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Abstract—Text classification aims to assign labels to textual
units by making use of global information. Recent studies have
applied graph neural network (GNN) to capture the global
word co-occurrence in a corpus. Existing approaches require
that all the nodes (training and test) in a graph are present
during training, which are transductive and do not naturally
generalise to unseen nodes. To make those models inductive, they
use extra resources, like pretrained word embedding. However,
high-quality resource is not always available and hard to train.
Under the extreme settings with no extra resource and limited
amount of training set, can we still learn an inductive graph-
based text classification model? In this paper, we introduce
a novel inductive graph-based text classification framework,
InducT-GCN (InducTive Graph Convolutional Networks for Text
classification). Compared to transductive models that require
test documents in training, we construct a graph based on the
statistics of training documents only and represent document
vectors with a weighted sum of word vectors. We then conduct
one-directional GCN propagation during testing. Across five text
classification benchmarks, our InducT-GCN outperformed state-
of-the-art methods that are either transductive in nature or
pre-trained additional resources. We also conducted scalability
testing by gradually increasing the data size and revealed that
our InducT-GCN can reduce the time and space complexity. The
code is available on: https://github.com/usydnlp/InductTGCN,

I. INTRODUCTION

Text classification is one of the most fundamental natural
language processing research tasks, including topic classi-
fication, news categorisation, and sentiment analysis. The
aim of the text classification is to classify/categorise textual
documents into the predefined classes. The high-dimensional
textual input is assigned to the output class with binary or
multi-class classification. Note that we only consider a single-
label text classification problem in this research.

Many recent text classification studies have focused on
learning text representations using sequence-based learning
models, such as convolutional neural networks (CNN) [1f]
or recurrent neural networks (RNN) /long short term mem-
ory (LSTM) [2]. The CNN/RNN-based models focus on
the locality and sequence of text and mainly aim to detect
semantic and syntactic information in local consecutive word
sequences. It tends to neglect global word co-occurrence in a
corpus and ignore non-consecutive and long-distance semantic
information [3|]. However, those models need a relatively large
training set to perform better. Still, most real-world cases
(e.g., specific domain or some low resource languages) have
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a very limited amount of training set (limited labeled data).
Recently, pre-trained models, like BERT [4], RoBERTa [5],
have achieved state-of-the-art performance on several NLP
tasks with limited amount of training data. However, those
models require much computation and external resources for
pre-training, which are not always available.

[6] proposed TextGCN and performed well, especially
when the percentage of training data is low without using any
external resources and with low computation costs. It is an
initial text GNN framework, which conducts a straightforward
manner of graph construction and applies a GCN-learning 7]
to deal with complex structured textual data and prioritise
global feature exploitation. More recent studies [8]—[|10] utilise
more contextual information or optimising the computation.

However, most graph models are intrinsically trans-

ductive. The learned node representations/embeddings for
words/documents are not naturally generalisable to unseen
words/documents, making it challenging to apply in the real
world. The transductive nature of these graph-based learning
models requires relatively large computational space when the
corpus size is large. Therefore, an inductive model is needed.
To expand a transductive graph-based text classification into
an inductive model, we mainly consider the following three
requirements: 1)The inductive learning model must not include
any test set information during the training. 2)The inductive
model must not re-train the model on the whole new graph
when it learns a new sample. 3)We use corpus-level graph-
based text classification to make an inductive model. It nicely
covers the benefit of GNN, which captures the complex global
structure of the whole corpus and prioritises global feature
exploitation. In this paper, we propose a novel inductive
graph-based text classification framework, called InducT-
GCN (InducTive Graph Convolutional Networks for Text
classification). We introduce a new inductive graph framework
of graph construction, learning, and testing, and it can expand
to any transductive GCN-based text classification model. The
paper includes the following contributions:

o To the best of our knowledge, we introduce the first in-
ductive corpus-level GCN-based text classification frame-
work without using extra resources.

e We compare our InducT-GCN on five benchmark datasets
under the limited labeled data settings. InducT-GCN out-
performs on four of them, even beating some transductive
baselines integrated using external resources.

« We introduce a new way to make transductive GCN-based


https://github.com/usydnlp/InductTGCN

text classification models inductive, which improves the
performance and reduces the time and space complexity.

