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ABSTRACT

We introduce LIMES, a new method for learning with non-stationary streaming data, inspired by
the recent success of meta-learning. The main idea is not to attempt to learn a single classifier
that would have to work well across all occurring data distributions, nor many separate classifiers,
but to exploit a hybrid strategy: we learn a single set of model parameters from which a specific
classifier for any specific data distribution is derived via classifier adaptation. Assuming a multi-class
classification setting with class-prior shift, the adaptation step can be performed analytically with
only the classifier’s bias terms being affected. Another contribution of our work is an extrapolation
step that predicts suitable adaptation parameters for future time steps based on the previous data.
In combination, we obtain a lightweight procedure for learning from streaming data with varying
class distribution that adds no trainable parameters and almost no memory or computational overhead
compared to training a single model. Experiments on a set of exemplary tasks using Twitter data
show that LIMES achieves higher accuracy than alternative approaches, especially with respect to
the relevant real-world metric of lowest within-day accuracy.

Keywords continual learning · non-stationary data · incremental training · meta-learning · class-prior shift

1 Introduction

In our current era of connected devices, data is often generated in a continuous manner, e.g. by mobile devices, intelligent
sensors or surveillance equipment. This creates a challenge for machine learning systems, especially when the available
computational and memory resources are limited, such as when learning at the edge. On the one hand, systems cannot
store all prior data as the necessary amount of storage would grow linearly over the runtime of the system. On the other
hand, the systems have to make predictions continuously, interleaved with learning, rather than following the traditional
offline setting with separate training and prediction phases. Furthermore, continuously generated data is typically
non-stationary: its data distribution varies over time, e.g. due to changing environmental conditions or changing user
behavior.

For a machine learning system, a time-varying data distribution is problematic, because it means that previously
observed data might not be representative of future data. Consequently, simply learning a single fixed model, as is
usually done in the standard setting of independent and identically distributed (i.i.d.) data, leads to suboptimal results.
Alternatively, it is possible to learn multiple models, essentially starting a new one whenever the data distribution
changes. This, however, can also lead to suboptimal results when each model achieves acceptable prediction quality
only after having seen enough data. Furthermore, learning multiple models leads to increased memory requirements.

In this work, we introduce LIMES (short for Lightweight Model Extrapolation for Streaming data) that offers a new way
for learning classifiers from non-stationary streaming data in resource-constrained settings. Inspired by recent progress
in meta-learning, LIMES’s core idea is to combine the resource efficiency of having only a single set of parameters
with the flexibility of learning different models for different data distributions. We construct a base model that can be
adapted efficiently to different target distributions together with a procedure for forecasting the parameters necessary
for adapting the base model to be used on future data, even before any examples of that data have been observed.
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Specifically, we adopt the scenario of multi-class classification under class-prior shift, in which the class frequencies
change over time, while the class-conditional data densities remain approximately constant. One of our contributions
is to show how in this setting it is possible to learn a model from multiple data distributions, and how make use of it
for yet another data distribution, with hardly any computational or memory overhead. Furthermore, we introduce an
extrapolation step that forecasts the class distribution of future data based on the observed previous data.

We show experimentally on exemplary tasks using Twitter data that LIMES achieves higher accuracy
than either learning a single model or an ensemble of multiple models. The code is available at
https://github.com/ptomaszewska/LIMES.

2 Method

In this section, we formalize the learning scenario, we study and introduce the proposed LIMES method.

2.1 Learning Scenario

We assume a time-varying data distribution pt(x, y) for t = 1, 2, . . . , where x ∈ X are the designated inputs
to the learning system and y ∈ Y = {1, . . . , L} are the output labels (Bartlett [1992]). The goal of a learning
system is to create a predictive model, ft : X → Y , for any time step t, with as small as possible risk, Rt(f) =
E(x,y)∼pt [`(y, ft(x))], where ` is the 0/1-loss function, `(y, y′) = Jy 6= y′K1 For this task, the learning system can make
use of observed data from prior time steps, S1, . . . , St−1, where each Sτ = {(xτ1 , yτ1 ), . . . , (xτnτ , y

τ
nτ )} ∼ pτ (x, y), for

τ = 1, . . . , t− 1. In line with practical resource-constrained applications, we assume a continuously running learning
system that is kept up-to-date by periodic retraining (Graepel et al. [2010], McMahan et al. [2013], Li et al. [2015]).
That means, only at the end of each time step, it is possible to update the model parameters. The obtained model is then
used to make predictions for all data during the next time step.

