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Abstract—Batch normalization (BN) allows training very deep
networks by normalizing activations by mini-batch sample statis-
tics which renders BN unstable for small batch sizes. Current
small-batch solutions such as Instance Norm, Layer Norm, and
Group Norm use channel statistics which can be computed even
for a single sample. Such methods are less stable than BN as they
critically depend on the statistics of a single input sample. To
address this problem, we propose a normalization of activation
without sample statistics. We present WeightAlign: a method
that normalizes the weights by the mean and scaled standard
derivation computed within a filter, which normalizes activations
without computing any sample statistics. Our proposed method is
independent of batch size and stable over a wide range of batch
sizes. Because weight statistics are orthogonal to sample statistics,
we can directly combine WeightAlign with any method for
activation normalization. We experimentally demonstrate these
benefits for classification on CIFAR-10, CIFAR-100, ImageNet,
for semantic segmentation on PASCAL VOC 2012 and for
domain adaptation on Office-31.

I. INTRODUCTION

Batch Normalization [1] is widely used in deep learning.
Examples include image classification [2], [3], [4], object
detection [5], [6], [7], semantic segmentation [8], [9], [10],
generative models [11], [12], [13], etc. It is fair to say that for
optimizing deep networks, BatchNorm is truly the norm.

BatchNorm stabilizes network optimization by normaliz-
ing the activations during training and exploits mini-batch
sample statistics. The performance of the normalization thus
depends critically on the quality of these sample statistics.
Having accurate sample statistics, however, is not possible
in all applications. An example is domain adaptation, where
the statistics of the training domain samples do match the
target domain statistics, and alternatives to BatchNorm are
used. [14], [15]. High resolution images are another example,
as used in object detection [16], [5], [7], segmentation [8],
[9] and video recognition [17], [18], where only a few or just
one sample per mini-batch fits in memory. For these cases,
it is difficult to accurately estimate activation normalization
statistics from the training samples.

To overcome the problem of unreliable sample statistics,
various normalization techniques have been proposed which
make use of other statistics derived from samples, such as
layer [19], instance [20] or group [21]. These methods are
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applied independently per sample and achieve good perfor-
mance, but gather statistics just on a single sample and are
thus less reliable than BatchNorm.

In this paper, we propose WeightAlign: normalizing ac-
tivations without using sample statistics. Instead of sample
statistics, we re-parameterize the weights within a filter to
arrive at correctly normalized activations. See Fig. 1 for a
visual overview. Our method is based on weight statistics
and is thus orthogonal to sample statistics. This allows us to
exploit two orthogonal sources to normalize activations: the
traditional one based on sample statistics in combination with
our proposed new one based on weight statistics. We have the
following contributions.
• WeightAlign: A new method to normalize filter weights.
• Activation normalization without computing sample

statistics.
• Performance independent of batch size, and stable per-

formance over a wide range of batch sizes.
• State-of-the-art performance on 5 datasets in image clas-

sification, object detection, segmentation and domain
adaptation.

II. RELATED WORK

Network Normalization by Sample Statistics. The idea
of whitening the input to improve training speed [22] can
be extended beyond the input layer to intermediate repre-
sentations inside the network. Local Response Normaliza-
tion [4], used in AlexNet, normalizes the activations in a small
neighborhood for each pixel. Batch Normalization (BN) [1]
performs normalization using sample statistics computed over
mini-batch, which is helpful for training very deep networks.
BN unfortunately suffers from performance degradation when
the statistical estimates become unstable for small batch-size
based tasks.

To alleviate the small batches issue in BN, Batch Renor-
malization [23] introduces two extra parameters to correct the
statistics during training. However, Batch Renormalization is
still dependent on mini-batch statistics, and degrades perfor-
mance for smaller mini-batches. EvalNorm [24] corrects the
batch statistics during inference procedure. But it fails to fully
alleviate the small batch issue. SyncBN [25] handles the small
batch problem by computing the mean and variance across
multiple GPUs which is not possible without having multiple
GPUs available.
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Fig. 1. Overview of WeightAlign (WA): Aligning filter weights allows normalizing channel activations. The weight W of an arbitrary convolutional layer is
composed with Cout filters with size C × k × k. Within a filter (yellow region in the left side), we first flatten it to a vector and then apply our proposed
WA in Eq. (10) to normalize the filter weights with a introduced learnable parameter γ. Normalizing weights of each filter in forward pass can realize the
normalization of activations within each channel. Details in Section III.