II. RELATED WORK

A. Graph Neural Networks

Graph Neural Network (GNN)s [7] have been effective at
tasks to have rich relational structure and can preserve global
structure information of a graph in graph embeddings by
aggregating first-order neighbourhood information. [[7] intro-
duced Graph Convolutional Networks (GCN) on transductive
classification tasks. GraphSage [11f], and FastGCN [12] tai-
lored GCNs on inductive representation learning framework
with sampling methods. Graph Attention Networks (GAT) [|13]]
applied the Attention to specify different weights to different
nodes in a neighbourhood. More recent GCN studies for trans-
ductive and inductive frameworks have been proposed. For
transductive-based GCN, SGC [8] was introduced to reduce
the complexity and S?GC [[10] was proposed to solve over-
smoothing problems. Some inductive-based models, DeepGL
[14] and TGAT [15]], were introduced to cover different graph
tasks, including transfer learning and topology learning.

B. Text Classification Using GNN

GNNs have received attention in various NLP tasks [6],
[16]-[20]], including text classification. The GNN-based text
classification models can be categorised into two types,
Document-level and Corpus-level approaches.

Document-level GNN in Text Classification Several
graph-based text classification models build a graph for each
document using words as nodes [3[], [21]-[25]]. Word nodes
are represented by external resources, pre-trained embedding,
such as Word2vec [26]], and Glove [27]]. The edges are built
either using word co-occurence information [3]], [25]] or simply
connecting concetuive words in a sentence [24]. Hence, they
do not consider explicit global structure information of a
corpus/entire dataset during their model training/learning.

Corpus-level GNN in Text Classification TextGCN (6]
was proposed to build a graph for the entire text corpus with
documents and words as nodes. Hence, it captures global
information of an entire corpus and conduct node(document)
classification. SGC [8] and S2GC [10] constructed a graph
as TextGCN, but proposed different information propagation
approaches. Both TensorGCN [9]] and TextGTL [28] proposed
three graphs to cover three different aspects. Note that all three
graphs are based on an entire corpus and use the same propa-
gation as GCN [7]]. TG-Transformer [29] applied transformer
with pretrained GloVe embeddings to the TextGCN, and
BERTGCN [30] applied BERT embedding to the TextGCN.
All the above models are transductive-based approaches as
GCN [7]. However, our model InducT-GCN, an inductive
graph-based text classification framework, constructs a corpus-
level graph but adopts the nature of inductive learning to
generalise to unseen nodes naturally.

III. INDUCT-GCN

We propose an Inductive Graph Convolutional Network
(GCN) for text classification, named ‘InducT-GCN’, which
can be an extension of the traditional transductive GCN-based
text classification models. We adopt the traditional transductive
GCN-based text classification models, including TextGCN [6]
and SGC [, and focus on expanding those models to effi-
cient inductive learning models. This section demonstrates the
proposed inductive learning components applied to TextGCN.

A. Revisit TextGCN

TextGCN is a GCN-based text classification model that uses
a large text graph based on the whole corpus. To understand
the concept properly, we first explore the GCN process.

Graph Convolutional Networks(GCN) Formally, consid-
ering a graph G = (V,E,A), where V(|[V| = n) is a
set of nodes, F is a set of edges, and A € R"™ ™ is an
adjacency matrix representing the edge values between nodes.
The propagation rule of each hidden layer is:

HEY = f(HD A) = o(AHOWWY) (1)

where A = D2 AD~7 is a normalized symmetric matrix for
A and Dy; = ¥;A;; as a degree matrix of adjacency matrix
A. H® is I,;, hidden layer input and W) is the weight to be
learned in this layer. o is an activation function, e.g. ReLU:
o(x) = max(0, x).

TextGCN Followed by the GCN [[7], TextGCN constructs
a large corpus-level graph but with textual information, doc-
uments and words as nodes so it can model the global
word-document co-occurrence. The constructed graph includes
documents and words nodes from training sets and test sets.
TextGCN aims to model the global word-document occurrence
with two major edges: 1) word-word edge: calculated by co-
occurrence information point-wise mutual information(PMI)
[31]], 2) document-word edge: TF-IDF. One-hot vectors are fed
into a two-layer GCN model to jointly learn the embedding
for the documents and words. The representations on the
document nodes in the training set train the classification
model while those in the test set are used for prediction.

