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Abstract—Recognizing human-object interactions is challeng-
ing due to their spatio-temporal changes. We propose the Spatio-
Temporal Interaction Transformer-based (STIT) network to rea-
son such changes. Specifically, spatial transformers learn humans
and objects context at specific frame time. Temporal transformer
then learns the relations at a higher level between spatial
context representations at different time steps, capturing long-
term dependencies across frames. We further investigate multiple
hierarchy designs in learning human interactions. We achieved
superior performance on Charades, Something-Something v1
and CAD-120 datasets, comparing to baseline models without
learning human-object relations, or with prior graph-based
networks. We also achieved state-of-the-art accuracy of 95.93%
on CAD-120 dataset [1] by employing RGB data only.

I. INTRODUCTION

Some human-object interactions (HOIs) are difficult to
recognize, e.g., human is cleaning an oven, or taking food
from the oven, where the oven affords to different interactions
including open, clean and close. Also, the presence of various
items in the scene at the same time could affect model learning.

Early action recognition works, such as ConvNet [2], [3],
recurrent neural networks (RNNs) [4], [S] and 3D convolution
models [6], [7], learn a global representation of an action with-
out considering human-object interactions. However, contex-
tual information about an interaction, including human-object
and object-object relationships, is critical and discriminative
at specific times and throughout a video.

Recent work explored graph-based techniques for action
recognition in videos [8], [9], [10], [11], [12], using spatio-
temporal graphs to learn objects and human relations. Trans-
formers [13], [14] also learn spatio-temporal relations in
videos, e.g., [15] focuses on object layout relationships with
global video representation and [16] considers spatial and se-
mantic embeddings of objects, yet hierarchical spatio-temporal
relations for HOI recognization remains unexplored.

Since discriminative cues about an interaction can be in-
tensive at specific moments across video frames [9], we
propose to learn interactions in a hierarchical manner. Inspired
by Transformers in vision tasks, we exploit them forming
our spatial and temporal learning network. Through the spa-
tial transformer, relationship between human and objects is
learned, revealing the local context even in case of objects not
being close to human within a frame. Later, long temporal
dependency between interactions at different frames is cap-
tured via the temporal transformer, where it receives compact
representations of interactions at each frame across a video.

Unlike other works, e.g., [17], where different transformer-
based architectures was proposed for video classification, we
investigate the use of hierarchical structures in modeling
human and object interactions through transformers. To our
best knowledge, we are the first to study hierarchical modeling
in human-object interactions with transformers based solely on
visual appearance features. Our main contributions include:

o Developing a novel transformer-based framework to learn
spatio-temporal interrelations between humans and ob-
jects in videos, which captures both long-term and non-
local dependencies in HOIs across video frames.

o Investigating how different hierarchical organizations in
network design impact HOI learning.

« Evaluating our model on three datasets, namely Charades
[18], Something-Something v1 [19] and CAD-120 [1].
STIT is flexible in adapting any backbone without end-
to-end training. It outperforms all counterpart approaches
and achieves state-of-the-art result in CAD-120 dataset
[1] with 95.93% accuracy using RGB data only.

II. RELATED WORK

Video action recognition models. Using all-video-frame
features is required by standard methods for action recognition
in videos. 2D/3D convolution neural networks (CNNs) [20],
[21], [22], [23], [3] are used to extract video features, e.g., [3D
[6] inflates 2D convolutions to 3D, yielding good results on
the Kinetics action dataset. Sequence modelling networks, e.g.,
RNNs and LSTMs [4], can also be used. Other approaches,
e.g., [24], focus on long-term dependencies and learn pixel-
wise [25] or interframe interactions at various time scales
[24]. Optical flow and depth data can also improve action
recognition on top of the visual information retrieved from
RGB images [2], [26], [27], [28]. The above methods rely
on complete video features (e.g., global descriptors) rather
than discriminative indicators of an action (e.g., spatial and
temporal interactions between objects and humans).