A typical example of this setting is the real-time classification of social media streams. For example, for our experimental
evaluation in Section 3, the inputs are tweets and the outputs are the countries from which the tweets originated. The time
index corresponds to the time intervals over which the data distribution can be assumed to be relatively stable, in our
case hours. Within a few time steps, the data distribution can change quite rapidly. Intuitively, users from different
countries tweet predominantly at different times due to their respective time zones. This causes a time-varying data
distribution in which class proportions fluctuate substantially over time.

2.2 Learning Methods

A number of possible approaches can be used to tackle the learning problem introduced above. The most classical is
standard empirical risk minimization (Vapnik [2013]), in which a model, f , from a class of possible ones, F , is sought
that minimizes the training error across all the data observed so far,

ft+1 = argmin
f∈F

t∑
τ=1

R̂τ (f), (1)

where

R̂τ (f) =
∑

(x,y)∈Sτ
`(y, f(x)) (2)

is the training error (empirical risk) of a model f on the data from the time step τ . Optionally, a regularizer or other
terms can be added to improve generalization or to make the optimization problem better behaved.

Empirical risk minimization is widely used when data is sampled i.i.d. from a stationary distribution. However, for
learning from non-stationary data, it has a number of shortcomings. First, Equation (1) will not actually learn a model
adapted for the coming time step t+ 1, but rather one that works well on average across all data distributions in the
past. Second, minimizing Equation (1) is intractable in a practical streaming setting. It would require having stored all
training sets, S1, . . . , St. which is impractical for systems that are meant to run continuously over a long time with
limited resources, such as at the edge (Murshed et al. [2021]).

Alternatively, one can find a model by training only on the most recently available data,

ft+1 = argmin
f∈F

R̂t(f). (3)

1The Iverson brackets JP K for a predicate P take the value 1 if P is true and 0 otherwise.
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This restart approach overcomes the second problem and mitigates the first one. However, the procedure completely
ignores non-recent data. Therefore, the models it produces are usually limited in the accuracy they can achieve.

Incremental training (Giraud-Carrier [2000]) avoids the problem of having to store all data, but still allows models to
benefit from all available data. Each ft+1 is obtained by running a minimization routine on the most recent empirical
risk, R̂t, as in Equation (3). However, instead of running the optimization routine until convergence, one initializes the
process at the parameters of the previous model, ft, and performs early stopping, e.g. after one pass through the data.
Models learned by incremental training depend on all available data. At the same time, they tend to be biased towards
recently seen data. The latter can be a benefit if the data distribution changes slowly, but it can also be a disadvantage, if
data from more distant time steps is valuable, such as for periodic data distributions.

A way to preserve information from more distant time step is to combine incremental training with model ensem-
bling (Krawczyk et al. [2017], Street and Kim [2001], Minku and Yao [2011], Muhlbaier and Polikar [2007]). Instead of
training a single classifier, one trains multiple prototypical models, g1, . . . , gK , on different subsets of the available data.
The desired ft+1 is then constructed out of this ensemble based on contextual information or, if available, data from the
target distribution (Cruz et al. [2018], Almeida et al. [2018]). The cost of the gained flexibility is a K-fold increase in
memory requirements in order to store all models. At the same time, the amount of training data necessary to achieve
satisfactory accuracy tends to be larger as well, when each model is trained only on a subset of all observed data.

