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Abstract—WiFi-based human action recognition (HAR) has
been regarded as a promising solution in applications such as
smart living and remote monitoring due to the pervasive and
unobtrusive nature of WiFi signals. However, the efficacy of
WiFi signals is prone to be influenced by the change in the
ambient environment and varies over different sub-carriers. To
remedy this issue, we propose an end-to-end Gabor residual
anti-aliasing sensing network (GraSens) to directly recognize the
actions using the WiFi signals from the wireless devices in diverse
scenarios. In particular, a new Gabor residual block is designed
to address the impact of the changing surrounding environment
with a focus on learning reliable and robust temporal-frequency
representations of WiFi signals. In each block, the Gabor layer
is integrated with the anti-aliasing layer in a residual manner to
gain the shift-invariant features. Furthermore, fractal temporal
and frequency self-attention are proposed in a joint effort to
explicitly concentrate on the efficacy of WiFi signals and thus
enhance the quality of output features scattered in different
subcarriers. Experimental results throughout our wireless-vision
action recognition dataset (WVAR) and three public datasets
demonstrate that our proposed GraSens scheme outperforms
state-of-the-art methods with respect to recognition accuracy.

I. INTRODUCTION

Human action recognition (HAR) has attracted consider-
able attention in a range of applications, such as assisted
living [1], behavior analysis [2], and health monitoring [3].
Many pioneering actions sensing attempts [4]–[6] have con-
tinuously emerged and developed in recent years to enhance
measurement data and expand signal acquisition range [7].
These sensing techniques motivate the breakthrough of long-
time monitoring in a non-intrusive way [6], [8]–[10].

The radio frequency (RF)-based technique is one of the most
promising technologies among other action sensing technolo-
gies to localize people and track their motion [11], [12]. This
attempt draws on the propagation of electromagnetic (EM)
waves which are almost distributed at everyone’s home. Ben-
efit from the ubiquitous deployment, using WiFi signals for
HAR in the indoor environment, is an economic solution [13],
[14]. Furthermore, WiFi-based solutions have no requirements
of line-of-sight (LOS) thereby enabling larger detection areas
than vision-based techniques [8], [9]. Therefore, WiFi-based
HAR methods have received increasing attention [7].

Extant researches have demonstrated the great potential of
employing WiFi signals as a sensing approach [10]. Previously,

most techniques for HAR are presented based on hand-crafted
features from WiFi signals [15]. In essence, WiFi signals are
susceptible to severe multipath and random noise in indoor
surroundings. Hence, these manually designed features based
mechanisms have certain limitations due to their heavy depen-
dence on prior knowledge [11]. Furthermore, the efficacy of
WiFi signals for HAR scatters over different sub-carriers since
certain bands are sensitive to certain movements. Therefore, it
is of vital importance to explore the problem of how to non-
manually obtain robust and reliable representations from the
WiFi signals. Deep learning is capable of automatic feature
selection and has emerged as a new paradigm for mining the
temporal-frequency information in the WiFi signals in diverse
scenarios.

Deep learning has been evolving as a promising solution
for HAR over the past few years [16], [17]. Past deep
learning methods however are prone to cause distortions after
downsampling operation [18]. In deep learning networks,
the downsampling operation is broadly utilized to reduce
parameters and computation cost [19]. After the sampling
operation, high-frequency information signals degenerate into
completely different ones, which further disturbs the feature
information [20]. The standard solution of embedding a low-
pass filter before sampling [21] is unsatisfying because it
degrades performance.

To remedy the above limitations, in this paper, an end-to-
end Gabor residual anti-aliasing sensing (GraSens) network
is proposed for HAR in varied environments. The architec-
ture exploiting the reliable temporal-frequency representations
from wireless signals is in an end-to-end style. The main
contributions are summarized as follows:

1) We propose a Gabor residual anti-aliasing sensing net-
work to directly recognize the activities based on the WiFi
signals from wireless devices such as smartphones and routers
in diverse scenarios.

2) We design a Gabor residual block for exploiting reliable
and robust WiFi signals representations to mitigate the influ-
ence of the change in the ambient environment. Specifically,
the Gabor layer in this block is integrated with anti-aliasing
operation in a residual manner to gain the shift-invariant
features.

