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ABSTRACT

Network pruning reduces the size of neural networks by re-
moving (pruning) neurons such that the performance drop is
minimal. Traditional pruning approaches focus on designing
metrics to quantify the usefulness of a neuron which is of-
ten quite tedious and sub-optimal. More recent approaches
have instead focused on training auxiliary networks to auto-
matically learn how useful each neuron is however, they of-
ten do not take computational limitations into account. In this
work, we propose a general methodology for pruning neural
networks. Our proposed methodology can prune neural net-
works to respect pre-defined computational budgets on arbi-
trary, possibly non-differentiable, functions. Furthermore, we
only assume the ability to be able to evaluate these functions
for different inputs, and hence they do not need to be fully
specified beforehand. We achieve this by proposing a novel
pruning strategy via constrained reinforcement learning algo-
rithms. We prove the effectiveness of our approach via com-
parison with state-of-the-art methods on standard image clas-
sification datasets. Specifically, we reduce 83 — 92.90% of
total parameters on various variants of VGG while achieving
comparable or better performance than that of original net-
works. We also achieved 75.09% reduction in parameters on
ResNet18 without incurring any loss in accuracy.

1. INTRODUCTION

Deep neural networks typically have large memory and com-
pute requirements, making it difficult to deploy them on
small devices such as mobiles and tablets [1]. These cum-
bersome networks are pruned by removing their redundant
weights, layers, filters and blocks [2} 3,4} 5116l [7]. Neural net-
work pruning strategies can be grouped into three categories
namely i) Offline pruning, ii) Online pruning and iii) Pruning
via Reinforcement Learning.

Offline Pruning requires multiple iterations of training,
pruning, and fine-tuning. magnitude-based pruning [8] which
works on ‘magnitude equals salience’ principle. [9, [10] uses
second derivative of weights to rank connections, More re-
cent approaches suggest look-ahead pruning strategies [11} 5]
where magnitude of previous connected layers is also con-
sidered. Layers are pruned independently to speed up the
pruning process in [12]]. Instead of reducing the original,

deep network (called the “teacher”) by pruning connections,
knowledge distillation [13]] trains another, smaller network
(called the “student”) to mimic the output of the teacher
network. However, it requires designing an ad hoc student
network which is a tedious task.

Online Pruning: A more recent class of techniques poses
the problem of pruning as a learning problem by introducing
a mask vector that acts as a gate or an indicator function to
turn on/off a particular component (connection, filter, layer,
block) [14! 15, [16, [7]. The mask vector can be treated as a
trainable parameter and is directly optimized through gradi-
ent descent. The mask can also be obtained via an auxiliary
neural network [17,13]]. Pruning via Surrogate Lagrangian Re-
laxation (P-SLR) [18]] utilizing surrogate gradient algorithm
for Lagrangian Relaxation [19]. [4} 120, 12} 20] uses Budget
Aware Pruning hat tries to reduce the size of a network to re-
spect a specific budget on computational and space complex-
itie these budgets introduce an arbitrary function that is non-
differentiable. However, one shortcoming of current budget-
aware techniques is that they require the function on which
the budget is being imposed to be either differentiable or fully
specified [4]. This, however, is not always possible when we,
for example, want to impose budgets on metrics such as infer-
ence time. The main question, then, is the following: can we
prune neural networks to respect budgets on arbitrary, possi-
bly non-differentiable, functions? One way to solve this prob-
lem is to leverage some recent techniques in reinforcement
learning (RL) [21} 22]].

Pruning via Reinforcement Learning: In reinforcement
learning [22]] an agent interacts with the environment around
them by taking different actions. Each action results in the
agent receiving a reward depending upon how good or bad
the action is. If the agent is trained to predict sparsity as ac-
tion, then the accuracy of the obtained model can be used as
a reward, resulting in RL based neural network pruning [3]].
Reinforcement learning (RL) [21}, 22] is known to optimize
arbitrary non-differentiable functions while respecting budget
on computational and space complexities. One such example
is AutoML for Model Compression (AMC) [3] in which an
agent is trained to predict the sparsity ratio for each layer.
Accuracy is returned as a reward to encourage the agent to
build smaller, faster, and more accurate networks. Similarly,



Conditional Automated Channel Pruning (CACP) [23]] is an-
other RL-based method that simultaneously produces com-
pressed models under different compression rates through a
single layer-by-layer channel pruning process. While these
methods allow to include both sparsity and accuracy, they lack
fine-grained control over these constraints.