Because small mini-batch sample statistics are unreliable,
several methods [19], [20], [21] perform feature normaliza-
tion based on channel sample statistics. Instance Normaliza-
tion [20] performs normalization similar to BN but only for a
single sample. Layer Normalization [19] uses activation nor-
malization along the channel dimension for each sample. Filter
Response Normalization [26] proposes a novel combination
of a normalization that operates on each activation channel of
each batch element independently. Group Normalization [21]
divides channels into groups and computes the mean and
variance within each group for normalization. Local Context
Normalization [27] normalizes every feature based on the
filters in its group and a window around it. These methods
can alleviate the small batch problem to some extent, yet
have to compute statistics for just a single sample both during
training and inference which introduces instabilities [28], [29].
Instead, in this paper we cast the activation normalization
over feature space into weights manipulation over parameter
space. Network parameters are independent of any sample
statistics and makes our method particularly well suited as
an orthogonal information source which can compensate for
unstable sample normalization methods.

Importance of weights. Proper network weight parameter
initialization [30], [4], [31] is essential for avoiding vanishing
and exploding gradients [32]. Randomly initializing weight
values from a normal distribution [4] is not ideal because
of the stacking of non-linear activation functions. Properly
scaling the initialization for stacked sigmoid or tanh activation
functions leads to Xavier initialization [33], but it is not valid
for ReLU activations. He et al. [3] extend Xavier initializa-
tion [33] and derive a sound initialization for ReLU activa-
tions. For hypernets, [34] developed principled techniques for
weight initialization to solve the exploding activations even
with the use of BN. In [35] a data-dependent initialization
is proposed to mimic the effect of BN to normalize the
variance per layer to one in the first forward pass. To address
the initialization problem of residual nets, Zhang et al. [36]
propose fixup initialization. We draw inspiration from these
weight initialization methods to derive our weight alignment
for activation normalization.

Weight decay [37] adds a regularization term to encourage
small weights. Max-norm regularization is used in [38] to

avoid extremely large weights. Instead of introducing an extra
term to the loss, Weight Norm [39] re-parameterizes weights
by dividing its norm to accelerate convergence. Such a re-
parameterization, however, may greatly magnify the mag-
nitudes of input signals. In contrast, we scale each filter’s
weights as inspired by He et al. [3]’s weight initialization ap-
proach, to generate activations with zero mean and maintained
variance. This allows us to normalize activations without using
any sample statistics.

III. PROPOSED METHOD

Batch Normalization (BN) [1] normalizes the features in a
single channel to a zero mean and unit variance distribution, as
in Fig. 2, to stabilize the optimization of deep networks. The
normalized features x̂ are computed channel-wise at training
time using the sample mean µβ and standard derivation σβ
over the input features x as:

x̂ =
x− µβ
σβ

, (1)

where µβ and σβ are functions of sample statistics of x. For
each activation x̂, a pair of trainable parameters γ, β are
introduced to scale and shift the normalized value that

r = γx̂+ β. (2)

BN uses the running averages of sample statistics within each
mini-batch to reflect the statistics over the full training set.
A small batch leads to inaccurate estimation of the sample
statistics, thus using small batches degrades the accuracy
severely.

In the following, we express the sample statistics in terms
of filter weights to eliminate the effect of small batch, and
re-parameterize the weights within each filter to realize the
normalization of activations within each channel.

A. Expressing activation statistics via weights

For a convolution layer, let x be a single channel output
activation, Y be the input activations, and w, b be the
corresponding filter and bias scalar. Specifically, a filter w
consists of c channels with a spatial size of k × k. To
normalize activations by using weights, we show how the
sample statistics µβ and σβ in Eq. (1) are expressed in terms
of filter weights.



An individual response value x(t) in x is a sum of the
product between the values in w and the values in a co-located
k2c-by-1 vector y(t) in Y, which is equivalently written as
the dot product of filter w and vector y(t),

x(t) = w · y(t) + b. (3)

By computing each individual response x(t) at any location t,
we obtain the full single channel output activation x.

We use random variables x, Y and w to present each of the
elements in x, Y and w respectively. Following [34], [33],
[3], we make the following assumptions about the network:
(1) The w , Y and b are all independent of each other. (2) The
bias term b equals 0.

Expressing µβ of Eq. (1) in terms of weights: The mean of
activation x can be equivalently represented via filter weights
as:

µβ = E[x] = nE[wY ] = nE[w]E[Y ], (4)

where E is the expected value and n = k2c denotes the number
of weight values in a filter.

