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Abstract—Information extraction (IE) from documents is
an intensive area of research with a large set of industrial
applications. Current state-of-the-art methods focus on scanned
documents with approaches combining computer vision, natural
language processing and layout representation. We propose to
challenge the usage of computer vision in the case where both
token style and visual representation are available (i.e native
PDF documents). Our experiments on three real-world complex
datasets demonstrate that using token style attributes based
embedding instead of a raw visual embedding in LayoutLM
model is beneficial. Depending on the dataset, such an embedding
yields an improvement of 0.18% to 2.29% in weighted F1-score
with a decrease of 30.7% in the final number of trainable
parameters of the model, leading to an improvement in both
efficiency and effectiveness.

I. INTRODUCTION

Extracting specific information from complex documents is
paramount in many business activities. It is a key but complex
process because of the wide range of business documents
and templates: contracts, invoices, reports or news articles for
instance. Despite the recent advances in the field, this task
still remains mostly manual and time consuming in various
business processes.

Information Extraction is the associated task that aims
to automatically extract specific textual information from
complex documents. Literature in the domain mainly focuses
on two tasks: information extraction from plain text [2], [3] or
information extraction from scanned documents [4], [5], [6].
While promising, none are completely suited to the growing task
of extracting information from machine-readable documents.
Indeed, information extraction from plain text is not adapted to
document structure underlying complexity that requires not only
text related information but also the original layout information
[1] (table structure, paragraphs, two dimensional position
on the page...). On the opposite, the complexity of scanned
document processing involves the usage of prior text extraction
tools [7] and doesn’t allow efficient word-level annotation
[9] (position of the information to extract is approximated).
However, information extraction from native PDF documents
represents a large and growing number of real-world use

cases. This specific task combines the inherent complexity
of document processing with the fact that documents, in this
case, can be efficiently parsed without approximation and with
all the layout attributes (especially text style and position).

In this paper, we introduce a new way of building a visual
token representation for the information extraction task on
machine-readable documents (i.e native PDFs). Indeed, visual
information encoding is a key component of most state-of-the-
art methods [1], [8], [9]. Previous approaches rely on encoding
the token image representation from the original PDF using
computer vision methods like Faster-RCNN [10] or U-Net
[11]. Although successful, the addition of a computer-vision
based approach involves an overall complexity increase of
the pipeline, thus increasing the number of parameters and
reducing the scalability.

In the context of native PDFs, using dedicated PDF parsing
tools, one can directly extract an interpreted version of token
visual attributes in what we can call token style: font, font
size, color, etc. Our approach is based on replacing the original
image embedding with embeddings that rely on these style
attributes that integrate by nature the meaningful information
that can be parsed from the token image.

We experiment a token style variant of the state-of-the-art
LayoutLM model on three real-world datasets of native PDF
documents (invoices, trade confirmations and fee schedules).
We show that it outperforms the image based LayoutLM variant
detailed in their paper [1].

Our main contribution can be separated in three parts:

• We propose a new intuitive style attributes based embed-
ding in replacement of the image based embedding which
outperforms the original approach;

• To the best of our knowledge, we provide the first
information extraction benchmark of precisely annotated
native PDF documents. It is based on three real-world use
cases : invoices, trade confirmations, and fee schedules;

• We compare the aggregation of style attributes based
embedding by addition or by concatenation.
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II. BACKGROUND

A. PDF raw content extraction

The PDF format is broadly adopted and used for exchanging
digital documents. In the context of information extraction,
the raw content that can be extracted without approximation
varies depending on the way the PDF was created. We can
distinguish two type of PDFs: the Scanned PDFs and the
Native PDFs.