B. Tranductive and Inductive Nature

This section discusses the nature of transductive and induc-
tive GCN learning for text classification and what inductive
learning aspect we would like to explore. Most GCN text
classification models, including TextGCN [6], SGC [8], or
S2GC [10], are inherently transductive by using the whole
corpus, including training set and test set all time.

To expand those transductive models into an inductive
learning nature, we fundamentally improve two aspects as
follows. First, the transductive GCN-based text classification
models include documents from the training set and the test
set when constructing a whole-corpus-based textual graph
for GCN learning. Hence, the learned GCN model will be
influenced/generalised by word/document information in the
test set, which is supposed to be unseen nodes. Our inductive
GCN-based text classification model constructs a graph with



only training document information but does not consider any
information from the test sets. We focus on generalising to
unseen nodes and aligning newly observed subgraphs to the
node that the model has already optimised on.

Secondly, the transductive models learn the embedding
for Virain, Viests Vword Simultaneously by using one-hot
input vectors H(®) € R™ ™. For any new test sample, the
embedding should be re-learned by re-training the model on
the new graph. In this case, the re-learning/re-training process
does not perfectly fulfil the effective generalisation to unseen
nodes. Therefore, we develop a new graph construction and
training/testing solution for inductive learning instead of re-
learning or re-training.

C. InducT-GCN Graph Construction

1) Graph Nodes: Our inductive GCN-based text classi-
fication model, InducT-GCN, strictly do not consider any
information or statistics from the test set, which is supposed
to be unseen nodes. Instead, we construct the nodes only
with training document information. Consider a set of nodes
V' = {Virains Vwora} and the Viopnq are the unique words
in the training documents. To define input vector H(®) for
graph nodes in the InducT-GCN graph, we consider two
requirements: (1)During the propagation phase, the graph is
considered as a homogeneous graph, which means all the
nodes are considered as the same type without checking
whether they are word nodes or document nodes. Then all
the input vectors for document nodes and word nodes should
align with each other. (2)Our InducT-GCN must not use one-
hot vectors for representing document nodes to avoid learning
any representation on testing documents during training.

With this in mind, we propose a new document represen-
tation by focusing on the nature of our proposed inductive
learning idea. InducT-GCN generates document node repre-
sentations based on its word node vectors for the proper
alignment between word and document representation. We use
a weighted average of word vectors to construct document
nodes vectors, and the key idea of this construction is applying
TF-IDF weights. Formally, one-hot vectors are used for repre-
senting word nodes vectors H, Z-(O) , Vi € Viyorq. For representing
training documents node vectors HZ-(O),Vi € Virain, We use
TF-IDF vectors. The values for each dimension is TF-IDF
values for the corresponding word in that specific document:
Hi(jq) = TF-IDF(4, j) where 4 and j are document and word,
respectively. Figure |1/ shows an example of H().

2) Graph Edges: We focus on expanding corpus-level
transductive GCN-based text classification to inductive learn-
ing and select TextGCN [|6] as one of its kind. Like TextGCN,
we define two-edge types for the InducT-GCN graph: 1) Word-
Word with PMI and 2) Word-Doc edges with TF-IDF. Note
that each node also connects to itself. PMI is calculated based
on the co-occurrence of a pair of words in a slicing window.
Formally, it is calculated by: PMI(i,5) = logpz(j Z()’pj&) where
p(%, j) represents the co-occurrence probability of word ¢ and j

and estimated by p(i, j) = %, p(i) represents the
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Fig. 1: Input Vectors Representations when two input docu-
ments are “wordy, word,; words words” and “words word,”.

_ #Occurrence

probability of word ¢ and estimated by p(i) = FWindows -
The graph is un-directed and all the edges are symmetrical.

D. InducT-GCN Learning and Testing

After building the graph, we train it using a two-layer GCN
as in [7]]. The first GCN layer learns the word embeddings.
The dimension of the second GCN layer is the number of
classes of the dataset, and the output is fed into a softmax
activation function. For example, a binary classification task
will result in imension of the second GCN layer as 2. The
node representations on the training documents are used for
cross-entropy loss calculation and back-propagation. Formally,
the propagation can be described as:

HY = g(AHOWO) )
Z = softmaz(AHMW M) 3)

where W() is a learned word embedding lookup table, and
W is learned weight matrix in second layer. Loss is calcu-
lated by using cross-entropy between Z; and Y;, Vi € Virgin.