Transformers for Computer Vision. Transformer-based
networks are successful in natural language processing (NLP)
[14] and computer vision tasks, e.g., image classification [13],
[29], object detection [30], video segmentation [31] and action
recognition [32], [33], [34]. Recently, vision transformer (ViT)
[13] achieved state-of-the-art performance in image classifi-
cation without applying convolution layers, and is extended
to video action recognition where spatio-temporal tokens are
extracted from videos and fed to transformer encoders [35],



[17]. Transformer encoder-decoder networks can detect hu-
man, object and their interactions in an image, benefited from
self-attention to capture better contextual relationships [36],
[37]. In contrast, we apply hierarchical transformer encoders
and study their effectiveness in learning relations of human
and object tokens in space and time of a video.
Human-object relations in videos. Several studies ex-
plored visual relationships to recognize HOIs in videos [38],
[39], [11]. Graph neural networks, namely graph convolution
network (GCN) [40] and graph attention networks (GAT) [41],
can capture spatio-temporal relation between visual nodes,
including humans and objects [42], [8], [43]. In [8], GCNs are
used through space and time graphs to capture the evolution
of objects and their context throughout a video. Also, spatial
and temporal relationships between humans and objects in
each video are modeled through a graph attention model,
considering their spatial distance [12]. Herzig et al. [9] learned
hierarchical context of actions by considering the relation
between visual phrases at frame level via non-local operation,
then aggregating the features to learn the temporal context
of these relations. Transformers can learn action context by
observing the visual relations among entire video features and
the human in the center clip [44]. Transformers can also cap-
ture spatio-temporal contexts of objects by considering object
spatial information (e.g., location) and object’s category [15],
[16]. Our research exploits the relationship between humans
and objects in a hierarchical way through transformers, with
visual appearances of humans and objects being used solely.

III. METHODOLOGY
A. Network Overview of STIT

The overall architecture of STIT is shown in Fig. 1. The
inputs to the network are the extracted human and object
region features from a backbone feature map through RolAlign
[45]. They can serve as tokens for spatial transformer encoders
rather than dividing each frame into N patches as in [17], [13].

B. Transformer

A transformer [13], [14] mainly comprises multiple layers
with multi-head self-attentions (MHA) in each layer and feed
forward layers (MLPs). Layer normalization with residual
connections is applied before MHA and MLPs. In self-
attention, the input is transformed into three forms through
linear transformation producing queries (Q), keys (K) and
values (V). Self-attention is written as:

Vdy
where dj, is the key dimension. Moreover, position encoding
(PE) is attached to input embeddings in order to maintain a
track of the position of each input token.

Attention(Q, K, V) = Softmaz( )V (1)

C. Spatio-Temporal Transformers in STIT

As ViT [13] is flexible in learning token relations, we adapt
it forming our spatial and temporal transformer encoders.
In spatial encoder, local and non-local dependency relations

between human and objects (i.e., tokens) in a frame can
be captured. Non-local means when objects and humans are
distant from each other within a frame. Spatial-level inter-
actions imply capturing local contextual information where
human and object relations at the same time step are learned.
This can be done through multi-head attention in the spatial
transformer layer where all pairwise interactions between
tokens (i.e., humans/objects) in a frame are captured. Hence,
each token representation will be refined with respect to all
other object tokens appeared at the same moment via self-
attention, which effectively captures each object context. Since
we adapt ViT, we prepend a learnable class token to objects
at each time step, which is proven by ViT that generates a
compact representation for an image. Our STIT considers it
as a representation for local context at each time step. The
input of a spatial transformer at time ¢ is human and objects
that are embedded via linear projection to generate tokens of
1D dimension with the size of 2048 each. As in [46], [13], a
1D learned positional encoding are also added to tokens for
retaining their positional information. We can write the input
to the spatial transformer at time ¢ as:

Xt = [Classta 1/1(’%1)7 w(O%% w(OtQ)7 ) 1/J(0fv)] + Pt (2)
z; = Spatial-Transformer, (X;) 3)

where 1) stands for linear embeddings, h’ and o respectively
represent a human and an object visual feature at time f,
and N is the number of objects. P; indicates the learned
positional embedding with N X d size. class; is an extra
token that is prepended to tokens at each time step t. This
class token is randomly initialized and via spatial transformer
layers, the token is attended and gathered information from all
other tokens in a frame at time t. z; is the updated version of
classy, and is the output of the spatial transformer at time t.
Thus, z; represents the local context of interactions at time t.