1) Scanned PDF Documents:

Scanned PDF Documents consist on images only. The PDF
was generated using a scanner or camera and it lost its digital
formatting in the process. In the task of information extraction,
one need to get textual information from the document. The
conversion from a raw set of textual document images to textual
content is called Optical Character Recognition (OCR) [7]. One
of the most popular methods is Tesseract OCR Engine [26].
An OCR Engine converts the set of original images into a
textual document Ds where :

Ds = (eis)i=1...p with eis = (ti, gi) (1)

p is the number of tokens in the document
eis is the i-th token in Ds

ti is the textual content the i-th token
gi is the coordinates, width and height of the i-th token in the
document

2) Native PDF Documents:

Native PDF Documents are the direct output of an authoring
software. It contains all its original formatting like the text, its
associated style attributes or the graphics. Hence, native PDFs
can be efficiently parsed into a machine-readable document
using tools like PDFMiner1 or Apache PDFBox2. For example,
a native PDF document can be converted into a document Dn

where
Dn = (ein)i=1...p with

ein = (ti, gi, bi, f i, f isize, t
i
tab, c

i)
(2)

p, ein, t
i, gi share the denomination from II-A1

bi is a boolean assessing if the i-th token is bold
f i is the font type the i-th token
f isize is the font size of the i-th token
titab is a boolean assessing if the i-th token is in a table or
not, it can be obtained by parsing the PDF graphics on simple
cases or using more advanced computer vision based solution
for the extraction [27][28]
ci is the color of the i-th token

1https://github.com/pdfminer/pdfminer.six
2https://github.com/apache/pdfbox

B. Information Extraction

Information Extraction is the natural language processing
task that aims at extracting structured information from
unstructured data. In practice, it is often turned into a token
classification problem. Given a set of tokens D = (ei)i=1...p,
the goal is to classify each token ei into a label li from a set
of labels L = (li)i=1...p.

In order to correctly extract entities made of more than one
token, IOB (Inside-Outside-Beginning) tagging [25] is used.
The words prefixed with I- (for ”Inside”) are inside a chunk
associated to an entity. The words not corresponding to any
entity are labelled as O (for ”Other”). The first word associated
to an entity is prefixed with B- (for ”Beginning”). This allows
us to correctly identify and separate entities inside a text even
if they are next to each other.

In the literature, we can distinguish two main applications.
Information extraction from plain text that aims at extracting
entities from raw textual sentences [2], [3] and information
extraction from scanned documents [4], [5], [6]. Depending on
the task, the information to efficiently model a problem vary. In-
deed, layout information is critical for document understanding
models as the unique one-dimensional sequential representation
used in the prior approaches loses key information [13].

III. RELATED WORK

A. Information extraction datasets

Although the literature is rich and a large number of
open source datasets have been released, none of them focus
on one of the main challenges of extracting information
from native PDF documents annotated at the word level.
Indeed, as described above, the existing literature focuses on
extraction from plain text documents [2], [3] and extraction
from scanned documents [4], [5], [6]. However, scanned
documents processing is an extremely specific domain where
raw input is a single image and extraction from plain text
doesn’t contain the inherent complexity of document processing
(tables, title, structure, etc.). In our case we propose to focus the
research on native PDF Documents with word-level annotation
allowing to purely evaluate the information extraction model on
the token classification problem. To the best of our knowledge
the only complex dataset based on native PDFs is Kleister
datasets [12]. However, entities in this dataset are labeled
without their positions. Therefore, we have to use imprecise
heuristics to find the exact positions of these entities inside the
document. Moreover, Kleister documents are not as visually
rich as other datasets (long contract documents).

B. Visual token representation

Understanding the layout of documents is an obvious step in
the task of understanding documents which has been tackled
using dedicated methods. Document layout modeling methods
were historically numerous. They were mainly graph-based
[13] or based on computer-vision methods enriched with text
information [14], [15]. Recently, transformers [16] and pre-
trained language models are starting to be widely used for
Natural Language Understanding (NLU) with BERT [17] and

https://github.com/pdfminer/pdfminer.six
https://github.com/apache/pdfbox


its extensions. These models are very powerful to semantically
learn a language and can be used for many downstream tasks.
However they are built to deal with plain text.