Expressing σβ of Eq. (1) in terms of weights: The variance
of activation x is:

σ2
β = Var[x] =nVar[wY ] = n(E[w2Y 2]− E2[wY ])

=n(E[w2]E[Y 2]− E2[w]E2[Y ])
(5)

With the Eq. (4) and Eq. (5), we will manipulate the weights
to normalize activations in the following sections.

B. WeightAlign

We normalize activations by encouraging the mean µβ of the
activations in Eq. (4) to be zero, and maintaining the variance
of the activations to be the same in all layers. Inspired by [3],
we manipulate the weights to satisfy these requirements.

The mean of the activations µβ in Eq. (4) is forced to be
zero when the weight w in a filter has zero mean:

E[w] = 0. (6)

We can exploit E[w] = 0 in Eq. (5) to further simplify the
variance of the activations σ2

β in terms of the variance of the
weights as,

σ2
β = Var[x] = nE[w2]E[Y 2] = nVar[w]E[Y 2]. (7)

Thus, the activation variance σ2
β depends on the variance of

the weights w and on the current layer input Y . To simplify
further, we follow [3] and assume a ReLU activations function.
We use Z to define the outputs of the previous layer before
the activation function, where Y = ReLU(Z).

If the weight of the previous layer has a symmetric distribu-
tion around zero then Z has a symmetric distribution around
zero.1 Because the ReLU sets all negative values to 0, the
variance is halved [3], and we have that E[Y 2] = 1

2Var[Z].
Substituted into Eq. (7), we have

σ2
β = Var[x] =

1

2
nVar[w]Var[Z]. (8)

1 See proof in the supplementary material.

This shows the relationship of variance between the previous
layer’s output before the non-linearity Z and the current layer’s
single channel activation x.

Our goal is to manipulate the weights to keep the activation
variance of all layers normalized. Thus we relate the variance
of this layer σ2

β with the variance in the previous layer Var[Z],
which can be achieved in terms of the weights by setting
1
2nVar[w] in Eq. (8) to a proper scalar (e.g. 1):

1

2
nVar[w] = 1. (9)

With Eq. (6) and Eq. (9), we can re-parameterize a single
filter weights to have zero mean and a standard deviation√
2/n, which achieves the activation normalization like BN

in Eq. (1). Thus, here we propose WeightAlign as,

ŵ = γ
w − E[w]√
n/2 ·Var[w]

, (10)

where γ is a learnable scalar parameter similar to the scale
parameter in BN [1] like Eq. (2). Since WA manipulates the
weights, it does not have the β term as in the form of BN,
which is applied on activations directly. The detail explanation
about this is given in supplementary material. From Eq. (10),
we can tell that the proposed WeightAlign(WA) method does
not rely on sample statistics computed over a mini-batch,
which makes it independent of batch size.

C. Initialization of weights

We initialize each filter weights w to be a zero-mean
symmetric Gaussian distribution whose standard deviation
(std) is

√
2/n where n = k2c. For the first layer, we should

have
√

1/n since the ReLU activation is not applied on the
input. But the factor 1/2 can be neglected if it just exists on
one layer and for simplicity, we use the same deviation

√
2/n

for initialization.

D. Empirical analysis and examples

To show the distributions of channel activations using differ-
ent methods, we build an 8-layer deep network containing 7
convolutional layers and one classification layer with ReLU
as nonlinear activation function. A mini-batch of size 128
independent data is sampled from N (0, 1) is used as input.
Specifically, the standard Kaiming initialization [3] without
bias term is used to initialize the weights. Fig. 2 shows the
activation distributions of 8 different channels taken from
two layers, the 3rd intermediate convolutional layer and the
last classifier layer before the softmax loss. Each channel of
the last classifier layer represents one class. To exclude the
training effect, we first use the initialization model to conduct
comparison between sample statistics based normalization and
our WA normalization. For the visualization of trained model,
please see Section IV.

For the baseline model, it can be seen in Fig. 2(a) that
the activation distributions in the intermediate layer start
drifting, leading to a constant output for the classifier layer
(i.e. the ’Blue’ indexed class/channel). From Fig. 2(b) of Batch
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(a) Baseline (b) BN (c) GN (d) WA (e) WA+GN

Fig. 2. Our WA method can alleviate internal covariate shift of activation (see Section III-D for details). Each color represents the activation distribution of
different channels for different layers. For baseline model, the ’Blue’ indexed channel will dominate all other channels, leading to a constant classification
result. Normalizing channel activation in intermediate layer can avoid the constant output for the final classifier layer, which can be realized by WA.

