the network
architecture and train it on Market1501 using two methods:
1) the proposed PLA training method; 2) batch hard training
[5]. As shown in Fig. 4, the red curve shows loss values of
our method, which entails two stages compared with batch
hard training method shown as the blue curve. It is observed
that in the first training stage (first 5,700 batches), our loss
converges faster than batch hard loss as the proposed method
trains easy and medium samples at the beginning. When hard
samples are introduced to the proposed method, it comes to

Fig. 4: The blue line is for batch hard training loss curve; The
red line is for PLA training loss curve.

the second stage. The loss is significantly reduced further
using PLA, leading to the final improvement, while the loss
of hard samples cannot be reduced any more. Note that in
the beginning of the second training stage, the red curve has a
sudden jump because harder samples are introduced; however,
the loss value gradually dropped until achieving the lowest
ever one. The results illustrate that learning progressively by
the level of hardness is beneficial to model convergence and
achieves lower loss.

D. Compare with the State-of-the-arts

We compare the proposed ReID approach with various ReID
approaches based on both global models and part models.
The global model based approaches include: SVDNet [4],
TriNet [5], GP-reid [21], and ResNet-50 based DaRe [9]. The
part model based approaches include: HA-CNN [6], PCB [1],
Aligned-ReID [29], Deep-Person [30] and MGN [2].



The comparison results over state-of-the-art methods with
global models are shown in Table II. Without the reranking
technique, GP-reid [21] achieved a good performance as it
properly makes use of many existing techniques. The pro-
posed PLA consistently outperforms all other global feature
models by a large margin without reranking technique, except
for GP-reid. PLA outperforms GP-reid in terms of mAP
accuracy by 2.4% and 5.6% on Market-1501 dataset with
single query mode and multiple query mode, respectively.
However, GP-reid slightly outperforms PLA in terms of mAP
and Rank-1 accuracy by 0.3% and 0.9%, respectively, on
DukeMTMC dataset. Note that in this work the learning
rate schedule is uniform in all experiments and not specially
tailored for DukeMTMC dataset. We can observe that the
proposed PLA consistently outperforms all other methods
with reranking by a large margin. PLA outperforms DaRe
in terms of mAP by 9.4%, 5.1%, 7.3% and 9.5% without
reranking on Market-1501(SQ), CUHK03(D), CUHK03(L)
and DukeMTMC datasets respectively. Overall, the proposed
PLA has the best performance over other global models.

Although the proposed approach is within the scope of
global feature model, we also compare it with the accuracies
produced by multi-branch part models, as shown in Table II
for all datasets. In Table II, it is obvious that MGN achieves
the highest accuracies among all part models on Market-
1501 dataset without reranking technique. It is evident that
the proposed PLA outperforms all previous works except
for MGN. In terms of Rank-1 accuracy performance without
reranking, PLA is overall comparable with MGN in terms of
Rank-1 accuracy: MGN exceeds PLA by 2% and 4.3% on
Market-1501(SQ) and DukeMTMC dataset respectively, while
MGN is inferior than PLA by 0.4% and 3.5% on CUHK03(D)
and CUHK03(L) datasets. We can also observe that with
reranking, PLA outperforms DaRe by a large margin achieving
the highest mAP and Rank-1 values ever publicly reported on
the CUHK03(D) and CUHK03(L) datasets.

E. Computational Cost and Inference Memory

The proposed PLA is designed for resource-aware ReID,
and a good trade off between accuracy and efficiency is
expected. The computational cost is reported with respect
to the total number of basic operations, i.e., multiplications
and additions (Mul-Add), which is proportional to the actual
running timing. Reranking is not included in the Mul-Add cal-
culation. HA-CNN [6], ResNet-50 based DaRe [9], PCB(RPP)
[1] and MGN [2] are chosen to be compared with the proposed
PLA for their good performance.

The graph of accuracy vs. efficiency is shown in Fig.
5 (a). Accuracy reported is the average mAP on Market-
1501, CUHK03(D), CUHK03(L) and DukeMTMC datasets
without reranking. We observe that the proposed PLA achieves
significantly higher accuracies than HA-CNN and DaRe. In
particular, PLA achieves slightly higher accuracy than PCB
which is a strong part model baseline for ReID, yet saving
more than 30% computation cost. MGN outperforms PLA
and PCB in accuracy by a small margin, however, it has a

tremendous Mul-Add of roughly 2.3× 1010 which is about 3
times of PLA.

(a) (b)

Fig. 5: (a) Accuracy vs. computation cost (number of Mul-
Add); (b) Accuracy vs. inference memory (MB). Accuracy is
reported as the average mAP on all datasets.

The graph of accuracy vs. inference memory is shown in
Fig. 5 (b). It is evident that the trade off situation is similar to
that in Fig. 5 (a). Although HA-CNN is a multi-branch part
model, the input size is fairly small compared with other ap-
proaches, making it the most lightweight approach. HA-CNN
shows good accuracy on Market-1501 dataset but exhibits
rather low accuracies on CUHK and DukeMTMC datasets,
as shown in Table II. MGN outperforms all others in terms
of accuracy, but it is more than 2 times of the PLA inference
memory. Accordingly, it requires at least 11.6GB memory for
inference with a commonly used batch size of 64, which even
cannot be loaded using GTX 1080Ti (11.17GB). Note that
even though network acceleration techniques TensorRT [41]
and network compression techniques can be used to save Mul-
Add and reduce inference memory, respectively, for strong part
models including PCB and MGN, they will also benefit PLA
by similar acceleration and compression ratios since ResNet-
50 is the backbone of all these networks.

It is evident that in Fig. 5, our method is outstanding in its
accuracy and resource balance: the models with less resource
requirements exhibit obvious lower or unstable accuracy while
those with slightly higher accuracy will consume unnecessarily
much more computational cost and inference memory.

V. CONCLUSION

Different from the recent trend of employing part models
to improve the accuracy at the cost of more computation and
memory, this paper developed a novel optimization algorithm
to find efficient models in a single main branch network with
competitive performance. The core idea is to design a progres-
sive triplet loss to explore the power of deep CNN representa-
tion, which is efficient for model inference. Compared to the
most state-of-the-art algorithms, e.g., MGN, which produces
slightly higher accuracy than PLA on average, PLA saves 65%
computational cost and 54% inference memory. Experimental
results show that the proposed PLA achieves the excellent
tradeoff between accuracy and efficiency, and we hope this
work could motive more research work to find efficient models
with high performance and lower consumption.
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