3) We design a fractal temporal and frequency self-attention
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Fig. 1: Overview of the proposed GraSens method.

mechanism to jointly explore the frequency and temporal
continuity inside WiFi signals to enhance the quality of output
features scattered in different subcarriers.

4) We conduct experiments on our proposed wireless-vision
action recognition dataset and the other three public datasets.
The experimental results show that our method is robust over
different scenes and outperforms competitive baselines with a
good margin on the recognition accuracy.

II. RELATED WORK

Current researches on HAR can be loosely classified into
two types, namely, video-based methods [5], [22] and RF-
based methods [12].

A. Video-based human action recognition

Video-based sensing methods have been prevailing in hu-
man action recognition. These methods capture image se-
quences by exploiting the camera and realize human action
recognition using classification algorithms. Generally, they can
be categorized into three groups: part-based frameworks [22],
two-step frameworks [5], multi-stream model frameworks. In
the part-based HAR, body parts are firstly detected separately
and further assembled for human pose estimations such as
DeepCut [22]. However, the assembled pose is prone to be
ambiguous when more than one person gathers together and
causes occlusion. Moreover, the part-based scheme is unable
to recognize human pose globally since it focuses only on
the second-order dependence of human body parts. As for the
two-step framework, human bounding boxes are first detected
and the poses within each box are then estimated such as
Faster RNN [23]. In this way, the quality of action recognition
is highly attached to the accuracy of the detected human
bounding boxes. In the presence of the multiple streams

framework like RGB flow and optical flow, it aims to im-
prove the accuracy of action recognition by characterizing and
integrating the patterns from various stream sources such as
SlowFast [24]. However, most of the video-based methods
are susceptible to ambient surroundings such as occlusion,
lightning and privacy concerns, etc. To break the obstacles of
the demand for line-of-sight (LOS), a time-series generative
adversarial network (TS-GAN) [25] is proposed to generate
inferences and hallucinations in recognizing videos related to
unseen actions. In fact, such hallucinations tend to produce
errors due to the deformable ability of the human body.

B. WiFi based human action recognition

RF-based techniques include radars [8], LiDARs [26] and
WiFi devices [12]. Radar and LiDARs sensors demand ded-
icated and specially designed hardware. In contrast, WiFi
devices are ubiquitously deployed since they are cost-effective
and power-efficient. Besides, WiFi devices are free from the
influences of illumination and privacy concerns in comparison
to video-based methods. Recently, an amount of WiFi-based
sensing systems were developed for human action recognition,
such as WifiU [27] and RT-Fall [28]. Yet, previous systems
are fairly coarse. These systems either locate only one single
limb or produce a rough and static representation of the human
body [12]. Most of the methods often target the general per-
ception, for example, the rough classification [12] and indoor
localization [15]. To mitigate the situation, some researchers
attempt to simulate 2D or 3D skeletons based on wireless
signals for person perception [7]. Other researchers simulate
the WiFi arrays to enhance the accuracy of recognition and
localization [29]. These researches illuminate the optimizing
applications of WiFi-based HAR in varied environmental
conditions. Recently, Alazrai et al. proposed an end-to-end
framework E2EDLF [30] to recognize human-to-human inter-



actions by sophisticated and careful construction of the input
CSI image.

III. ARCHITECTURE FOR WIFI SENSING VIA GABOR
RESIDUAL ANTI-ALIASING

As seen in Fig. 1, the proposed GraSens is designed and
conceived to fully exploit and explore the data collected
from off-the-shelf commercial WiFi devices in an end-to-
end style. Three stages can be generalized, namely generation
stage, feature learning stage, and task stage. Specifically, the
generation stage is aiming to enable the raw WiFi channel
state information (CSI) data compatible with the input of the
network while preserving the original frequency and temporal
information. The feature learning stage as shown in the bottom
part of Fig. 1 is defined as Gabor residual anti-aliasing atten-
tion module, which puts forward the up-sampled CSI samples
for feature maps generation. This stage can greatly mitigate
the influence of the ambient noises that are confused with
the action signals, and improve the quality of output features
from CSI information scattered in different subcarriers. These
learned features are further fed to fully connected layers for a
particular task in the last stage.