In GCN, the propagation for each layer is conducted by
updating the nodes with the weighted sum of their first-order
neighbours and the node itself. In order to make predictions
on the test set, the first-order and second-order neighbours’
representation for each test document should be aggregated.
Note that we utilise the test documents during the testing phase
only, so there is no need to update all the nodes in the graph
during the propagation.

Instead, we conduct an one-direction propagation and only
update test document nodes. Firstly, Hl-(l),Vz' € Viora, WO
and W) are recorded after training phase, and HZ-(I),W €
Viwora 18 notated as Hqulo)rd- Storing Hfulgr 4 enables InducT-
GCN not to work on the training document nodes during
the test phase, so it saves computation resources. During the
testing phase, InducT-GCN supports batch testing [[11]. For
each batch of test document node B € Vi.q,|B| = b, the
edges F'p between B and V.4 are calculated using TF-IDF
with the document frequency of the training set.



Algorithm 1 InducT-GCN Training and Testing Phase

Input: Training Graph G(V, [1), V = {Virain,s Vword};
Training input vectors H(%);
Training Labels {Y;,Vi € Virain s
Adjacency Matrix for Test Batch Subgraph{Ap, B € Viest };
Test input vectors {Hgo), B € Viest}
Parameter: Weight matrices W(°) and W)
Output: Prediction Results {Y5,VB € Viest}
1: for epoch =1,2,... do
2 HW « g(AHO W)
3 Z « softmax(AHOWM)
4. L « CrossEntropy(Y;, Z;),Vi € Virain
5. Update W and W
6: end for
7
8
9

- HY o HY Vi € Viora

wor

: for Batch B in V., do
G/ — {AB7 va;oord7 H;B(O)}

;. HY « GON(G', W)

1: G+ {AB,Hgo)Td,Hgl)}
122 Yp < argmaz(GCN(G”, W)

13: end for

Test document input H go) is also calculated using TF-IDF.
The testing phase can be described as:

Ap = concat(Eg,I) (€))
:;527)«(1,3 = Concat(HT(uOo)Td’ Hgo)) (5)
Hgl) = U(ABH;Egld,BW(O)) (6)
::Eild,B = COncat(H1(z)1(2rd’ Hgl)) (N

Zp = softmax(ABHgiZ,d BW(I)) (8)

Y = argmaa:(ZBj )

where Ap € RV*(Vworal+?) stands for the weights of
the weighted sum calculation and it can be considered
as an adjacency matrix for test batch subgraph. Hgo) €
R(Vworal+0)x[Vworal stands for the test batch input vectors in
the subgraph. H gl) € RY*" is the updated test document node
embedding after the first layer of GCN, and h is the hidden
dimension size. Then, the stored H Sgr 4 on the word nodes,
which contains the first layer training documents information,
are used to propagate training documents information to the
test document nodes in the second layer. We formally describe
the overall algorithms for the training and testing phase of
InducT-GCN in Algorithm [T}

E. Space and Time Analysis

Compared with TextGCN, InducT-GCN is more efficient
both in time and space. For the space complexity:(1)Number
of Parameters of InducT-GCN is |Viora| * A + h * ¢ while
TextGCN requires (|Virain| + [Vword| + |Viest]) * b + h % ¢
parameters. Meanwhile, |Vi,org| in InducT-GCN is smaller
than that in TextGCN. (2)Graph Space complexity of InducT-
GCN is O(|Viord|? + [Virain| * |Vioral) and for TextGCN,

Dataset # Train # Test # Word # Class Avg Len
RS 274 2,189 1,878 8 62.22
R52 326 2,568 2,568 52 66.98

Ohsumed 167 4,043 2,667 23 123.7

20NG 113 7,532 2,839 20 163.5
MR 355 3,554 605 2 7.25

TABLE I: Summary statistics of datasets.

it is O("/word|2 + (|‘/train| + H/te‘st') * |‘/word|)- SlmllarIY7
|Viwora| in InducT-GCN is smaller than TextGCN. Compared
with TextGCN, our InducT-GCN is faster in three ways:
(1)When constructing the graph, the time complexity of PMI
is O(|Vaiora|? * #Windows), and it is smaller for InducT-
GCN. (2)The training time is shorter for InducT-GCN since the
graph is smaller. (3)When testing on new samples, TextGCN
requires retraining while InducT-GCN can make predictions
without retraining.