The first adaptation for document understanding is Lay-
outLM [1] that is pre-trained on millions of documents with
the additional token coordinates and image representation (see
Section IV-A). More recently, a second version LayoutLMv2
[8] enriched the first version by including image information
in the pre-training framework and the TILT neural network
[9] used a new encoder-decoder architecture that uses text,
positions, and image information. LayoutLMv2 and the TILT
architectures have slightly higher performances than LayoutLM
in some scanned document benchmarks. However, those
methods embed complex image embedding during the pre-
training phase (while LayoutLM adds it during the fine-
tuning) and hence its associated complexity cannot be soften.
LayoutLM provides a state-of-the-art baseline with a large
architecture overlapping all the other methods. Hence, we will
use LayoutLM [1] enriched with various image embeddings as
our main baseline. This, will allow to underline the relevance of
replacing image based embeddings by style based embeddings
when available without having to reproduce the proprietary
pre-training of other methods.

C. Style attributes usage

Using style attributes in document processing is not a
common practice. Indeed as explained, the information is not
always available depending on the file format of the document
and dominant research is focusing on using token’s image
representation. On HTML documents, [18] used handcrafted
features based on font size and color in order to improve the
performance on information extraction from HTML documents.
These results have been extended to other less complex tasks
like heading detection as shown by [19] work. Here, incorpo-
rating style based manually crafted features allows to improve
standard classifiers. To the best of our knowledge, our work is
the first preliminary work integrating style attributes embedding
representation in state-of-the-art pre-trained language model
based models for the information extraction task.

IV. INFORMATION EXTRACTION WITH VISUAL TOKEN
REPRESENTATION

Our approach is largely based on LayoutLM, so it is
important to understand this model first. We will discuss
about it in the next section. The authors also proposed to add
visual embeddings thanks to a computer vision network. This
approach is promising but adds a lot of trainable parameters and
does not greatly enhance general performances. We will discuss
about this idea in section IV-B. Our work is an alternative to the
latter, which offers significant improvements while maintaining
a reasonable model size.

A. LayoutLM

LayoutLM [1] architecture is like a BERT Transformer with
a slightly different positional embedding. The authors proposed
to change it by adding (element-wise sum) a 2D-embeddings

on top of the usual 1D-positional embedding. In fact, knowing
all tokens relative position is a key information for information
extraction for documents. In short, the positional embedding
Pi

layoutlm of the i-th token in a document D is given by :

Pi
layoutlm = Pi +Gi

Gi = Pi
x1

+Pi
x2

+Pi
y1

+Pi
y2

+Pi
w +Pi

h

(3)

Pi : 1D positional embedding introduced in BERT
Gi : 2D positional embedding introduced in LayoutLM
(Pi

j)j∈[x1,x2,y1,y2] : embedding of the bounding box
coordinates introduced in section II-A1
Pi

w : embedding of the bounding box width
Pi

h : embedding of the bounding box height

This allows the transformer to use both 1D and 2D position
information. For the training phase, they initialized the network
with BERT weights and random weights for the 2D embeddings.
The model is pre-trained on 2 objectives : Mask Language
Modeling (MLM) where some tokens are masked and the model
has to predict them; and Multi-label Document Classification
(MDC). Pre-training datasets were large enough (11 million
scanned images) to build an efficient pre-trained language
model adapted to document understanding. Finally, LayoutLM
serves as a multi-purpose network and can be used for
many downstream tasks, especially information extraction.
This approach greatly improved the state-of-the-art on many
document understanding tasks such as information extraction
for scanned receipts [4], and Document classification [22].
Pre-trained model and code were made available by authors.3

B. LayoutLM with image embedding

The classical LayoutLM model might struggle to understand
the full layout of a document as it doesn’t depend upon
visual information, but only geometric positions. The authors
originally propose to add an image embedding following the
process illustrated in Figure 1

They suggest to feed the image I of a document D to a
Faster R-CNN [10] that has a backbone B in order to build
a feature map for the document page. The visual feature of a
given token should then be extracted from this feature map.

Figure 1: The process of an image embedding

Traditional Regional Proposal Network (RPN) of the Faster
R-CNN is not needed as token bounding boxes are given either
by an OCR system or by the PDF parsing tool.

3https://github.com/microsoft/unilm/tree/master/layoutlm



Given the document feature map, and token coordinates, the
so-called RoIAlign [21] allows to extract a fixed-size visual
representation associated to the token (whatever the token size).
This visual embedding can then be projected using linear layers
in order to match BERT output dimension.