Norm (BN) [1], we note that reducing the Internal Covariate
Shift (ICS) in intermediate layer can alleviate the distribution
drifting for the final classifier layer. The output of the classifier
layer is no longer a constant function. Group Norm(GN) [21]
can also reduce ICS to some extent, as shown in Fig. 2(c).

As shown in Fig. 2(d), WA can realize similar functionality
of BN. Our proposed WeighAlign (WA) re-parameterizes the
weights within each filter in Eq. (10) to normalize channel
activation. Since weight statistics is orthogonal to sample
statistics, WA can be used in conjunction with BN, GN, LN
and IN, as shown in Fig. 2(e). Please refer to supplementary
material for visualization of other normalization methods.

IV. EXPERIMENTS

We show extensive experiments on three tasks and five
datasets: image classification on CIFAR-10, CIFAR-100 [40]
and ImageNet; domain adaptation on Office-31; and semantic
segmentation on PASCAL VOC 2012 [41] where we evaluate
VGG [31] and residual networks as ResNet [30].

A. Datasets

CIFAR-10 & CIFAR-100. CIFAR-10 and CIFAR-100 [40]
consist of 60,000 32×32 color images with 10 and 100 classes,
respectively. For both datasets, 10,000 images are selected
as the test set and the remaining 50,000 images are used
for training. We perform image classification experiments and
ablation study on these datasets.
ImageNet. ImageNet [42] is a classification dataset with 1,000
classes. The size of the training dataset is around 1.28 million,
and 50,000 validation images are used for evaluation.
Office-31. Office-31 [43] is a dataset for domain adaptation
with 4,652 images with 31 categories. The images are col-
lected from three distinct domains: Amazon (A), DSLR (D),
and Webcam (W). The largest domain, Amazon, has 2,817
labeled images. The 31 classes consists of objects commonly

encountered in office settings, such as file cabinets, keyboards
and laptops.
PASCAL VOC 2012. PASCAL VOC 2012 [41] contains a
semantic segmentation set and includes 20 foreground classes
and a single background class. The original segmentation
dataset contains 1,464 images for training, and 1,499 images
for evaluation. We use the augmented training dataset includ-
ing 10,582 images [44].

B. Implementation details
We use Stochastic Gradient Descent(SGD) in all experi-

ments with a momentum of 0.9 and a weight decay of 5×10−4.
The plain VGG model is initialized with Kaiming initializa-
tion [3] and ResNets are initialized with Fixup [36]. We do
not apply WA in the final classifier layer. For classification,
we train the models with data augmentation, random horizontal
flipping and random crop, as in [45]. Further implementation
details are given in each subsection.

C. Experiments on CIFAR-10 & CIFAR-100
Comparing normalization methods. We compare our pro-
posed WeightAlign (WA) against various activation normaliza-
tion methods, including Batch Normalization (BN) [1], Group
Normalization (GN) [21], Layer Normalization (LN) [19],
Instance Normalization (IN) [20]. To demonstrate that WA is
orthogonal to all these approaches, we also show the combi-
nation of WA with these activation normalization methods.

We conduct experiments on CIFAR-100 as shown in Table I,
where all models are trained with a batch size of 64. Weigh-
tAlign outperforms every normalization method except BN
over large batch size. By combining WeightAlign with sample
statistics normalization methods, we can see that weightAlign
adds additional information and improves accuracy. Especially,
the GN+WA model achieves comparable performance of BN.

To further show it’s flexibility, we fine-tune a pre-trained
BN model on CIFAR-100 with WA. It achieves 22.38% error



TABLE I
ERROR RATE OF RESNET50 ON CIFAR-100 FOR CLASSIFICATION. WA

OUTPERFORMS EVERY NORMALIZATION METHOD EXCEPT BN
OVERLARGE BATCH SIZE. WHEN COMBINED WITH STATISTICS

NORMALIZATION METHODS, WA IMPROVES ACCURACY.

CIFAR-100

Method Error Method error

Baseline [36] 28.43 WA 24.92
BN [1] 23.02 BN + WA 22.39
IN [20] 25.58 IN + WA 24.63

LN [19] 26.78 LN + WA 24.01
GN [21] 25.46 GN + WA 23.64

TABLE II
ERROR RATE OF RESNET50 ON CIFAR-10 FOR CLASSIFICATION. WEIGHT

STATISTICS NORMALIZATION (WA) HELPS IN ADDITION TO SAMPLE
STATISTICS NORMALIZATION.