IV. EVALUATION SETUP

We evaluate the performance of our InducT-GCN on text
classification and examine the effectiveness of the proposed
inductive learning approach.

A. Dataset

We first evaluate InducT-GCN on 5(five) publicly available
text classification benchmark datasets, including RS, R52,
Ohsumed, 20NG, and MR. To test in the limited labelled data
environment, we select 5% of the full training set (1% for
20NG, due to the size) and remain the original test size. The
detailed statistics of datasets can be found in Table [l We also
apply the data augmentation methods on R8 test set to evaluate
on the larger test sets, called R8A. R8, R52 are two subsets
of the Reuters dataset and focus on the topic classification.
Ohsumed is produced by the MEDLINE database, containing
cardiovascular diseases abstracts. 20NG(20 NewsGroup) is a
20 class-based news classification dataset. MR(Movie Review)
is a binary (positive and negative) sentiment polarity analysis.
R8A: To evaluate our InducT-GCN scalability in the larger
test set, we apply a data augmentation technique. Nlpaug [32]
is applied for augmenting the R8 test set. To achieve this,
we randomly choose one of the four options: (1) randomly
deleting a word, (2) adding a word based on Word2Vec
embedding similarity, (3) substituting a word using Synonyms
in WordNet [33]], (4) randomly swapping two words. The
detailed evaluation can be found in Section

All datasets are preprocessed based on [1]. We remove the
words if shown less than twice in the training documents since
words only shown once can not work as a bridge between two
document nodes. Words listed in the NLTK stopwords list are
alsoe removed. We apply the same preprocessing method for
all experiments.

B. Baselines

We compare InducT-GCN with baselines, mainly those
models with no external resources and learning inductively.
However, due to the limited number of baselines, we include



Ohsumed 5%

20NG 1%

MR 5%

0.1476 + 0.0000
0.1813 + 0.0000

0.1289 + 0.0000
0.1860 + 0.0000

0.5537 + 0.0000
0.5967 + 0.0000

0.1586 + 0.0079
0.3411 + 0.0370
0.1614 + 0.0085
0.2486 + 0.0392

0.1390 + 0.0179
0.2969 + 0.0277
0.0766 + 0.0063
0.1010 + 0.0220

0.5485 + 0.0122
0.7009 + 0.0060
0.5301 + 0.0191
0.6680 + 0.0198

0.2225 + 0.1138
0.2474 + 0.0392
0.3026 + 0.0235

0.2198 + 0.1293
0.2948 + 0.0342
N/A

0.5341 + 0.0216
0.6015 + 0.0051
0.6117 + 0.0342

Method PT. R8 5% R52 5%
TF-IDF + SVM X 0.8054 + 0.0000 | 0.6830 + 0.0000
TFIDF + LR X 0.8090 + 0.0000 | 0.6869+ 0.0000
CNN-rand X 0.8107 £ 0.0110 | 0.6854 + 0.0100
CNN (Pretrain) v 0.9052 + 0.0097 | 0.7708 + 0.0181
LSTM-rand X 0.7392 + 0.0146 | 0.6364 + 0.0060
LSTM (Pretrain) v 0.7916 + 0.0499 | 0.6667 + 0.0303
TextGCN [6] X 0.9116 + 0.0127 | 0.7885 + 0.0751
SGC [8] X 0.8955 + 0.0098 | 0.7725 + 0.0189
TextING [125] v 0.8648 + 0.0414 | 0.7465 + 0.0298
InducT-SGC X 0.9045 + 0.0046 | 0.8046 + 0.0066
InducT-GCN X 0.9155 + 0.0051 | 0.8135 + 0.0384

0.3106 = 0.0061
0.3563 + 0.0078

0.2990 + 0.0251
0.3461 + 0.0337

0.6017 + 0.0048
0.6037 + 0.0038

TABLE II: Comparison of with Baseline on Limited Labeled Data. For 20NG dataset, TextING [_25]] has out of Memory issue
and they also have not tested on the 20NG either. *The column PT. refers to the model applied any pre-trained embedding.