The overall process can be summarized with the following
equation:

vi = φ(RoIAlign(fI , gi)) (4)

vi : image embedding of the i-th token
φ : linear layer
fI : feature map of I
gi : bounding box of the i-th token

Token image embedding encompass all the token visual
information. In the original paper [1], the authors propose to
do an element-wise sum between textual embedding and the
visual embedding at the end of the network.

This output token embedding will be fed to a classification
layer that will be trained to classify the token in the given
categories for the information extraction task. During fine-
tuning, all the weights from both LayoutLM and Faster R-CNN
are trained.

C. Token Style based Embeddings

Intuitively, image embedding purpose is to capture visual
attributes from a token. The current approach involves a tremen-
dous number of trainable parameters and a complexification of
models using geometrical and textual information. However,
in the case of native PDFs, visual attributes can be directly
extracted from the document in what is called styled attributes
as explained in II-A2. As an alternative to image embedding,
we propose to embed token style attributes instead, as it adds
less weights and increases interpretability.

During fine-tuning, we suggest to train a combination of
LayoutLM (Section IV-A) with token style embeddings. As
LayoutLM was pre-trained, the additional embedding will be
aggregated to LayoutLM original output in order to not corrupt
the original pre-training. As detailed previously, the following
visual information is available in most PDF parsing tool at
token level:
• bold : whether the token written in bold,
• inTable : whether a token belongs to a Table in the

document,
• font : font type of the token,
• fontSize : size of the token,
• color : triplet corresponding to its coordinates in the RGB

system.
Depending on the PDF parser, one could choose what suits

best their needs. For example, one can add the style features
that assess if a token is in italic or is in a bullet point. Indeed,
native PDF format encompass a lot of information that, we
think, must be used in the document understanding models.

Figure 2 shows that the PDF Parser provides the positions
and tokens to LayoutLM and extracts meta information that

can be used to generate a token style embeddings. Each style
feature is linked to an embedding table whose vectors are
of size dm. dm is chosen the same across all style features,
but will vary depending on how the fusion with LayoutLM
embeddings is done. If we define d = dm, the M embedding
tables are of shape Vm × d where Vm is the vocabulary size
of the style feature m. In the next sections, we will study this
number of parameters for two different aggregation methods :
element-wise sum or concatenation.

1) Aggregation by concatenation:

Concatenating various token embeddings in order to obtain
a large and more complete representation of a token is the
most traditional way of combining information. In this specific
case, we concatenate the representation vectors for M meta
features.

Concatenating representation involves that the immediate
next layer size that projects the embedding into the set of
classification labels will be increased. Concatenating allows
to be free to chose embedding dimension. For instance,
embedding boolean value like bold should not require a large
dimension.

2) Aggregation by element-wise sum:

Element-wise combination is known to be an efficient way
of combining embeddings. Theoretically, it allows the model
to learn which embedding feature to prioritize depending on
the instance with no prior on which (because all the elements
have the same size).

The dimension of the style features, in this case, is deter-
mined by the output dimension of LayoutLM.

V. EXPERIMENTS

To compare all these methods, we will focus on a key
Information Extraction task on three real-world datasets of trade
confirmations, invoices, and fee schedules (Section V-A) which
have great complexity. We will compare standard LayoutLM,
with LayoutLM model enriched with image embedding, and
our proposed method LayoutLM enriched with style based
embeddings.
In addition, we have also enriched our experiments with tests
on two public datasets of scanned documents SROIE [4] and
FUNSD [5] where only the integration of images can apply as
”style” embeddings are not available.
The experimental protocol is described in detail in Section V-B.

A. Datasets

1) Real-world datasets: The real-world datasets4 are com-
posed of native PDF documents written in multiple languages
and containing tables, titles and different font attributes.