CIFAR-10

Batch size 64 Batch size 1
Method Error Method Error Method Error Method Error

Baseline [36] 6.46 WA 6.21 Baseline 7.27 WA 6.61
BN [23] 4.30 BN+WA 4.29 BN - BN+WA -
IN [20] 6.49 IN+WA 6.42 IN 6.91 IN+WA 6.50

LN [19] 5.02 LN+WA 5.12 LN 6.82 LN+WA 5.76
GN [21] 4.96 GN+WA 4.60 GN 5.79 GN+WA 5.51

rate, which is the same as BN+WA model trained from scratch.
This shows the possibility of finetuning WA on a pre-trained
models with a sample-based normalization method.

On CIFAR-10 we do the same evaluation for ResNet50.
BN and BN+WA are trained only with batch size of 64,
and other methods are trained with batch size of 1 and 64.
For batch size of 64 and 1, the initial learning rates are
0.01 and 0.001, respectively. The baseline method [36] is
trained without any normalization methods. Results are given
in Table II. Because CIFAR-10 is less complex than CIFAR-
100, the performance gaps between different methods are thus
less obvious. Nevertheless, our method is comparable to other
normalization methods and it allows a batch size of 1, which
is not possible for BN. By combining WA with the sample-
based normalization methods, we again observe that weight
statistics normalization helps in addition to sample statistics
normalization.

We also compare WA with Weight Normalization (WN) [39]
on CIFAR-100 with VGG16 and ResNet50 networks. For
VGG16, the error rates of WN, WA, GN are 6.8%, 4.8%and
7.4% when the batch size is 1, and the ones of WN, WA,
BN, GN are 8.6%, 5.4%, 5.8% and 11.0% when the batch
size is 64. For ResNet50, WN cannot be trained. We can
see WA and WN are workable regardless of the batch size
for plain networks and WA outperforms WN in this model.
For residual networks, WA can work alone without any
activation normalization layer, while WN cannot. WN is
only normalized by its norm to accelerate training. Without
normalization layer in residual networks, WN cannot restrict

(a) VGG16 (b) ResNet18

Fig. 3. Classification error vs. batch sizes. The models are VGG16 and
ResNet18 trained on CIFAR-100. The error rates of BN increase rapidly when
small batch sizes are used. Our proposed method does not rely on the sample
statistics and is independent of batch size dimension. The error rates of WA
are stable over a wide range of batch sizes.

the variance of the activation and the residual structure
merges the activation from two branches, which leads to
exploding gradients problem. Instead, WA normalizes the
weights by zero-mean and a scaled standard deviation. This
scale is determined by the size of convolutional filter and
restricts the variance of weights and further maintains the
variance of activations.

Small batch sizes. In Fig. 3, we compare BN and WA with
different batch sizes on VGG16 and ResNet18. We train with
batch sizes of 64, 8, 4, 2 images per GPU. In all cases, the
means and variances in the batch normalization layers are
computed within each GPU and not synchronized. The x-axis
shows different batch sizes and y-axis presents the validation
error rates. From Fig. 3 (a), we observe that the performance
of WA is comparable to that of BN on the plain network with
large batches. The error rates of BN increase rapidly when
reducing the batch size, especially with batch size smaller
than 4. In contrast, our method focuses on the normalization
of weight distributions which is independent of batch size.
The error rates of our method are stable over different batch
sizes. We can observe similar results in Fig. 3 (b) that our
method performs stable over different batch size on residual
network. It is interesting to see that the performance gap
between WA and BN with ResNet18 is smaller than that with
VGG16, which is due to the residual structure.

Depth of residual networks. We evaluate depth of 18, 34,
50, 101, 152 for residual networks with batch sizes of 1,
64 per GPU. Table III shows the validation error rates on
CIFAR-10. We observe that WA is able to train very deep
networks for both small and large batch sizes.

Visualization of weights and activations in training. To
verify the motivation, in this subsection, we visualize the
distribution of weights and activation by training a ResNet50
model on CIFAR-100. A minibatch of 128 images from
CIFAR-100 is input to the trained network to obtain features
and weights.
How are the filter weights distributed? In Fig. 4, we
visualize how the channel weight distribution changes with
the epochs. Fig. 4 (a) illustrates the baseline ResNet50 model
without using any normalization. When using BN, as shown in



(a) Baseline (b) BN (c) WA

Fig. 4. Channel weights distribution of trained ResNet50 versus epoch: (a) channel weights of baseline model. (b) channel weights of BN model. (c) channel
weights of WA model. The x-axis represents the value of weights. The y-axis represents the epoch. From top to bottom, the epoch varies from 1 to 300.
WA makes the distributions of channel weights symmetric around 0. With a symmetric distribution around zero for the weight, the activation can also have a
symmetric distribution around zero.