To capture long-term HOI dependency, we add a second-
level transformer for modeling temporal HOI evolution. The
input tokens of the temporal transformer encoder are the
updated class tokens outputted from the spatial transformers,
that retain an abstract representation of interactions at each
frame. The input to temporal transformer is then:

H = [Class’uidEOa ¢(Z1)7 ¢(22)a ¢(Z3)7 sy QS(ZT)] + PI (4)
Yinteraction = Temporal-Transformer(H ) )

where ¢ is a linear transformation. Similar to spatial trans-
formers, we prepended new class token to the token sequence
which is classyigeo In this level. z; is the latent token
generated by spatial transformers at temporal index ¢ and T
is the number of frames in a sequence. P; is the positional
encoding that learns and preserves the position of each token
in a sequence. In the temporal transformer, the class token
is attended to other tokens in the sequence, which are the
compact representations of interactions at different time steps.
Thus, high-level hierarchy of interactions is learned, providing
discriminative cues of an action.
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Fig. 1. Our proposed spatio-temporal transformer (STIT) model. SEmb. and TEmb. stand for spatial and temporal token embeddings, respectively.

IV. EXPERIMENTS

We validate STIT on Charades [18], Something-Something
vl (SSv1) [19] and CAD-120 [1] datasets. Charades has 9,848
multi-label videos with indoor daily activities. During training
phase, about 8K videos with action classes of 157 are used
whereas 1.8K videos are used in the validation phase. We
choose this due to its large-scale with most videos containing
humans contacting with various objects. SSv1l contains 174
classes and 108,499 videos with single label each. Unlike
Charades, most videos in SSvl have clear background and
actions that involve hands interacting with objects rather than
involving whole human bodies. We also evaluate STIT on
CAD-120 [1] which contains 120 videos with ten diverse
human interactions performed by four different actors. Our
implementation only utilized RGB images of CAD-120, de-
spite it also contains depth images and skeleton information.

A. Experiments on the CAD-120 Dataset

1) Training details: To train STIT, we take 30 evenly
sampled frames from each video. To extract human and objects
features, we follow [47] where region of interest (Rols) that
indicate the bounding boxes of human and objects are cropped
and reshaped to 224x224x3 for meeting the input size of
2D ResNet backbone [48]. Hence, 2048 features for each
human and objects are extracted from ResNet-50 [48]. These
human and object features are used as initial tokens for
STIT. We present training hyper-parameters in Table I. The
supplementary material contains further details.

2) Model Variants and prior works: We analyse four vari-
ants of our model, namely LSTM-Spatial-T, LSTM-Pool,
LSTM-GAT and GAT-Temporal-T, to investigate the im-
portance of our STIT model components, with T standing
for transformer. LSTM-Spatial-T investigates the impact
of a temporal transformer on learning temporal dependencies
across frames. We replace our model with two layers of
Long-short Term memory (LSTMs) [49] which may be used
in sequence learning of videos [4], [5]. The LSTM-Pool
and LSTM-GAT models investigate the role of the spatial
transformer in understanding the spatial context of HOIs.
We hence use pooling and Graph Attention Networks (GAT)
[41] to replace our model. Finally, GAT-Temporal-T in-
vestigates how the spatial transformer affects the temporal

transformer when it is replaced by GAT [41]. We also train
an additional model (NO-Relation) that ignores the spatial
relationship between humans and objects, instead concate-
nating their features and pooling them across time. Table
IT shows our STIT model outperforms all other variants.
We observe a 2.62% drop in accuracy when replacing the
the temporal transformer with LSTM, indicating temporal
modeling via transformers is superior to LSTMs. We further
observe our spatial transformers outperform GAT when they
work with either LSTMs or temporal transformer. Finally,
disregarding the spatial relationship between HOIs degrades
model performance by 9.24%.