They are extremely diverse and commonly shared in the
banking business:

4More details in Appendix



Figure 2: Processes of LayoutLM + style based embeddings (left) and LayoutLM + image embeddings (right)

• Trade Confirmations: 209 one-page PDFs in English with
very few original templates (4 font types, 11 font sizes
only for instance)

• Invoices: 626 one/two-page PDFs written in multiple
languages, mostly English and Portuguese, with around
30 different templates. It is diversified (414 font types,
529 font sizes).

• FeeSchedule: 273 long PDFs of 1 to 129 English-written
pages, with extremely diversified sources (124 font types,
3846 font sizes)

They are manually annotated by business experts at word-
level, meaning that we know exactly which tokens participate
to the entity.

2) Public datasets: The two public datasets are the most
common in the information extraction task. They are based on
scanned documents and have been labeled at document level,
meaning that we do not know the exact position of the entity
in the full document.
• SROIE: 973 scanned receipts in English which were part

of ICDAR 2019 competition
• FUNSD: 199 scanned and noisy forms in English

B. Experimental protocol
To limit the model size, we chose to group style attributes by

hand crafted clusters. For example, color embeddings will be
grouped into ”Black” or ”Not Black”, font weights are grouped
into into 3 clusters ([0, 1.2[, [1.2, 2.0], and ]2.0 +∞[). Of
course, this processing step is to be adapted to the distribution
of the features.

For the experiments, we used PDFBox in order to parse
native PDF documents and extract relevant assets. We used

our own implementation of pdftable [28] combined with the
extract graphics assets in order to detect tables. Our LayoutLM
model is pre-trained and based on the implementation provided
in the transformers library [23] while the computer vision part
is based on torchvision [24].

We cross-validated all the models using 5 folds and a batch
size of 2 documents. The trainings were made on one NVIDIA
Tesla V100 16GB GPU with a constant learning rate: lr =
2× 10−5 over 20 epochs per iteration of the cross validation.
In fact, extending the number of epochs showed no significant
improvement. We train with a multi-class cross entropy loss
and with Adam optimizer. During the training, we randomly
change 10% of the tokens for improved generalization. We
also randomly shift and resize all the bounding boxes to reduce
over-fitting during the fine-tuning. In each case, the best model
for each iteration of the cross-validation was selected using
the validation set.

We used pre-trained LayoutLM base model in order to assess
the style embedding relevance. Indeed, one of the main purpose
of the proposed work is to limit the number of parameters and
LayoutLM large model doesn’t outperform the base model by
a significant margin.

The main criteria to assess our models is the entity-level
weighted average F1 score. F1 scores per model on each dataset
(Table II) is provided for analysis purpose.

Using a grid search over validation set to determine the
optimal style embedding dimension, we selected d = 64 for all
the styles when aggregating embeddings using concatenation.
Also, when dealing with the aggregation of LayoutLM with
style embeddings (Style LayoutLM), we use the five features:



5-fold weighted average F1 (%)
Model Parameters Trade Confirmations Invoices FeeSchedule SROIE FUNSD

LayoutLM + ResNet 152 163.74M 96.81 ± 2.22 66.29 ± 2.76 75.76 ± 2.54 95.8 ± 1.26 78.42 ± 2.96
LayoutLM-Style Sum 113.50M 96.76 ± 0.71 67.60 ± 2.23 76.14 ± 2.22 −5 −5

LayoutLM-Style Concatenation 113.49M 97.09 ± 0.06 68.58 ± 1.27 76.64 ± 0.01 −5 −5

Table I: Score & Number of parameters for LayoutLM, with image embedding, and Style-LayoutLM models

bold, font, fontSize, inTable, and color as Style LayoutLM can
learn the important style attributes.

To select the backbone used to generate the image embed-
ding, we use a grid search over the set of torchvision available
backbones6. After multiple experiments, the model studied in
this article is a pre-trained ResNet 152.

In order to perform the IOB tagging task, the token
embedding output obtained at the end of the pipeline is fed
into a dense layer with a dropout rate of 0.3 and softmax as
an activation function to predict token classification.

Models are usually limited in terms of sequence length,
which is an issue for long documents. For FeeSchedule dataset,
we split each document into overlapping shorter documents
(called chunks), to aggregate the results at the end. After
multiple experiments, we have chosen chunks to be 512 tokens
long with an overlap of 100 tokens.