A. The proposed GraSens network

1) Generation Stage: To preserve the temporal as well
as frequency information within the CSI signals, the raw
CSI signals are transformed into a set of CSI tensors with
learnable parameters in the generation stage seen in Fig. 2(a).
Firstly, the raw CSI signals of an action segment as shown
in Fig. 1 are converted into a series of CSI tensors, aiming to
interpret the action with multiple aspects. After this, all the CSI
tensors are up-sampled by the deconvolution operation adapted
to the network. The principle of WiFi-based sensing is to
recognize the influence of perceived objects on the transmitted
signals [28]. Generally, a WiFi system can be modeled and
summarised as follows:

Bs(i) = γs(i)As(i) + θ, (1)

where s ∈ [1, · · · , Ns] depicts the index of the orthogo-
nal frequency-division multiplexing (OFDM) subcarriers em-
ployed in the WiFi device, Ns represents the total number of
the OFDM subcarriers. i defines the index of the transmitted
and received packets. The ith transmitted and received packets
pertinent to the OFDM subcarrier frequency s are specified
as As(i) and Bs(i), respectively. θ represents the received
noise, and a complex-valued matrix γs constitutes the CSI
measurements for the OFDM subcarrier frequency s. γs is
of dimensions NT × NR whose horizontal and vertical co-
ordinates indicate the number of transmitting and receiving
antennas, respectively.

In each time serial sequence, the raw CSI signals are
arranged in a 2D matrix of dimensions γ × I with γ =
NT×NR×NS where I indicates the index of packets recorded
in a specific CSI time serial. A sliding window along the
time axis divides the CSI signals into a bank of overlapped
segments as CSI tensor CSI(i) of size φ × γ. φ defines the

Fig. 2: The CSI signal of throwing. (a)-(c) are the CSI
signals of throwing in scenes without occlusion, with partial
occlusion, and with full occlusion, respectively.

number of packets and υ implies the overlap between every
two adjacent segments, where υ ≤ φ and i ≤ I/υ.

The CSI samples are further put forward to the deconvolu-
tion layer. The deconvolution layer serves as an up-sampling
layer to up-sample feature maps of the input CSI tensor and
preserves the connectivity pattern. In the up-sampling process,
the input CSI tensor is enlarged and densified by cross-channel
convolutions with multiple filters. The spatial and frequency
information in each channel is expanded and encoded into
spatially-coded maps. In comparison with the extant resizing
methods, the benefit of the deconvolution layers is that the
parameters are trainable. During the training, the weights
of deconvolution layers are constantly updated and refined.
The CSI samples are up-sampled to be processed by feature
learning modules as follows:

f1 = Deconv(CSI). (2)

where Deconv(·) is the deconvolution operation.
2) Feature Learning Stage: As depicted in Fig. 1, a Gabor

residual anti-aliasing sensing module is proposed for shift-
invariant feature learning. This GraSens module consists of
several Gabor residual anti-aliasing blocks. In each block, a
Gabor convolution layer filter replaces the first convolution
layer in a traditional residual module and serves as initializa-
tion to gain more discriminative power. After this, an anti-
aliasing layer is further added to keep the output feature maps
shift-invariant. For block µ, given the intermediate feature
map f1 ∈ RC×H×W as the input, the output features can
be generated as follows:

f0
µ,2 = Conv(Blur(GaborConv(f1))). (3)

where GaborConv(·) is the Gabor convolution operation and
Blur(·) is the anti-aliasing operation. To explicitly concentrate
on the efficacy of WiFi signals, GraSens sequentially infers
a 1D fractal dimension based temporal attention map Mµ,t ∈
RC×1×1 and a 2D fractal dimension based frequency attention
map Mµ,f ∈ RC×H×W as shown in Fig. 1. In short, the whole
attention process can be generalized as follows:

f
′

µ,2 = Mµ,t(fµ,2)⊗ fµ,2,
f

′′

µ,2 = Mµ,f (f
′

µ,2)⊗ f ′

µ,2,
(4)

where ⊗ indicates the element-wise multiplication. The unique
asset of multiplication locates in the way of duplication of at-
tention values. Intuitively, temporal attention values replicated



along the frequency axis and vice versa. Herein, the refined
output fµ,2 of stacked block µ can be formulated as follows:

fµ,2 = Blur(f
′′

µ,2 ⊕ f1), (5)

where ⊕ is the concatenate operation. Fig. 1 describes the
calculation process of each attention map. After several blocks,
f2 is the final output temporal and frequency representation.
The following section III-B describes the details of each
attention module. The feature learning progress of GraSens
module is as depicted in Algorithm 1.