Recently, the problems of class-incremental learning (Rebuffi et al. [2017]) and task-incremental learning (Li and
Hoiem [2017]) have attracted a lot of attention in the machine learning community, see e.g. (Delange et al. [2021]) for
a survey. These problems are special cases of the problem of learning with non-stationary data, based on additional
assumptions about which data appears when and to which tasks the resulting functions will be applied. Specialized
algorithms have been derived that aim at giving deep neural networks the ability to learn continually without suffering
from catastrophic forgetting (McCloskey and Cohen [1989], French [1999]). However, those recent methods are not
applicable in the situation in which we are interested. On the one hand, that is because they solve different problems,
and on the other hand, because they require additional resources either for storing part of the observed data (Rebuffi
et al. [2017], He et al. [2020]) or growing the model architecture over time (Rusu et al. [2016], Yoon et al. [2018]).

2.3 Classifier Adaptation

The LIMES method we propose, combines the best aspects of the different approaches discussed before. Like in
incremental training, only a single model is trained, for which all available data is used. Like in ensemble learning, the
predictions are made with a model specifically adapted to the target distribution, thereby allowing for higher prediction
accuracy. The core concept to achieve both properties simultaneously is a form of classifier adaptation (Saerens et al.
[2002], Royer and Lampert [2015]), that we discuss in the following.

We adopt a setting of probabilistic multi-class classification, such as implemented by logistic regression or any
neural networks with softmax output layer. Such a model represents conditional distributions over the label set,
Y = {1, . . . , L}, in log-linear form

p̂(y|x;W, b) ∝ exp(w>y φ(x) + by). (4)

The model parameters are the weight vectors W = (w1, . . . , wL) ∈ Rd×L, and per-class bias terms b = (b1, . . . , bL) ∈
RL. The feature map φ : X → Rd can be fixed (in the case of logistic regression) or learned together with the classifier
parameters (in the case of a neural network).

The proportionality constant for the right hand side of Equation (4) can be computed efficiently for any x ∈ X as 1
Z(x)

with Z(x) =
∑
z∈Y exp(w

>
z φ(x) + bz). We generally suppress this step from our notation for the sake of conciseness.

The probabilistic model allows one to make predictions for new inputs x ∈ X by

f(x) = argmax
y∈Y

p̂(y|x;W, b) = argmax
y∈Y

[w>y φ(x) + by]. (5)

The parameters W, b (and potentially φ) are typically trained to make the conditional model distribution, p̂(y|x;W, b),
as close as possible to the conditional distribution of the training data, p(y|x). In the case that they are identical,
Equation (5) yields the Bayes-optimal prediction rule, i.e. the classifier has minimal expected error on future data
from the same distribution. However, if the data distribution at the prediction time, q(x, y), differs from p(x, y), then
the classifier f can become suboptimal, i.e. have higher error rate than necessary. Unfortunately, the latter situation
is the rule rather than the exception in the setting we study. For a time-varying data distribution, the data available at
training time practically never is distributed identically to the data at prediction time.
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There is no general solution for this problem of distribution mismatch, unless we assume that p(x, y) and q(x, y) are in
some way related to each other. One such relatedness assumption, which is often justified in practice, is that the two
distributions differ only by a class-prior shift, that is, q(y) 6= p(y) but q(x|y) = p(x|y) (Quiñonero-Candela et al.
[2008]). In that case, it is possible to adapt f to a classifier that yields optimal predictions for the new situation. To see
this, we first write

q(y|x) = q(x|y)q(y)
q(x)

=
p(x|y)q(y)

q(x)
= p(y|x)q(y)

p(y)

p(x)

q(x)
, (6)

where the first and third equality are Bayes’ rule and the second equality follows from the class-prior shift assumption.
Consequently, the optimal decisions for the distribution q(x, y) is

argmax
y∈Y

q(y|x) = argmax
y∈Y

p(y|x)q(y)
p(y)

, (7)

where we have used the fact that the argmax is not affected by multiplication with factors that do not depend on y.