Fig. 2 compares HOIs recognition by model variants. In the
first example, the spatial transformer gives more discriminative
context than other models, successfully identifying the human
is having a meal. In the second example, the human is stacking
objects, which is analogous to the reversed action of “unstack-
ing objects”. The spatial transformer cannot understand such
an action on its own. Yet our STIT correctly recognizes the
action via the temporal transformer. Similarly, GAT with a
temporal transformer can also correctly predict the action.
This confirms that the temporal modelling via transformer
outperforms LSTMs to recognize these type of interactions.
Some examples of failure are shown in the last example, where
the person is picking an object and all models incorrectly
identify it as arranging objects. This may be because that in
some videos the arranging and picking action of the same
object could be similar but the difference is based on the
human pose. We leave this for future work by considering
human skeleton information. We provide a confusion matrix
of our prediction results on CAD-120 [1] in the supplementary.
Notably, as in Table III, comparing to previous works, which
mostly use depth and skeleton data, our STIT model still
achieves the best results even with RGB data only. Even
[50] has proposed a 3D model to leverages RGB data for
action recognition, our STIT model achieves 2.33% of higher
accuracy. This demonstrates the importance of performing
HOI reasoning both at each frame and over a course of HOIs.
Also, transformer properties, such as multi-head attention and
learnable token placements, along with a two-level hierarchy
of human-object relation modelling, help our STIT model
achieve state-of-the-art accuracy on CAD-120 [1].



TABLE I
A SUMMARY OF TRAINING SETTINGS FOR OUR STIT MODEL ON CAD-120 [1] AND CHARADES[18].

Dataset Optimizer LR Epochs Decay Training Strategy
CAD-120 [1] Adam 2.e-6 100 each 50 steps | Leave-One-Out Cross-Validation
Charades [18] SGD 0.018 60 each 40 steps Two-stage Training

NO-Relation GAT-Temporal-T LSTM-Spatial-T Our STIT
Picking objects Having meal Having meal

Picking objects

LSTM-Spatial-T Our STIT

Havi

iﬁiﬁiiﬁ

GAT-Tempora-_T Our STIT
Arranging objects Arranging objects

GAT-Temporal-T
i nb)mls

Model:
Predictions:

NO-Relation
Arranging objects

LSTM-Spatial-T

Arranging objects

Fig. 2. Prediction results of some actions by applying four different models
on CAD-120 [1]. For simplicity, bounding boxes are not shown.

3) Ablation studies: To validate the effectiveness of each
component of our STIT model, we conduct two main experi-
ments with STIT-Spatial and STIT-Temporal. In STIT-Spatial,
the temporal transformer is replaced by average pooling (e.g.,
over time dimension) whereas in STIT-Temporal the spatial
transformers are replaced by pooling (e.g., pooling over nodes
at time t). As shown in Table IV, ignoring either spatial or
temporal hierarchy leads to decreased model performance.
Moreover, a 2.60% performance loss over our STIT model
is observed when omitting the temporal transformer, because
long term dependencies between HOIs over time is not
explicitly modeled. We also notice that model performance
decreases significantly by 13.5% when when replacing the
spatial transformer with pooling. Because human and objects
features are merely extracted from ResNet-50 [48] that is pre-
trained on ImageNet [51]. In contrast, embeddings in spatial
transformers enhance the token features besides learning the
relations between human and objects at each frame, which
lead to model accuracy improvement to 95.93%.

As shown in Table IV, we conduct additional experiments
to explore the affect of using class token as a representation
of the spatial context at time t and for the video which is
used as the output of the temporal transformer. STIT-spatial-
mean, STIT-Temporal-mean and STIT-mean indicate replacing
the output of spatial, temporal and both spatial and temporal
transformers in STIT with mean token instead of latent class
token, respectively. Notably, using latent token as the output
of spatial and temporal transformers leading to better results.