Algorithm 1 Feature Learning
Input: The up-sampled CSI sample f1

Output: The output feature maps f2 of GraSens module
1: Choose the number of stacked GraSens blocks as λ;
2: Initialize the block µ = 1;
3: repeat
4: for block µ do
5: Update the Gabor anti-aliasing output f0

µ,2 ← f1

using Eqs. (3), (8) and (9);
6: Update the fractal self-attention output f

′′

µ,2 ← f0
µ,2

using Eqs. (10)- (12);
7: Update the anti-aliasing output fµ,2 ← f

′′

µ,2 using
Eqs. (5) and (9);

8: end for
9: Renew the input for next block f1 = fµ,2;

10: Move to next block µ = µ+ 1;
11: until µ = λ;
12: Return f2 = fλ,2 and forward to the task stage.

3) Task Stage: During the task stage, the learned frequency
and temporal features are fed to one fully connected layer to
generate the outputs for a particular task. In the training of
GraSens, the loss is computed by the activation function and
loss function. In this way, the difference between the outputs
of the GraSens network f3 and the ground-truth G can be
measured by the loss. The output f3 is formulated as follows:

f3 = Blur(FC(f2)), (6)

The cross-entropy loss is a basic option to be applied to
optimize GraSens and given by:

L =

J∑
j=1

f3
j log(Gj). (7)

where j is the snippet number of input training CSI samples.
In addition, we utilize the Stochastic Gradient Descent with
Momentum to learn the parameters.

TABLE I: Classification accuracy of the dataset WVAR.

Methods fall
down throw push kick punch jump phone

talk seat drink OA

SVM 1.00 0.92 0.90 0.94 0.93 0.94 0.91 0.88 1.00 0.94
WNN 1.00 1.00 1.00 0.86 0.88 1.00 1.00 0.81 1.00 0.94
GraSens 1.00 1.00 0.95 0.97 0.99 1.00 0.88 0.90 0.92 0.95

TABLE II: Classification accuracy of the dataset WAR.

Methods lie down fall run sit down stand up walk OA

RF [31] 0.53 0.60 0.81 0.88 0.49 0.57 0.65
HMM [32] 0.52 0.72 0.92 0.96 0.76 0.52 0.73
LSTM [33] 0.95 0.94 0.97 0.81 0.83 0.93 0.91
SVM 0.91 0.96 0.93 0.96 0.71 0.87 0.93
WNN 0.93 0.93 0.93 0.98 0.90 0.86 0.95
GraSens 0.94 0.97 0.95 0.98 0.91 0.85 0.96

B. GraSens Module

1) Gabor Filtering based Anti-aliasing: As for each
GraSens block, the Gabor layer builds a convolution kernel
library for feature extraction. To obtain the strong auxiliary
feature information, the Gabor convolution kernel group is
optimized by the network training and further convolved with
the CSI samples. Generally, the Gabor function describes a
complex sinusoid modulated by Gaussian in accordance with
monotonicity and differentiability, i.e.,

GaborConv = g(x, y,$, θ, ψ, σ)

= exp(−x
′2+y′2

2σ2 ) cos($x′ + ψ),
(8)

where x′ = x cos θ + y sin θ, and y′ = −x cos θ + y cos θ.
Gabor layers prove to be efficient for spatially localized
features extracting [34]. To extract the features from the WiFi
signals, a set of Gabor filters are used as ref [35]. Frequencies
$n of the Gabor filters is obtained by $n = π

2

√
2
−(n−1)

,
n = 1, 2, . . . , 5. The orientations θm is set as θm = π

8 (m− 1)
, where m = 1, 2, . . . , 8. In addition, the σ is defined by the
relationship between σ and $ where σ ≈ π

$ . ψ follows the
uniform distribution U(0,π). Accordingly, the Gabor Layer
weights in this paper are initialized similarly.