the baselines with pre-trained word embeddings, such as
CNN (Pretrain), LSTM (Pretrain), and TextING. We also add
transductive models, including TextGCN and SGC.

o TF-IDF + SVM/LR applies TF-IDF vectors and uses
Support Vector Machine (SVM) or Logistic Regression
(LR) as classifiers respectively.

o« CNN/LSTM [1], [34] apply CNN and Long Short-Term
Memory with randomly initialised word embeddings or
pretrained GloVe [27] embeddings.

o TextGCN/SGC/TextING [6], [8], [25] are GNN text
classification models. TextGCN and SGC are corpus-level
GNN and TextING is document-level GNN.

C. Settings

We apply the same set of hyper-parameters to all datasets
without hyper-parameter tuning for a fair comparison. For
TextGCN [6], SGC [8], our InducT-GCN and InducT-SGC, as
described in [6], we applied two layers graph convolutional,
and the hidden dimension is 200. Adam optimizer with a
learning rate of 0.02 is used for training. For each experiment,
followed by [7[], 200 epochs are set to be the maximum number
of epochs, and early stopping of 10 epochs is applied. 10% of
the training set is randomly selected as the validation set. An
early stopping mechanism is also applied for other baseline
models by using the default hyperparameters.

Followed by [6], [8], [25]], we use the accuracy as an eval-
uation metric and produce the average and standard deviation
of the ten-time running results for each testing result.

V. RESULT

A. Performance Evaluation

A comprehensive experiment is conducted on the five
benchmark datasets in the limited environment as mentioned in
Section The result presented in Table [l shows that our
proposed InducT-GCN significantly outperforms all baselines
in terms of average accuracy on four datasets in R§, R52,
Ohsumed, 20NG. Note that the baselines include transductive
graph-based models, such as TextGCN and SGC, and CNN,
LSTM, TextING use external resources, like pre-trained word
embeddings. Meanwhile, the standard derivation is smaller

than most baseline models, showing the robustness of our
model.

For more in-depth performance analysis comparing our
InducT-GCN with baseline models, we can highlight that this
result shows the effectiveness of the proposed InducT-GCN
on long text datasets. While the average lengths of 20NG and
Ohsumed are longer than 100 and those of R8 and R52 are still
longer than 60, MR is less than 10, which can be considered as
an extremely short text dataset. We found that models with pre-
trained word embeddings GloVe perform better on short text
documents. This is mainly because it would be challenging
to recognise the global word co-occurrence with this short
text document length, leading to fewer connections (bridging)
between word nodes in corpus-level text graphs. Nevertheless,
our InducT-GCN performs the best among the models with no
pre-trained embeddings.

With our Inductive graph construction and learning frame-
work, it is possible to expand to any corpus-level and transduc-
tive GCN-based text classification models, such as TextGCN
(6], SGC [8], TensorGCN [9], and S2GC [10]. This section
reports the generalisation capability of our inductive graph
construction and learning framework. We now expand our in-
ductive framework to another corpus-level graph-based model,
SGC [8]], and called InducT-SGC. Table also visualises
the comparison of the original transductive SGC models
and our InducT-SGC. As shown in the table, our InducT-
SGC produces much higher performance than the original
SGC when the labeled data are limited. The performance
improvement between both pairs of the original transductive
and our inductive model, TextGCN-to-InducT-GCN and SGC-
to-InductSGC, clearly shows the generalisation capability of
our proposed inductive framework. It can also be applied to
other corpus-level graph-based text classification models in the
future.

B. Impact of Test Size

As mentioned earlier, we use the R8A (R8 with a data
augmentation) to show the scalability of our proposed Induc-
tive learning framework by comparing TextGCN and InducT-
GCN in the larger text set. Figure shows the comparison
of TextGCN and InducT-GCN on different test sizes, with 1