B. Experiments on the Charades Dataset

1) Implementation details: To train our STIT, we employ
two models as our backbones including Inflated 3D ConvNet

(I3D) [6] with Resnet-50 and Slowfast-R50 [3]. We initialize
I3D with pre-trained parameters on Kinetics-400 dataset [55]
from [56]. For Slowfast-R50, we access the model via the
Slowfast Github repository [56] where it has previously been
trained on Charades. As input, we sample 32 (as in [8]) and 64
(as in [3]) frames from each video clip with 224x224 pixels for
I3D and Slowfast-R50, respectively. We use a 2-stage training,
which is different from [8], [9], [10], where we do not train the
backbone and our model together for the third stage as end-to-
end. This indicates the flexibility of our model to be integrated
to any backbone with fewer number of training stages and with
different settings of backbones including the one that is already
trained on the same dataset as in Charades or using pretraind
model as we used for training our model in CAD-120 [1].

Since Charades dataset does not provide human and object
bounding boxes, we use Region Proposal Network (RPN) in
Faster R-CNN [57] to produce object proposals. We use the
top 15 proposals at each frame. We apply RolAlign on the
output feature maps of I3D model and the Slow path. Thus,
human and object tokens are with the size of 2048 each after
max pooling. Following [8], [9], [10], we concatenate the
output of our STIT model with the output of the backbones
(e.g., before FC), then fed the concatenated feature to fully
connected layer with sigmoid activation for classification.
Training hyper-parameters for Charades can be seen in Table
I. We employ binary cross-entropy loss to train our STIT
model with multi-label videos in charades. The supplementary
material elaborates further implementation details.

From each video, we apply multi-view inference where 10
clips are sampled from a video as in [8], [3]. The evaluation
metric is the mean average precision (mAP) where scores from
different views are fused to report the results.

2) Comparison with state-of-the-art approaches: Table V
shows the results of all prior methods that applied on the same
dataset. The most close methods are those using the same
backbone network as ours. It is observed that considering
pose (P) information is not enough for correctly capturing
HOIs. This indicates the importance of learning human-object
relations in both space and time. Although we utilize fewer
number of proposals (e.g., 15), our results are better than [8]
where 50 proposals were used. Also, we achieve superior re-
sults comparing to STAG [9] that considers relations between a
compact interactions, which include visual phrase (e.g., union
box of both human and object). This indicates the power of
learning the local context of human and objects through spatial
transformers even without the visual phrases. Furthermore,
learning the relation between visual tokens of human and
objects gives more cues rather than considering the layout of
human and objects as in STLT+I3D model. Also, our STIT



TABLE III

TABLE 11 TABLE IV
PERFORMANCE OF MODEL VARIANTS ON RESULTS WITH CAD-120 [1]. NOTE THAT [52], ABLATION RESULTS ON CAD-120 [1].
CAD-120[1]. [53], [1] AND [54] HAVE EMPLOYED ADDITIONAL
SKELETON OR DEPTH INFORMATION.
Model Accuracy %
Model Accuracy% Baseline (concat.) 86.69
Model Al
LSTM-Spatial-T 9331 nge RE) =T azcy% STIT-Spatial 93.34
LSTM- Pool 90.26 Liu egt al [5'3] 93'3 STIT-Temporal 82.43
LSTM-GAT, 92.47 onpula .et al[1] 80.6 STIT-spatial-mean 95.13
GAT-Temporal-T 88.39 pp : : STIT-Temporal-mean 93.34
: Tayyub et al. [54] 95.2
NO-Relation 86.69 STIT-mean 95.04
STIT 95.93 Sanou et al. [50] 936 STIT 95.93
(ours) . STIT (ours) 95.93 (ours) :
TABLE V TABLE VI

COMPARISON WITH PRIOR APPROACHES ON CHARADES DATASET [18].
NOTE THAT SLOWFAST NETWORK ACHIEVED 45.2%MAP ON CHARADES
USING R101 NETWORK BUT FOR FAIR COMPARISON WE REPORT
SLOWFAST RESULTS WITH R50 NETWORK.