Our main contributions: In this work, we formulate
the problem of pruning in the constrained reinforcement
learning framework (CRL). We propose a general method-
ology for pruning neural networks, which can prune neural
networks to respect specified budgets on arbitrary, possibly
non-differentiable, functions. Furthermore, we only assume
the ability to be able to evaluate these functions for differ-
ent inputs, and hence they do not need to be fully specified
beforehand. Our proposed CRL framework outperform state-
of-the-art methods in compressing popular models such as
VGG [24] and ResNets [25] on benchmark datasets.

2. PRUNING VIA CONSTRAINED
REINFORCEMENT LEARNING

Constrained reinforcement learning [26] is an extension of
the reinforcement learning problem in which agents, in ad-
dition to the reward, also receive a cost. The agent’s goal is to
maximize its cumulative reward subject to its camulative cost
being less than some pre-defined threshold. One interesting
property here is that neither the reward nor the cost function
needs to be differentiable or fully specified. The agent simply
needs to be fed a scalar reward and a scalar cost value each
time it performs an action.

Let 0 denote the parameters of a neural network. Each
element of 6 represents the weight of a single connection.
Removing a connection is thus equivalent to multiplying its
weight by 0. Let £ denote the loss function of the neural net-
work. Pruning, in its most general form, tries to find a mask
M € {0, 1}/ that solves the following optimization:

minimize L£(60 ® M)
9,Me{0,1}1°] )

subject to f(M) < «,

where © is the element-wise Hadamard product, f be some
arbitrary, possibly non-differentiable function, and « is a
known constant. Here f represents the computational and
space complexity of the network. For example, if we want to
compress the network by at least 50% (in terms of the space
it occupies), we can let f be the ¢;-norm and « to be equal
to 0.5|0|. Similarly, if we wanted to optimize for speed, we
could set f to be the number of flops the network consumes
(or the time it takes) when it is pruned according to M.

In our proposed approach, the mask M is modeled via
action performed by an agent who is interacting with the en-
vironment. In the beginning, the environment loads a pre-
trained network (e.g., VGG16 [24]). The agent is then fed
the layer representations of the first convolutional layer in the
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Fig. 1. A graphical visualization of the environment consist-
ing of a pre-trained network that we are interested in pruning.
At time-step t, the policy outputs an action that specifies how
the t*" convolutional layer should be pruned. The environ-
ment executes this action and returns the next state (i.e., layer
(t + 1)*" specifications) and a reward and a cost.

network (as defined in the previous section). The agent then
specifies an appropriate action. This action is then recorded,
and the agent is then fed the next state. Once the agent has
finished predicting its actions for all convolutional layers, the
network is pruned according to the agent’s specified actions
and fine-tuned on the training set (this is the same training
set that was used to pre-train the network). The accuracy of
the fine-tuned network is returned as the agent’s reward along
with the cost (the reward and cost at all other time-steps are
0). Figure|l|shows an illustration of our pruning process.

2.1. Constrained Markov Decision Process

Markov Decision Processes Mathematically, the notion of an
environment is captured through a Markov Decision Process
(MDP). A finite-horizon MDP M is a tuple (S, A, p,r,v,T),
where S € RIS is a set of states, A € R is a set of actions,
p: S x AxS—[0,1] is the transition probability function
(where p(s’|s,a) denotes the probability of transitioning to
state s’ from state s by taking action a), r : S x A — R
is the reward function, + is the discount factor and T is the
time-horizon. A trajectory 7 = {s1,a1,..., s, ar} denotes
a sequence of states-action pairs such that s;1 ~ p(+|s¢, at).
The goal of an agent is to learn a policy about which action
to take in each state. Formally, a policy 7 : S — P(A) is a
map from states to probability distributions over actions, with
m(a|s) denoting the probability of taking action a in state s.
Let r(7) = ZtT:l ~tr(s¢, at) denote the total discounted
reward of a trajectory. The problem of RL is to find a policy
7* that maximizes the expected total discounted reward, i.e.,