Embedding R8 5% R52 5%

Ohsumed 5% 20NG 1% MR 5%

0.9155 + 0.0051
0.9124 + 0.0043
0.9159 + 0.0102

0.8135 + 0.0384
0.8290 + 0.0084
0.8266 + 0.0090

Random
Pretrained Word2Vec
Pretraind GloVe

0.3461 + 0.0337
0.3476 = 0.0086
0.3662 + 0.0197

0.6037 + 0.0038
0.6003 + 0.0045
0.6051 + 0.0055

0.3563 + 0.0078
0.3544 + 0.0305
0.3514 + 0.0186

TABLE III: Test Accuracy with Different Initialized Embedding Method
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Fig. 2: Test accuracy with different test size on R8A by using
TextGCN, SGC and our proposed Inductive model.

to 5 times (2,189, 4,378, 6,567, 8,756, 10,945) of the R8
original test set size. The larger the test size, the larger the
gap between TextGCN and InducT-GCN. TextGCN produces
worse performance with the largest test size. This is mainly
because only a small proportion of the document nodes would
contribute to the gradient in TextGCN with a larger test set. Es-
pecially during the training phase, it is difficult for TextGCN to
learn embeddings of those test document nodes having fewer
connections with word nodes by backpropagation. Moreover,
we found that the performance of our InducT-GCN decreased
only a little (less than 0.5) when the test size grew. We also
conducted the same evaluation based on SGC by applying our
Inductive graph construction and learning framework to SGC,
InducT-SGC. Like the result that our InducT-GCN produced,
the InducT-SGC delivers a much higher performance than the
original SGC. The performance trend shows how our Inductive
framework perfectly fits the inductive learning nature.

C. Impact of Initial Word Embedding

As mentioned in Section the first layer of InducT-
GCN learns the word embeddings and is randomly initialized.
We also examine other initial embedding weights methods
including pre-trained Word2vec [26] and GloVe [27]. Table
shows the performance comparison of different pre-trained
word embeddings. In most cases except Ohsumed, pre-trained
word embeddings can improve the performance of InducT-
GCN. However, Ohsumed is a medical-related dataset, and
out-of-vocabulary issue of the pretrained embedding doesn’t
help on the document classification task. Although we only
focus on the model without using any external resources in
this study, this result still shows the potentiality of InducT-
GCN when used with external resources.

D. Computation Time Results

Table [IV| compares the original transductive TextGCN with
InducT-GCN on R8A and visualises the superiority of our
inductive learning framework by reducing the computation

Test Size TextGCN InducT-GCN
Graph | Training | Graph | Training

x1 6.29 2.75 0.89 0.52

x2 11.90 3.20 1.11 0.53

X3 16.60 3.54 1.30 0.53

x4 21.10 4.13 1.52 0.55

x5 27.50 4.98 1.68 0.51

TABLE IV: Graph Construction Time and Training Time
comparison on R8A (sec). Hardware: 16 Intel(R) Core(TM)
i9-9900X CPU @ 3.50GHz and NVIDIA Titan RTX 24GB

Method RS Full R52 Full
TextGCN 0.9629 + 0.0010 | 0.9295 + 0.0020
InducT-GCN | 0.9653 = 0.0017 | 0.9323 + 0.0015

TABLE V: Test Accuracy on Full Data Setting

time, including graph construction and training. The larger the
test size is, the more time InducT-GCN can save.

E. Performance in Full Dataset

We also evaluated the performance of our InducT-GCN with
the full dataset, like the TextGCN was evaluated [6]]. As can
be seen in Table the performance of InducT-GCN and
TextGCN on R8 and R52 are comparable when using the
entire dataset with the same hyperparamters. We can conclude
that InducT-GCN is superior to the TextGCN in terms of
performance and computation, which is not only in smaller
space with fewer parameter numbers but also in the whole
dataset setting.

VI. CONCLUSION

This study proposes a novel inductive graph-based text clas-
sification framework, InducT-GCN, which makes heavy and
transductive GCN-based text classification models inductive.
We construct a graph only using training set statistics. InducT-
GCN can efficiently capture global information with fewer
parameters and smaller space complexity. Our InducT-GCN
significantly outperformed all graph-based text classification
baselines and was even better than the models using pretrained
embeddings. We also demonstrated the generalisation capabil-
ity of our inductive graph construction and learning framework
by applying and expanding different transductive graph-based
text classification models, like TextGCN and SGC. Compared
to the original models, the performance and computation time
were surprisingly improved. It is hoped that this paper provides
some insight into the future integration of the lighter and faster
inductive graph neural networks on different NLP tasks.
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