Model Backbone Modality mAP%
2-Stream [58] VGG-16 RGB+Flow 18.6
2-Stream+LSTM [58] VGG-16 RGB+Flow 17.8
Async-TF [58] VGG-16 RGB+Flow 22.4
Multiscale TRN [24] Inception RGB 252
13D [6] Inception RGB 329
13D [8] R50-13D RGB 31.8
STRG [8] R50-I3D RGB 36.2
STAG [9] R50-13D RGB 37.2
Pose and Joint-Aware [59] R50-13D Pose+RGB 32.81
LFB Max [60] R50-I3D-NL RGB 38.6
STLT+I3D [15] R50-13D RGB 38.5
I3D+STIT (ours) R50-I3D RGB 39.62
Slowfast 16 x 8 [3] R50-3D RGB 38.9
Slowfast 16 x 8+STIT (ours) R50-3D RGB 42.49

model can be incorporated with any backbone model rather
than I3D without end-to-end training. As a result, our STIT
model with Slowfast 16 x 8 surpasses its baseline. Thus, the
results show that our STIT outperforms all other counterpart
approaches which reflects the power of structure learning of
HOIs through our two-level hierarchy of transformers.

3) Ablation studies: To evaluate STIT, we conduct ablation
studies to demonstrate the impact of each part of STIT on
learning HOIs. To study the impact of each hierarchy in our
model on learning discrminative representation of HOIs, we
conduct the same ablation experiments as in Sec. IV-A3,
including STIT-Spatial, STIT-Temporal, STIT-spatial-mean,
STIT-Temporal-mean and STIT-mean. Table VI shows the
model performance after applying these settings. We find that
removing the temporal transformer leads to a 3% decline in
model performance whereas the performance loses only 0.84%
when replacing the spatial transformers with pooling. This
indicates the importance of temporal dependencies between
interactions that can be captured via temporal transformer.

We apply different settings in using latent class token over
the mean of transformer tokens. We observe that latent token
provides better compact representation for spatial and temporal
contexts, which are learned via spatial and temporal transform-
ers, respectively. Also, learning human-object relations via our
STIT outperforms the I3D baseline, achieving 5.39% mAP
improvement. Fig. 3 shows examples of HOIs that our STIT

ABLATION RESULTS ON CHARADES [18] USING I3D-R50 BACKBONE.

Model mAP%
13D 34.23
STIT-Spatial 36.60
STIT-Temporal 38.78
STIT-spatial-mean 38.94
STIT-Temporal-mean 38.64
STIT-mean 37.06
STIT (ours) 39.62
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Fig. 3. Comparison between 13D and our STIT on Charades [18].

performs better than I3D. Our STIT model can distinguish
between different interactions with the same objects, such as
taking, holding, and placing a laptop, whereas I3D cannot.
Furthermore, our model can discriminate between how the
same HOI can be performed with various objects, such as
holding a towel versus holding a box. More importantly,
interactions that occur simultaneously can be recognized. For
example, it can be seen in Fig. 3, the human in the third
example is washing a window and this interaction involved
another interaction, which is holding towel at the same time.

C. Experiments on the Something-Something vl Dataset

As in [8], we sample 32 frames and use 10 object proposals
that are generated as in Charades experiment from each frame.
We train our model on the top of fixed I3D backbone where
we extract the tokens features from. We train our model for
50 epochs with batch size of 8 videos. We start with a 0.02
learning rate and it is reduced by a factor of 10 at 35,45 epochs.
Supplementary material provides further details.
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RESULTS OF APPLYING DIFFERENT HIERARCHICAL DESIGNS IN
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Fig. 4. Different network designs for modeling HOIs. STs and TTs stand for
spatial transformers and temporal transformers, respectively. For simplicity,
we use six frames as an example.

TABLE VII
PERFORMANCE OF STIT MODEL ON SOMETHING-SOMETHING V1
DATASET [19] COMPARED WITH PRIOR WORKS. TOP-1 ACCURACY IS
REPORTED ON THE VALIDATION SET.