7" = argmax J(7) = E;ur[r(7)]. (2)

We parameterize 7 as a neural network to deal with large state
and action spaces. One common approach is to model 7 as a
Gaussian distribution [27] N (ug(s),oT), where pg : |S|—
|A| is a neural network. o € RI! is a trainable vector and
1 is the identity matrix. We will denote all of the parameters
of m with 6. The policy gradients algorithm [28] finds 7*



through stochastic gradient descent. That is, we update 6 as
0 := 0+ VeJ(ms). 3)

The gradient of loss J with respect to 6 can be shown to be

VoJ(0) = VoErany[r(T)] = Erny [V log me(7)r(7)].

“
The proximal policy algorithm (PPO) [29] makes a first-order
approximation to this optimization problem and proposes to
update 7y for some known constant € by solving

7" = argmax By, (1) 5)
= [min (:Zgir(ﬂ,clip <ZZE:§ 1—el+ e) r(ﬂ)(l)

Here clip bounds its first argument between the other two.
The objective function above essentially removes any incen-
tive to move the ratio between the two policies outside of the
interval [1 — ¢, 1 + €.

Constrained Markov Decision Processes: In order to
formulate our problem as a constrained RL problem, we need
to first define our constrained MDP (CMDP). Let ¢ = g o
gr © gr—1 © ...g1 define a neural network with T' convolu-
tional layers, g1, ..., gr followed by a few fully connected
layers collectively denoted as gr. We wish to prune g. Fur-
thermore, let 6, denote the parameters corresponding to layer
t. We define the key components of the CMDP as follows:

1. State, s: Each convolutional layer corresponds to a sin-
gle state. Similar to the scheme in [3] each of these
layers is represented by the following tuple:

(layer (%), input channels, number. of filters, kernel
size, stride, padding)

where t is the index of that layer and the remaining en-
tries are the attributes of a convolutional layer.

2. Action, a: for the action, representations we end up
with a mask vector M, at each layer g;. The length of
this mask vector will be equal to the number of filters
for g,. We use M to collectively denote the mask vec-
tors for all layers.

3. Transition function: The agent always transitions from
state g; to state g;11, and so the transitions are fixed
and independent of the agent’s actions.

4. Reward function, r: Let B be a batch of input exam-
ples (uniformly) sampled from the training dataset. We
define the reward as follows:

—LOOM) ift=T
(s, ar) = . 7

(56, ) {O otherwise ™

where L is the loss function of the network evaluated

on the batch B.

5. Cost function, c: the cost function is defined as

c(sg,ap) = {f(M) ife=T (8)

0 otherwise

where f is our constraint function evaluated on the
batch B.

6. Budget, a: This the budget on f we wish our pruned
network to respect.

The policy predicts a sparsity ratio for each layer. Filters are
then pruned via magnitude-based pruning [8] upto the desired
sparsity.

2.2. Algorithm

Let d, be the dimension of the action. Also, let d; denote
the dimension of the state vector (recall that each state vector
corresponds to a single layer).

We model our policy as a (diagonal) multivariate Gaus-
sian distribution NV (pg, o I). Here pg : R% s R% is a neu-
ral network with parameters 6, o € R4 is a trainable vector
and [ € R%Xda jg the identity matrix (hence o[ is the co-
variance matrix of the distribution). The network g takes in
as input a state vector s provided by environment and outputs
a vector of dimension d,. We then simply sample an action
from N (ug(s), o) and feed it to the environment. In paral-
lel, we also train two other neural networks, Vi : R% — R
and V' : R% — R with parameters ¢, and ¢.. The cost
value functlon is also defined similarly for the cost function.
Recall that having these networks helps us reduce variance.