Subsequently, the anti-aliasing layer is leveraged to enable
the extracted feature shift-invariant. The anti-aliasing layer
serves as two steps. To begin with, a set of low-pass filters Ψ
are arranged and generated in terms of varied spatial locations
and channel groups within each GraSens block. After than, the
predicted filters are adopted and applied back onto the input
feature maps on account of anti-aliasing. We assume an input
feature X . To be specific, a low-pass filter Ψp,q

i,j , for example,
a 3×3 convolution filter, is generated to down-sample the input
feature X over each spatial location (i, j) as follows:

Blur =
∑
p,q∈Ω

Ψp,q
i,j ·Xi+p,j+q. (9)

2) Fractal Dimension based Self-Attention: Fractal de-
scribes unusual objects of irregular shapes which have a high
degree of complex properties. Fractal dimension can indicate
the degree of the complexity of objects, such as the irregular
WiFi signals. For the convenience, a general expression has
been defined to measure the fractal dimension as follows:

FD = − lim
ε→0

log(η(ε))

log(ε)
, (10)

where η measures self-similarity and ε denotes the scale. In
our work, FD is employed to calculate the fractal dimension



Fig. 3: Three experiment scenes of WVAR dataset.

of feature maps along with the frequency and temporal do-
main.
Fractal temporal attention module. Each channel within a
feature map can reflect the diverse temporal characteristics
of the input CSI samples. Inspired by the CBAM [36], we
calculate the fractal dimensions for all the frequencies in
feature maps input as the temporal attention as follows:

Mµ,t(fµ,2) = ξ(MLP (FD(fµ,2))), (11)

where ξ implies the sigmoid function. MLP specifies a multi-
layer perceptron operation.
Fractal frequency attention module. Cross-channels within
a feature map can capture the frequency characteristics. For
this purpose, a frequency attention map is generated to exploit
the cross-channel relationship of features. Fractal dimensions
across the channel are utilized to generate one feature map
as the fractal feature maps. Those fractal feature maps are
further fed to a standard convolution layer and thus generate
the frequency attention map. In brief, the fractal frequency
attention is calculated as follows:

Mµ,f (f
′

µ,2) = ξ(Conv(FD(f
′

µ,2))), (12)

where Conv represents a convolution operation.

IV. EXPERIMENTS

A. Datasets

Our WVAR dataset. WVAR collection was implemented in
one spacious office apartment by 2 volunteers who performed
9 activities with five repeated trials in different simulating
occlusion occasions as seen in Fig. 3. The experimental hard-
ware as seen in Fig. 1 constitutes two desktop computers as
transmitter and receiver, both of which are carried out in IEEE
802.11n monitor mode operating at 5.4 GHz with a sampling
rate of 100 Hz. WVAR also contains the synchronized video
data recorded at 20 FPS, i.e. every frame is corresponding to
five CSI packets.

Table IV shows the classification accuracy of the dataset
CSNLOS. We test two LOS scenarios’ data E1 and E2. The
results of GraSens rank first compared to all other two methods
in two LOS scenes E1 and E2. As for E1, GraSens achieves
the best results by 3% average accuracy higher than SVM [40].

With regard to E2, the performance of GraSens is better except
for no movement and walking which still are comparable
with those of SVM [40]. In other words, GraSens has good
robustness in comparison to the other two models.
WAR, HHI, and CSLOS. The public available dataset
WAR [33] consists of 6 persons, 6 activities with 20 trials
for each in an indoor office. The sampling rate is 1 kHz.

The publicly available CSI dataset of HHIs [41] is composed
of 12 different human-to-human interactions (HHI) which
performed by 40 distinct pairs of subjects in an indoor environ-
ment inside an office with 10 different trials, e.g. approaching,
departing, hand shaking, etc.

Another public available cross-scene dataset (CSLOS) [42]
is provided by the same group as the HHI. LOS contains five
experiments in three different indoor environments, where two
are of LOS nature and the third environment is of a non-line-
of-sight (NLOS) nature. 30 different subjects were included
with 20 repeated trials for each of the experiments in terms
of the variations of human movements.

1) Evaluation Metrics: Accuracy and precision are utilized
in the sort of performance evaluation. Accuracy defines the
percentage of total actions classified correctly. Precision re-
flects the correct percentage of classified actions from all
predicted ones. It should be underlined that false positives are
also included in precision. Both metrics are denoted as follows:
Accuracy = TP+TN

TP+TN+FP+FN and Precision = TP
TP+FP ,

where TP , FP , TN and FN represent the true and false
positives and negatives, respectively.