VI. RESULTS

A. Quantitative results

In Table II, we compare the efficiency and the overall
performance of the baseline with the models with additional
embeddings7.

The image embeddings models have 44.3% more parameters
than LayoutLM. They don’t necessarily contribute to enhance
the original model, even when the backbone is ResNet 152.
Indeed, because of the large volume of parameters, fine-tuning
with image embeddings results highly depends on the seed and
the fold. It reduces the positive input of LayoutLM pre-training.

The style models increase the number of trainable parameters
by 0.01% as the additional embeddings tables with only
thousands of parameters at most. The method allows to integrate
visual embedding at a low cost. Even with such a small
parameters increase, we could improve the performance in
all the datasets for the concatenation fusion. Therefore, style
embeddings prove to be a good trade-off between performance
and efficiency.

Regarding the comparison between the models with addi-
tional embeddings, the concatenation fusion model happens to
be very efficient and consistent in enhancing the overall per-
formance with 30.7% less parameters than image embeddings
model. Also, we get to know which features matter for our
task. Independently from the diversity, complexity and length
of documents, this aggregation of style based embeddings is
the best one as it outperforms LayoutLM in the three datasets
in average. We also computed a paired t-test on our 5-fold

5Style attribute based approach cannot be used on scanned documents
6https://pytorch.org/vision/stable/models.html
7both sum and concatenation style embeddings

cross validation in our, the associated p-value was 6.89%.
These results show that the approach based on style embedding
performs at least as well as the image-based approach with a
lower number of parameters, even if the statistical significance
of the improvement at the 5% level is not reached.

However, image-based embeddings takes advantage on public
scanned datasets where the fact that style information is not
available makes the approach with styles unusable.

B. Qualitative analysis

In the three datasets, there is no significant visual difference
between entities of the different classes but the style embedding
models happen to improve the detection of some classes8.
Regarding the variety of documents, it is difficult for a human
to define which attributes will contribute the most in the
final model. Random permutations, and training with various
combinations of features allows us to define that for the
Trade Confirmations dataset the attributes bold and inTable
are the most meaningful while for FeeSchedule and Invoices
respectively fontSize & inTable, and inTable & color are the
most importance.

Indeed, looking at the datasets, we can fully understand that:

• In the Trade confirmations dataset, entities are often
introduced by a word in bold. And many information
are presented in a table format,

• In Fee Schedules dataset, names of clients are often written
with larger fonts and some figures (Rates and Margins)
are often presented in tables,

• In Invoices datasets, multiple significant figures are
described in tables, and some total amount are often in
color.

VII. CONCLUSION

In this paper, we demonstrate the relevance of having
dedicated approaches for native PDF documents where token
style attributes can be extracted. We confirm the intuitive result
that having the style attributes instead of the raw image in
order to provide visual information to the model we were able
to obtain better performances in the information extraction task
while reducing the number of parameters. While benchmarked
against state-of-the-art LayoutLM we think that this work can
be applied to other approaches and could be extended by using
font style embeddings during the pre-training process.

8Scores per class for all datasets available in Appendix
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APPENDIX A
DATASETS

A. Trade Confirmations

Trade confirmations are financial documents that summarise
all the details of one of multiple financial trades. It is usually
well structured with tables clear structure. Our dataset consist
of derivatives products with the following business related
labels:
• BUYSELL : direction of the trade (buy or sell)
• CALLPUT : is it a call or a put (the contract allows to

buy or sell the option)
• CLEAR INFO : account number
• CONTRACT : contract number
• EXECUTIVE BROKER : broker associated to the trade
• EXPIRY DATE : maturity of the trade
• MARKET : market where the trade applies
• TRADE PRICE : contract price
• STRIKE VALUE: fixed price to buy or sell the underlying

as defined in the contract
• TRADE DATE : date of the trade
• TRADE STATUS : status of the trade
• TRADE VOLUME : quantity to buy
BUYSELL and CALLPUT are easier to extract because the

majority of datapoints take their values in a finite set of words
(buy, sell, call, put ...). On the contrary TRADE PRICE and
TRADE VOLUME are more difficult to parse because they
are often displayed within multiple tables and require layout
understanding in order to be efficiently extracted.