We initialize our policy and value networks randomly and
collect data D from the environment. Each data point is es-
sentially a tuple (s;, at, St+1,7,¢) where s; and s;41 are the
states at time ¢t and ¢ + 1 respectively, a; is the action taken
at time ¢ and r and c are the reward and cost received as a
consequence of taking action a;. We use this dataset to up-
date our parameters. Furthermore, we initialize our Lagrange
multiplier A with a constant value and also update it using this
dataset. This entire process is repeated until convergence.

Recall that at each iteration, we are interested in optimiz-
ing (here we decompose the expectation over trajectories into
expectation over states and actions):

JPPO
Jiac(A; o)

S3

t=1 s¢,ar~D

= AN Er oy [T (805 Aty S141)] —

St,(lt r
|: (s:.a J (St7at7st+l)
9 [2) t

€))

a)l,

where « is the budget and the losses J(-) are:

T
T
J (St,at,8t+1 E r St;at

t'=t

VJT(8t+1)7 (10)



T
T (s, ap,5041) = Y (st ap) = VE (s141). (1)
t'=t
All parameters are updated via to gradient descent using their
respective learning rates 7;. Specifically, the policy network
is updated as:

0 := 0 — 1 VoJiha(X, mo), 12)
and the Lagrange multiplier as:
A=A — 2 VaJPaa (A, m), (13)

Furthermore, we define the loss for the reward value function
network as:

T
Lr=>" " lr(sear) + 1V, (si41) = Vi, (50|13,
t=1 sy, ar~D
(14)
and update its parameters as:

Gr 1= OPp — "73V¢r£7‘(¢7‘)3 (15)

Similarly, the loss for the cost value function network is de-
fined as:

T
£o=3 2 2 llelsesae) + 7V, (s141) = Voo (o)l
t=1 s¢,as~D
(16)
and its parameters are updated as:

d)c = ¢c - 774V¢>c£c(¢c)’ an

3. RESULTS

3.1. Experimental Setup

We evaluated our approach using CIFAR-10 [30] dataset on
ResNet18 [25]] and variants of VGG [24] network. The train-
ing was performed using Adam optimizer [31]] using learning
rates 77; = 3.0 x 10~* and batch size 60. Experiments were
conducted on VGG11, VGG16, VGG19, and ResNet18. For
each model, we ran the experiments using different budget
values. Initially, the policy network was trained for a fixed
number of iterations. The policy network then pruned the
original model by predicting the sparsity ratio for every con-
volutional layer using the PPO-Lagrangian algorithm. The
Lagrangian multiplier was initialized with a fixed value as
A =1, and ~, and 7, are initialized as 0.99 and 1.00 respec-
tively. Once the network was pruned, it was fine-tuned for
a certain number of iterations. Since fine-tuning is computa-
tionally expensive, we adopted a schedule with hyperparam-
eter values of 0, 32, 128, respectively. It means that we fine-
tune less in the beginning and more towards the end. In prac-
tice, we normalize our rewards and cost values with a running
mean and standard deviation which is continually updated as
more data is collected. Furthermore, we also normalize the
state vector in a similar way to improve stability.

Table 1. Comparison of sparsity and accuracy between un-
pruned network, baseline magnitude-based pruning [8] and
proposed constrained reinforcement learning (CRL).

a=20 a=10
Sparsity (%)  Acc. (%) | Sparsity (%)  Acc. (%)
—  Unpruned ” 89.23 ”r 89.23
O Magnitude-based Pruning 80.00 85.50 90.00 83.80
9 Proposed CRL 83.48 89.11 90.75 88.09
o Unpruned n 90.69 nr 90.69
O  Magnitude-based Pruning 80.00 88.40 90.00 87.10
8 Proposed CRL 83.81 90.96 92.90 89.89
oy Unpruned »r 90.59 n-r 90.59
© Magnitude-based Pruning 80.00 88.40 90.00 86.90
E Proposed CRL-Coarse 83.48 91.06 92.31 91.31

3.2. Ablative Study

To demonstrate the efficacy of the proposed constrained RL
method, we performed experiments on VGG11, VGG16, and
VGGI19 [24] and compared the results with the magnitude-
based pruning method. We train each of these networks on
the CIFAR-10 dataset [30]. Pretrained models of VGG were
used to train the policy network for 40K iterations. During
pruning, the models were fine-tuned by 25K, 35K, 40K it-
erations, respectively, in a fine-tuning schedule. We experi-
mented with budget values @ = 10 and o = 20. Increas-
ing the « value decreases the sparsity of the pruned network.
The ablative study showed that the proposed constrained RL
method is significantly more optimal than magnitude-based
pruning (see Table[I)). Our method achieved higher accuracy
than magnitude-based pruning in all experiments. In fact, it
even outperformed the unpruned network in 4 out of 6 cases.