B. Comparison with state-of-the-art methods

1) Quantitative Results: We compare GraSens with sev-
eral state-of-the-art approaches on all four datasets, namely
WVAR, WAR, HHI, and CSLOS. Apart from SVM and WNN,
we used the reported accuracy of their original paper unless
otherwise stated for comparison.

Table I illustrates the classification accuracy of the dataset
WVAR. GraSens surpassed all other methods in most of the
actions with an OA of 95%, which is slightly higher than these
of SVM and WNN 1%. The reason behind this may be due to
the fact that the dataset WVAR is relatively too small to reflect
the advantages of GraSens. In addition, it can be observed
that some action classes (i.e. push, phone talk, and drink) of
GraSens obtained a slightly lower accuracy than WNN. The
possible reason for this can be that all are simple activities
whose changes in waveform characteristics over time were
similar. Compared with WNN, GraSens has fewer advantages
in this case.

Table II shows the results on the dataset WAR. GraSens
outperforms all the baselines with a large margin of 5%
than LSTM and 1% than our baseline WNN. Notably, WNN
has the same network structure as GraSens. This confirms
the effectiveness of the design of our network. Compared
with the results of RF, HMM, and SVM, the results of
GraSens had obvious improvements in all the six activities.
This reason behind this is due to the fact that GraSens can
extract more robust and shift-invariant features than machine



TABLE III: Classification accuracy of the dataset HHI.

Methods approaching departing hand
shaking high five hugging kicking

left leg
kicking
right leg

pointing
left hand

pointing
right hand

punching
left hand

punching
right hand pushing OA

GoogleNet [37] 0.93 0.93 0.79 0.76 0.64 0.54 0.50 0.78 0.77 0.59 0.59 0.68 0.71
ResNet-18 [38] 0.92 0.90 0.85 0.79 0.77 0.68 0.60 0.82 0.80 0.60 0.65 0.76 0.76
Squeeze-Net [39] 0.95 0.93 0.83 0.76 0.70 0.66 0.62 0.78 0.79 0.60 0.72 0.74 0.76
E2EDLF [30] 0.96 0.92 0.89 0.84 0.86 0.78 0.82 0.85 0.90 0.73 0.80 0.86 0.85
SVM 0.99 0.96 0.90 0.83 0.82 0.73 0.79 0.69 0.62 0.74 0.77 0.74 0.78
WNN 0.97 0.96 0.83 0.84 0.72 0.52 0.65 0.76 0.81 0.63 0.69 0.78 0.79
GraSens 0.99 0.97 0.91 0.89 0.89 0.58 0.68 0.83 0.79 0.55 0.75 0.93 0.86

Fig. 4: The skeleton results by WiFi (a)-(d) and by video (e)-(h). In the scene without occlusion as the first two columns
show, the skeleton results by WiFi are comparable in seating, and better in self-occlusion cases like falling down than those
by video. As for the scene without occlusion in the last two columns, the skeleton results by WiFi are more precise seen in
the legs in (d) compared to (h) and have less false detection like the chairs than those by video.

TABLE IV: Classification accuracy of the dataset CSLOS

Scenes Methods no
move falling walking sitting/

standing turning picking
up Average

E1

SVM [40] 0.98 0.86 1.00 0.91 0.90 0.92 0.94
WNN 0.89 0.80 0.73 0.86 0.67 0.94 0.81
GraSens 0.97 0.97 0.95 0.98 0.96 0.99 0.97

E2

SVM [40] 0.95 0.82 0.99 0.82 0.81 0.82 0.89
WNN 0.84 0.78 0.75 0.83 0.69 0.84 0.79
GraSens 0.93 0.94 0.98 0.91 0.92 0.91 0.93

learning methods. Compared to WNN and LSTM, GraSens
achieved the best performance on fall, sit-down, and stand-
up, which means that GraSens can capture the characteristics
of rapidly changing motion in time and space. These results
demonstrated that the GraSens is able to explore the frequency
and temporal continuity inside WiFi signals to enhance the
quality of output features scattered in different subcarriers.
As for lie-dow, GraSens obtained slightly lower but similar
performance with 1% than LSTM. The reason is due to that the
signals change fast at the beginning but keep similar after in
space. With regard to the action walk which behaved similarly
in time and space, the accuracy of GraSens was 8% lower than
LSTM. The possible reason is that the spectrum of the signals
behaves similarly in time. The results indicated that GraSens
is good at sophisticated action recognition but slightly poor at
simple actions.