B. Invoices

Invoices are the classic document that shows what goods
were purchased and at what price. Our annotators labeled the
following entities:
• ACCOUNTNUMBER : account ID
• ADDRESS : all the addresses in the document
• COMPANYNAME : company name
• DOCUMENTDATE : date of the document
• GROSSWEIGHT : the weight of an item (optional)
• IBAN : relates to the account paying the invoice
• INVOICENUMBER : invoice ID
• PERSONNAME : name of a person
• TOTAL : total amount to be paid
As described above, the dataset difficulty comes from the

wide range of templates within the documents.
Moreover, some datapoints are particularly hard to extract:
ADDRESS are difficult to parse because it is made up from 5
to 10 words written in multiple lines, COMPANYNAME is
made up of non common words and often comes without easy
to parse context, finally GROSSWEIGHT is often displayed in
tables without border that requires the model to gain a complex
layout understanding.

C. FeeSchedule

FeeSchedule is dataset of financial documents that detail
a pricing proposal for a specific client. The most important

information are the interest rates applied to the client. They
are composed of two parts: a base rate and a margin.
The labeled entities are :
• APPLICATION DATE : date of the pricing
• BRANCH NAME : the branch of the bank responsible

for the proposal
• CLIENT NAME : name of the concerned client
• MARGIN : base rate of the Fees
• RATE : the margin associated to the rate
The dataset consist of documents where the fees are

presented in tables of different structures, but also inside the
paragraphs in some cases.
All FeeSchedule documents are passed through the OCR before
the processing which resulted in errors in the retrieved text
especially for the data of the cover page and the signature
page.
This affects mainly the datapoints APPLICATION DATE,
BRANCH NAME and CLIENT NAME, which were often
tagged with inconsistent values. Indeed, sometimes information
can be handwritten or can be presented in multiple parts of
the document which makes labelling consistently hard and
in consequence impacts the overall performances for those
datapoints.

APPENDIX B
DETAILED PERFORMANCES



Label Image Embeddings Style Embeddings Support
R152 Concatenation Sum

BUYSELL 99.34 99.15 98.98 236
CALLPUT 96.13 96.68 93.13 117

CLEAR INFO 97.29 96.83 97.05 207
CONTRACT 96.88 97.80 97.33 207

EXECUTIVE BROKER 97.37 97.33 96.83 208
EXPIRY DATE 97.20 96.80 97.84 229

MARKET 98.31 98.58 98.30 207
TRADE PRICE 88.32 89.93 90.83 237

STRIKE VALUE 99.78 99.59 99.37 231
TRADE DATE 100 99.52 99.52 207

TRADE STATUS 100 100 99.68 161
TRADE VOLUME 92.56 94.22 92.22 238

Table II: Average 5-fold F1 score (%) per class for all models on Trade Confirmations

Label Image Embeddings Style Embeddings Support
R152 Concatenation Sum

ACCOUNTNUMBER 73.78 75.53 75.96 463
ADDRESS 57.26 61.46 59.46 2037

COMPANYNAME 64.24 65.65 64.68 2164
DOCUMENTDATE 77.89 76.67 78.86 555

GROSSWEIGHT 45.47 49.85 43.93 244
IBAN 86.60 90.76 86.43 258

INVOICENUMBER 74.25 75.73 74.32 581
PERSONNAME 74.35 75.80 76.28 1096

TOTAL 65.84 69.59 70.40 538

Table III: Average 5-fold F1 score (%) per class for all models on Invoices

Label Image Embeddings Style Embeddings Support
R152 Concatenation Sum

APPLICATION DATE 41.74 42.90 32.07 273
BRANCH NAME 18.27 23.22 27.67 270
CLIENT NAME 23.40 29.19 20.61 274

MARGIN 81.32 81.44 81.44 3907
RATE 78.71 79.67 79.46 5913

Table IV: Average 5-fold F1 score (%) per class for all models on FeeSchedule
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