Model Backbone Top-1% Val
MultiScale TRN [24] Inception 34.4
13D [8] R50-13D 41.6
I3D+similarity graph [8] R50-13D 42.7
STRG [8] R50-13D 434
ECO [61] BNInception+3D ResNet-18 46.4
TSM [62] R50 44.8
TSN [63] R50 19.9
STM [64] R50 47.7
STIT (ours) R50-13D 47.92

As shown in Table VII, our STIT model outperforms other
approaches, which confirms the importance of our proposed
hierarchical learning of human-object interactions, even when
learning different nature of interactions, i.e., hand-object inter-
action in Something-Something v1. Our hierarchical represen-
tation of actions outperforms other relation approaches without
hierarchical representation, such as similarity graph [8], and
other models relying on global representation of actions.

D. Structure Learning of HOIs via Hierarchical Designs

We now justify our network design in employing two-level
hierarchies including spatial and temporal. We also consider
different time windows (e.g., number of frames) for aggregat-
ing the local contexts with different number of temporal trans-
formers, which are referred as close to a small time window
(Close) and wide to a large window (Wide). For simplicity, in
Fig. 4, we show example of close window with two frames.
Note that for the Charades [18] experiments in Table VIII,
the total number of frames is 16 and we use windows of 4
and 8 frames for Close and Wide windows, respectively. For
CAD-120 Dataset [1], we choose 5 and 15 frames for Close
and Wide windows, respectively. We run experiments with
different designs of hierarchical modeling of HOIs including
our model as shown in Fig. 4. Explanations of these designs
are as follows: (A) Hierarchical learning is not considered. The
pairwise relations between all tokens from different time steps
are learned via the spatio-temporal transformer. (B) This is our
STIT design where two-level of hierarchy is used to get the
latent representation of HOIs. (C) We use small window of 2
where three mid-level temporal transformers are used to learn
the relation between compact representations of HOIs with
two frames range. Then, a higher-level temporal transformer
models the relations between the mid-level representations of

Architecture Charades[18] | Charades[18] | CAD-120[1]
ofan (I3D) (Slowfast)
Three-Levels H (Close) 35.15 40.66 89.02
Three-Levels H (Wide) 35.23 40.86 84.44
Non-Hierarchical 3891 41.24 94.21
Two-Levels H (our STIT) 39.62 42.49 95.93

HOIs to produce the final representation of HOIs. Thus, we
have three-level hierarchies of transformers including spatial,
mid-level and high-level transformers. The last design amends
(C) with a larger window frames (e.g., Wide).

As in Table VIII, we find that using more than two levels
of transformers leads to model overfit where deeper levels of
transformers can affect model generalization. Also, without hi-
erarchical learning and using only one level of spatio-temporal
transformer as in Fig. 4 (A), the model produces better results
than three levels of hierarchy with specific temporal range
because it captures the whole relations from different time
steps. Hence, long-term temporal relations are captured well.
Among all these architectures, we verify that our STIT with
two-level hierarchy is the best for modelling HOIs and for
capturing discriminative cues of action context.

Due to the different natures of actions and how they are be-
ing performed by human, some actions can be recognized with
no-hierarchy, while others may require deeper-hierarchies. For
example, recognizing a picking object action requires a deeper
hierarchy in STIT while no-hierarchy fails to identify the
action. In contrast, without a hierarchy in STIT, stacking
objects actions in some videos are easier to be recognized.
Because in picking objects actions, the spatial reasoning for
objects at specific time is critical. However, we believe that in
stacking objects, recognizing such action requires information
about how the status of each object changes across time.

V. CONCLUSION

The structural learning of HOIs captures crucial cues about
how human interacts with different objects. Our STIT ex-
plicitly uses hierarchical learning of the context of humans
and objects to capture their interactions both at specific time
and across a video. We show STIT has outperformed existing
approaches on both Charades and CAD-120 datasets. By
studying different levels of hierarchy for modeling HOIs, we
find that two levels of hierarchy is enough for capturing local
and global context of interactions via spatial and temporal
transformers, respectively. In future work, we will investigate
techniques to distill human objects contexts from various
relation views to recognize HOIs.
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