Table III shows the classification accuracy of the dataset
HHI. GraSens obtains the most satisfying results by obvi-

ous margins and surpassed the original method E2EDLF.
GraSens outperforms the WNN with 7% which confirms the
effectiveness of fractal dimension-based self-attention as well
as Gabor filtering-based anti-aliasing. Specifically, for the
actions of approaching and departing, all of these methods
achieved satisfied accuracy over 90%. On the basis of the
results of hand-shaking, high five, hugging, and pushing, the
proposed GraSens outperformed other algorithms. However,
the evaluation of GraSens on kicking, pointing and punching
lacked effectiveness. The possible reason is that these actions
were single limb linear movements and last shortly in time
series sequences thus the input CSI samples contained an
amount of the noises included in the ambient environment.
GraSens augmented the characteristics of WiFi signals and was
inevitably affected by these noises. Overall, the performance
of GraSens was moderate, but it was still more convenient to
realize action recognition with no requirements for the sophis-
ticated preprocessing than the state-of-art E2EDLF, especially
on complex actions in the temporal and frequency domains.

2) Qualitative Results: We also show the effectiveness of
WiFi and Video data on WVAR. Fig. 2(b) and (c) illustrate
that CSI signals are not affected by the occlusion and exhibit
similar patterns in the same actions.

Skeleton visualization is further to show the effectiveness
of WVAR. Inspired by the work [8], the skeletons derived
from Alphapose [43] are used to train the GraSens in LOS



TABLE V: Ablation study of the number of GraSens blocks

Blocks approaching departing hand
shaking high five hugging kicking

left leg
kicking
right leg

pointing
left hand

pointing
right hand

punching
left hand

punching
right hand pushing OA

λ = 4 0.96 0.98 0.84 0.80 0.70 0.50 0.49 0.83 0.84 0.65 0.81 0.95 0.84
λ = 8 0.99 0.97 0.91 0.89 0.89 0.58 0.68 0.83 0.79 0.55 0.75 0.93 0.86
λ = 16 0.96 0.96 0.84 0.83 0.77 0.52 0.64 0.81 0.80 0.53 0.59 0.91 0.82

TABLE VI: Ablation study of Gabor filtering-based anti-aliasing mechanism and fractal dimension-based self-attention distilling

Ablation Study Methods approaching departing hand
shaking high five hugging kicking

left leg
kicking
right leg

pointing
left hand

pointing
right hand

punching
left hand

punching
right hand pushing OA

Gabor filtering
based
anti-aliasing
mechanism

Baseline1 0.96 0.96 0.79 0.85 0.69 0.55 0.65 0.66 0.65 0.54 0.58 0.93 0.78
Baseline1+Anti-alasing 0.97 0.98 0.83 0.91 0.91 0.61 0.63 0.74 0.78 0.46 0.69 0.93 0.84
Baseline1+Gabor 1.00 0.95 0.83 0.92 0.67 0.53 0.63 0.85 0.92 0.42 0.69 0.90 0.85
GANet 0.99 0.97 0.91 0.89 0.89 0.58 0.68 0.83 0.79 0.55 0.75 0.93 0.86

fractal dimension
based
self-attention
distilling

Baseline2 0.91 0.98 0.84 0.85 0.74 0.57 0.54 0.71 0.67 0.51 0.62 0.90 0.79
Baseline2+FrequencyAttention 0.97 0.94 0.75 0.80 0.71 0.57 0.56 0.84 0.81 0.45 0.61 0.90 0.82
Baseline2+TemporalAttention 0.79 1.00 0.95 0.90 0.86 0.50 0.91 0.89 0.91 0.64 0.50 0.62 0.84
GANet 0.99 0.97 0.91 0.89 0.89 0.58 0.68 0.83 0.79 0.55 0.75 0.93 0.86

conditions. On the basis of the skeletons, the trained GraSens
can further generate skeletons in non-line-of-light scenes.
Skeleton visualization is further to show the effectiveness
of WVAR. As seen in Fig. 4(a)-(d), in the scene without
any occlusions, our GraSens yielded robust skeletons in good
agreement with the truth images which were close to these
of Alphapose. In partially covered situations, GraSens pro-
vided the most convincing skeleton results such as seating in
Fig. 4(d) compared to Alphapose in Fig. 4(h), with the skeleton
boundary being visually close to the raw truth image. This
clearly demonstrates that our CSI data on WVAR has a good
efficiency in these scenarios.