TABLE III
APPLYING WA TO VARYING DEPTH MEASURED BY ERROR RATE. WA IS
ABLE TO TRAIN VERY DEEP NETWORKS FOR BOTH SMALL AND LARGE

BATCH SIZES.

CIFAR-10

Batchsize 1 Batchsize 64
Model (+WA) Error Error

ResNet18 5.65 6.23
ResNet34 5.84 5.78
ResNet50 6.61 6.42

ResNet101 5.74 6.41
ResNet152 6.09 6.52

Fig. 4 (b), the weight distribution tends to be symmetric around
zero. From Fig. 4 (c), we note that the proposed WA method
can realize the same functionality of BN making the weights
symmetric and smooth during training. Channel and layer
weights distribution during training of other normalization
methods can be found in the supplementary material. With
a symmetric distribution around zero for the weight, the
activation can also have a symmetric distribution around zero.
How are the channel activations distributed? In Fig. 2 we
have found that before training, the proposed WA method
can effectively normalize channel activations by aligning the
weights within each filter. In Fig. 5 we further explore how
the channel activations distributed on a trained ResNet50
network. We visualize the activation distributions for 4
different channels taken from two layers, a middle layer (the
2rd conv layer of the 8th residual block) and the last classifier
layer. Since the weight decay is used, the scale and shift
parameters γ, β are converged to small values. From Fig. 5
(d), we have similar observations as in Fig. 2 that our method
can normalize activation of different channels to zero mean
and same variance. Fig. 5 (e) also illustrates WA can be used
in conjunction with GN to further normalize the activations.

Functionality of different components. We align the
filter weights by subtracting the mean and dividing by a
properly scaled derivation. For our method, there are two
components: E[w] = 0 in Eq. (6) Var[w] = 2

n in Eq. (9).
We conduct an comparative results for our model with

TABLE IV
COMPARATIVE RESULTS FOR VGG16 AND RESNET18 MODELS WITH

DIFFERENT COMPONENTS. BOTH COMPONENTS CONTRIBUTE
SUBSTANTIALLY TO THE PERFORMANCE.

Components in WA VGG16 ResNet18
E[w] = 0 Var[w] = 2

n
Error Error

× × - 28.23
X × 35.74 27.97
× X - 28.03
X X 27.85 24.92

different components for VGG and ResNet18 models on
CIFAR-100. In Table IV we start with the baseline model [36]
and augment incrementally with the two components. We
observe that both components contribute substantially to the
performance of the whole model.

D. Comparison with state-of-the-art

Image classification on ImageNet. We experiment with
a regular batch size of 64 images per GPU on plain and
residual networks. The total training epoch is 100. The initial
learning rate is 0.1 and divided by 10 at the 30th, 60th and
90th epoch. Table V shows the top-1 and top-5 error rates
of image classification on ImageNet. For plain networks,

TABLE V
TOP-1 AND TOP-5 ERROR RATES OF IMAGE CLASSIFICATION ON
IMAGENET. WA AND WA+BN CAN WORK WELL ON LARGE AND

COMPLEX DATASETS.

model Top-1 (%) Error Top-5 (%) Error

VGG16∗ (Baseline) 31.30 11.19
VGG16 (BN)∗ 29.58 10.16
VGG16 (WA) 29.78 10.23

VGG16 (BN+WA) 27.07 8.78
ResNet50 (Baseline)† [36] 27.60 -

ResNet50 (BN)∗ 24.89 7.71
ResNet50 (WA) 26.62 8.91

ResNet50 (BN+WA) 24.04 7.12

The ∗ denotes that we directly test the PyTorch pretrained model.
The † denotes the numbers from the reference.

WA performs relatively well as BN, only 0.2% difference on
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(a) Baseline (b) BN (c) GN (d) WA (e) WA+GN

Fig. 5. Channel activation distributions of trained models on CIFAR-100. Different color represents different channel. γ and β are the parameters in each
normalization. WA can align the channel activations by normalizing channel weights.

top-1 error rate. Combining WA with BN outperforms BN
on VGG16 by 2.51% top-1 error rate and 1.38% top-5 error
rate. For residual networks, WA performs slightly worse than
BN, but combined BN+WA surpasses BN by 0.85% on top-1
error rate and 0.59% on top-5 error rate. This shows that WA
and WA+BN can work well on large and complex datasets.