3.3. Comparison with State-of-the-art

To prove the effectiveness of the proposed constrained RL
approach, we also conducted experiments with ResNetl8,
VGG16 and Resnet50 to compared our results with state-of-
the-art methods on the CIFAR-10 dataset.

In the case of VGG16, we compared our method with
two state-of-the-art methods, namely Conditional Automated
Channel Pruning (CACP) [23], and GhostNet [32]. Our
pruned VGG16 model performed better than both state-of-
the-art methods. Note that when o = 20, our pruned model
contained 2.38M parameters, which are fewer than the pruned
models of both CACP and GhostNet, which contained 4.41M
and 3.30M parameters. Despite this, our pruned VGG16
still produced an accuracy change of +0.27 which is better
than both state-of-the-art methods and our baseline unpruned
VGG16 model. Moreover, when o = 10, our pruned model
contained only 1.05M parameters, but it had an accuracy
change similar to GhostNet, having 3.30M parameters.

Table [2] also shows the comparison of proposed method
with four state-of-the-art methods on ResNet18 architecture
and CIFAR-10 dataset. The state-of-the-art methods include
Prune it Yourself (PIY) [3]], Conditional Automated Channel
Pruning (CACP) [23]], Lagrangian Relaxation (P-SLR) [[L8],



Table 2.  Comparison of proposed Constrained Rein-
forcement Learning (CRL) method with state-of-the-art ap-
proaches on VGG16 [24], ResNet18 [25] and ResNet50 [25]
architectures using CIFAR-10 dataset.

\ Unpruned \ Pruned
Acc. %  Params. | Acc. %  Params. A Acc. %
in millions in millions
CACP [23] 93.02 14.73 92.89 4.41 -0.13
g Ghost Net [32] 93.60 14.73 92.90 3.30 -0.70
® | CRL-a = 20% | 90.69 14.73 90.96 2.38 0.27
” | CRL-a = 10% | 90.69 14.73 89.89 1.05 -0.80
PIY [5) 91.78 11.18 91.23 6.11 -0.55
« | CACP [23] 93.02 11.68 92.03 3.50 -0.99
E P-SLR [18] 93.33 11.68 90.37 1.34 -2.96
Z | PCNN [16] 96.58 11.20 96.38 3.80 -0.20
&) CRL-a = 30% | 91.82 11.68 92.09 291 0.27
CRL-a = 20% | 91.82 11.68 90.97 2.52 -0.85
% AMC (3] 93.53 25.56 93.55 15.34 0.02
> ‘ CRL-a = 55% | 92.97 25.56 93.60 12.34 0.63
O
~

and PCNN [16]. It can be seen that the proposed method
outperformed all the methods in terms of accuracy and three
out of four state-of-the-art methods in terms of compression.
Table 2] also shows the comparison of proposed method with
state-of-the-art AMC [3] method on ResNet50. Our method
at o = 55 outperforms it.

4. CONCLUSIONS

We propose a novel framework for neural network pruning
via constrained reinforcement learning that allows respect-
ing budgets on arbitrary, possibly non-differentiable func-
tions. Ours is a pro-Lagrangian approach that incorporates
budget constraints by constructing a trust region contain-
ing all policies that respect constraints. Our experiments
show that the proposed CRL strategy significantly outper-
form the state-of-the-art methods in terms of producing small
and compact while maintaining the accuracy of unpruned
baseline architecture. Specifically, our method reduces nearly
75.08% — 92.9% parameters without incurring any significant
loss in performance.
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