C. Ablation Study

In this subsection, we have implemented the experiments to
reveal how the different number of GraSens blocks influence
the classification accuracy. In addition, we also conducted
additional experiments on GraSens with ablation considera-
tion. In this study, we use HHI as the benchmark to test the
additional effects of the different number of GraSens blocks
as well as self-attention and anti-aliasing mechanisms.

1) The performance of number of GraSens blocks: The
number of stacked blocks λ has a trade-off between the
accuracy and efficiency of the proposed GraSens method. To
further verify the influence of the number of stacked blocks
on performance, we have added an experiment as illustrated
in Table V. As shown in Table V, the GraSens achieves the
better performance with a growth of 2% when λ = 8 compared
with when λ = 4. In contrast, when we add the number of
blocks to λ = 16, the classification accuracy decreases by 2%.
It is noted that the 16 GraSens blocks network architecture is
over-fitting for the training data and generalizes poorly on new
testing data. As a result, the classification accuracy decreases
on the contrary. According to the results, we choose λ = 8 as
the number of blocks used in our experiments empirically.

2) The performance of Gabor filtering-based anti-aliasing
mechanism: In this study, we testify to the potential accuracy
of our Gabor filtering, anti-aliasing, and Gabor filtering-based
anti-aliasing in acquiring “generative” results illustrated in
Table VI. Firstly, WNN with the fractal dimension-based self-

attention is set as the main pipeline ’baseline1’. For the second,
we replace the pooling with an anti-aliasing operation. For the
third, the Gabor filtering replaces the first layer of baseline as
the Gabor convolution layer. Surprisingly, both anti-aliasing
operation and Gabor filtering largely improve the classification
accuracy by 8% and 9%, respectively. In addition, the fusion
of two operations continues to enhance the performance by
9%.This confirms both the correlation between Gabor filtering
and anti-aliasing operation and the importance of the fusion
of each other. Thereafter, Gabor filtering-based anti-aliasing
further improves the performance, widening the gap with the
existing methods.

3) The performance of fractal dimension-based self-
attention distilling: In the overall results Table VI, we distill
frequency and temporal attention separately for self-attention.
Firstly, WNN with Gabor filtering-based anti-aliasing is used
as the ’baseline2’. Firstly, we add the baseline2 with fractal
dimension frequency attention only. As for the second, we
add the baseline2 with fractal dimension temporal attention.
The fractal dimension-based self-attention determines how the
network distributes the contribution of the features. We notice
that both the frequency attention and the temporal attention
contribute to the improvements of accuracy by 3% and 4%.
The integration of both can further refine the accuracy by 7%.

V. CONCLUSION

In this paper, we identified the inherent limitation of the
WiFi signal-based convolution neural networks, with obser-
vations that the efficacy of WiFi signals is prone to be
influenced by the change in the ambient environment and
varies over different sub-carriers. Thereafter, based on their
characteristics, we proposed to formulate reliable and robust
temporal and frequency shift-invariant representations. We
first designed the Gabor filtering based on anti-aliasing to
obtain the shift-invariant feature information of actions with
the strong auxiliary function. Furthermore, fractal dimension-
based frequency and temporal self-attention are proposed to
focus on the dominant features scattered in different subcar-
riers. In addition, we collected synchronous video and WiFi
datasets WVAR to simulate the complex visual conditions like



the occlusions scenarios. The ablation study verified that both
our Gabor filtering-based anti-aliasing and fractal dimension-
based frequency and temporal self-attention are beneficial
for the improvement of classification accuracy. Through the
experiments on the four most popular datasets, our GraSens
achieved a new state-of-the-art with a large margin. We
believe it would be a promising future direction to adopt the
Gabor filtering-based anti-aliasing and fractal dimension-based
attention to the HAR or other related tasks.
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