Domain adaptation on Office-31. Table VI presents
overall scores of different normalization methods and their
combination with WA on Office-31 dataset. Here we use
ResNet50 models pretraied on CIFAR-100, which are obtained
from previous experiments. To perform domain adaptation
experiments, we finetune the pretrained model on a source
domain, and validate it on two target domains with 0.001
initial learning rate, e.g. finetune on A, and validate on W and
D. Model with WA consistently outperforms model with GN,
IN and LN. Table VI also shows that our method WA can
be applied to other normalization methods successfully and
improves domain adaptation performance. In Office-31, the
three domains A, W and D have different sample distribution.
Thus the normalization methods that rely on sample statistics
perform worse than our method WA, which only applies
on weights and is independent of sample statistics. When
combined with WA, other activation normalization methods
can benefit from the sample-independent merit of WA, which
boosts their domain adaptation performance.

Semantic segmentation on PASCAL VOC 2012. To
investigate the effect on small batch size, we conduct
experiments on semantic segmentation with PASCAL VOC
2012 dataset. We select the DeepLabv3 [46] as baseline
model in which the ResNet50 pre-trained on ImageNet is
used as backbone. Given the pretrained ResNet50 models
with BN and BN+WA on ImageNet, we finetune them on
PASCAL VOC 2012 for 50 epochs with batch size 4, 0.007
learning rate with polynomial decay and multi-grid (1,1,1),

TABLE VI
CLASSIFICATION ACCURACIES (%) ON OFFICE-31 DATASET (RESNET50).

WA CAN BE APPLIED TO OTHER NORMALIZATION METHODS AND
IMPROVES DOMAIN ADAPTATION PERFORMANCE.

Method A → W W → A A → D D → A W → D D → W Avg

WA 34.62 42.89 52.05 44.09 87.67 80.00 56.89
BN [1] 46.92 48.91 57.53 37.11 90.41 70.00 58.48
BN + WA 49.23 36.38 58.90 40.00 91.78 76.92 58.87
GN [21] 46.92 42.89 50.68 39.76 82.19 75.38 56.30
GN + WA 46.15 54.46 50.68 37.83 87.67 78.46 59.21
IN [20] 36.92 33.98 41.10 37.11 84.93 76.92 51.83
IN + WA 39.23 41.45 38.36 38.07 90.41 73.85 53.56
LN [19] 37.69 29.89 45.20 33.97 79.45 69.23 49.24
LN + WA 50.77 42.89 56.16 41.69 91.78 80.77 60.68

and evaluate the performance on the validation set with
output stride 16. The evaluation mIoU of BN method is
73.80%, and that of BN+WA is 74.87%. Combined with WA,
the original BN performance is improved by 1.03%. This
further shows that WA improves other normalization methods.

V. CONCLUSION

We propose WeightAlign; a method that re-parameterizes
the weights by the mean and scaled standard derivation com-
puted within a filter. We experimentally demonstrate Weigh-
tAlign on five different datasets. WeightAlign does not rely
on the sample statistics, and performs on par with Batch
Normalization regardless of batch size. WeightAlign can also
be combined with other activation normalization methods and
consistently improves on Batch Normalization, Group Normal-
ization, Layer Normalization and Instance Normalization on
various tasks, such as image classification, domain adaptation
and semantic segmentation.
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APPENDIX

VI. PROOF OF SYMMETRIC

Given two independent random variable X and Y , the
distribution of product random variable Z, where Z = XY ,
can be found as follows,

fZ(z) =

∫ ∞
−∞

1

|t|
fX(t)fY (

z

t
) dt. (11)

If the distribution of X is continuous at 0, then we have,

P (Z ≤ z) = P (XY ≤ z)

= P (Y ≤ z

X
|X > 0)P (X > 0) + P (Y ≥ z

X
|X < 0)P (X < 0)

=

∫ ∞
0

P (Y ≤ z

t
)fX(t) dt+

∫ 0

−∞
P (Y ≥ z

t
)fX(t) dt.

(12)
We take the derivation of both sides w.r.t. z and we get,

fZ(z) =

∫ ∞
0

1

t
fY (

z

t
)fX(t) dt+

∫ 0

−∞

−1
t
fY (

z

t
)fX(t) dt

=

∫ ∞
−∞

1

|t|
fX(t)fY (

z

t
) dt.

(13)
Suppose the distribution of random variable Y is symmetric
around zero, where fY (y) = fY (−y). Then we can have,

fZ(z) =

∫ ∞
−∞

1

|t|
fX(t)fY (

z

t
) dt

=

∫ ∞
−∞

1

|t|
fX(t)fY (

−z
t
) dt

= fZ(−z).

(14)

Therefore, the distribution of product random variable Z
will be symmetric around zero, if the distribution of one of
independent random variable X and Y is symmetric around
zero.

VII. EXPLANATION OF WA EQUATION FORM

In section III-B, we give out the expression for WA as
Eq. (10). Compared with BN, WA does not have the β
term since it manipulates the weight directly instead of the
activations. If we add a β term to Eq. (10), it will result in,

ŵ = γ
w − E[w]√
n/2 ·Var[w]

+ β. (15)

When it multiplies with the input activations x, we will get an
extra βx, which is similar to the element in residual blocks.
This will introduce the drift of activation variance again, which
goes against our original intention.

VIII. ADDITIONAL EXPERIMENTS AND VISUALIZATION

A. Scale factor in WeightAlign

We here conduct an ablation study experiments to validate
the effect of our scale factor

√
n/2 in Eq. (10). Specially,

we compare our scale factor with a 0.2x our scale factor, 2x
our scale factor and 4x our scale factor. The experiments are
shown in Fig. 6. We find that a similar scale to

√
n/2 will

lead to similar performance. But our scale
√
n/2 has the best

performance. Any other scale factors would cause the failure
of training. Thus a proper scaled derivation plays an important
role to make the training stable.

Fig. 6. Ablation study of scale factor. Validation error rates with different
scale factors on CIFAR-100 (ResNet18). A slightly different scale factor can
cause a failure of training like the red line. A proper scale factor is important
to stabilize the optimization. Our scale achieves the best performance among
other trainable scale factors.

B. Empirical analysis in Section III-D

We further show activation distributions for different nor-
malization methods over 8 different channels taken from four
different layers: the 1st, 3rd, 7th intermediate convolutional
layers and the last classification layer. Fig. 7 shows the
comparison between baseline and other normalization methods
including WA. Fig. 8 shows the cases when IN, LN and GN
are used in conjunction with our WA.

C. Visualizations of weights and activations in Section IV-C

We visualize the distributions of weights and activations
as epoch increases during training. Fig. 9 and Fig. 10 show
weights distributions of a single channel in a convolutional
layer. The weights distributions of WA and BN are smooth and
symmetric around zero, while the ones of other normalization
methods are rough or asymmetric. Adding WA with LN, IN
and GN smooths and symmetrizes the weights distributions
of channels. Fig. 11 and Fig. 12 show activation distribu-
tions of a single channel in a convolutional layer. Similarly,
the activation distributions of WA and BN are smooth and
symmetric around zero, while the ones of other normalization
methods are rough or asymmetric. Adding WA with LN, IN
and GN smooths and symmetrizes the activation distributions
of channels.
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Fig. 7. Each color represents the activation distribution of different channels for different layers. The first three columns denote 1st, 3rd, 7th convolutional
layers and the last one presents the last classification layer before softmax. All normalization methods can reduce internal covariate shift to some extent
comparing with baseline.
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Fig. 8. The proposed WA can be used in conjunction with BN, LN, IN and GN. The first three columns denote 1st, 3rd, 7th convolutional layers and the
last one presents the last classification layer before softmax. Note that the activation we plot here is before passing through specific normalization layer.



(a) Baseline (b) WA (c) BN

(d) LN (e) IN (f) GN

Fig. 9. Weights distributions of a single channel in a convolutional layer for different normalization methods. WA and BN have smooth and symmetric weight
distributions.

(a) WA + BN (b) WA + LN

(c) WA + IN (d) WA + GN

Fig. 10. Weights distributions of a single channel in a convolutional layer for different normalization methods in conjunction with WA method. Adding WA
smooths and symmetrizes the weight distributions.



(a) Baseline (b) WA (c) BN
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Fig. 11. Activation distributions of a single channel in a convolutional layer for different normalization methods. WA and BN have smooth and symmetric
weight distributions.

(a) WA + BN (b) WA + LN

(c) WA + IN (d) WA + GN

Fig. 12. Activation distributions of a single channel in a convolutional layer for different normalization methods in conjunction with WA method. Adding
WA smooths and symmetrizes the activation distributions.