For a log-linear model parameterized as in Equation (4)

that approximates p(y|x), we obtain the adapted model

q̂(y|x;W ′, b′) ∝ exp(w′y
>φ(x) + b′y) (8)

that approximates q(y|x) by setting, for all y ∈ Y ,

w′y = wy, b′y = by + log
q(y)

p(y)
, (9)

as long as q(y) and p(y) are known, or can at least be estimated sufficiently well. We denote the classifier associated
with the adapted model (8) as fp→q .

2.4 Lightweight Model Extrapolation for Streaming Data

The ability to adapt a learned model from one data distribution to another has been used previously, for example for
domain adaptation (Quiñonero-Candela et al. [2008]) or to exploit changing class proportions at prediction time (Royer
and Lampert [2015]).

In contrast to prior work, we use it at training time to learn a single set of parameters that will work well –after respective
adaptation– under many different conditions. Conceptually, the step resembles meta-learning (Finn et al. [2017, 2019]),
where also a base model is learned in a way such that it can be adapted easily to new situations. Specifically, we form a
single log-linear model fu with modeled conditional distribution as in Equation (4).

Instead of training this model to minimize the average loss across all time steps, we aim for the adapted models to result
in minimal loss,

min
W,b

t∑
τ=1

R̂τ (fu→pτ ), (10)

where u denotes the distribution in which all classes have equal probability. Despite the similar formulation, learning a
model using Equation (10) differs fundamentally from learning a model with Equation (1). For the latter, the terms,
R̂1(f), . . . , R̂t(f), in the summation compete with each other: the parameters that optimally minimize one of them are
not optimal for any of the others, when their respective training data is distributed differently. As a consequence, the
optimization has to settle for finding parameters that perform well on average, but are never truly optimal. This effect is
purely due to the time-varying nature of the data, so neither observing larger datasets nor more of them will overcome it.

In the newly proposed formulation (10) the terms, R̂1(fu→p1), . . . , R̂t(fu→pt), support each other: up to finite sample
effects, the parameters that minimize any of the terms R̂τ (fu→pτ ) for τ = 1, . . . , t, are identical, and they are also
the same ones that would minimize the risk of the modeled fu over a dataset sampled from u, i.e. with uniform class
distribution. The reason is that the differences in class distributions are compensated by the corresponding adaptation
step, so the model parameters do not have to change. As a consequence, the more datasets we observe or the larger they
are, the higher the precision with which we can recover the optimal parameters for all time steps.

As in the case of empirical risk minimization, solving Equation (10) exactly is intractable because it would require us to
store all past data. Instead, we again use incremental training: we update the parameters by always minimizing the most
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Figure 1: Class distribution in geo-tweets dataset across 24 hours (March 1, 2020) for five most frequent countries
(US: USA, BR: Brazil, JP: Japan, GB: Great Britain, PH: Philippines).

recent empirical risk

min
W,b

R̂t(fu→pt), (11)

starting at the previous parameter values and using early stopping after a single pass through the data.

Forming fu→pτ for any τ = 1, . . . , t, requires knowledge of the class probabilities pτ (y). These are not known
exactly, but after having observed the training set Sτ , we can estimate them easily by the observed class frequencies,
p̂τ (y) =

1
nτ

∑nτ
i=1Jy

τ
i = yK. Those are just L-dimensional vectors, so they can be stored, even continuously, with only

a very small memory footprint.

The model fu resulting from the above procedure can be expected to work well for data with a uniform class distribution,
and also for any other class distribution if we adapt it suitably.

This property is particularly useful for constructing a model for the next time step, t+ 1: instead of having to train on a
data set St+1 ∼ pt+1, which is not available yet, we can simply perform the very efficient adaptation step (8) to form
fu→pt+1

. This, however, requires an estimate of the class probabilities at the following time step, pt+1(y), which are
a priori unknown. To overcome this problem, we propose a history-based forecasting step that extrapolates the class
distribution. First, we find the time step, t∗, among all earlier ones whose class distribution is most similar to the one at
the current time step, t.

t∗ = argmin
τ=1,...,t−1

dist(p̂τ (y), p̂t(y)), (12)

where dist denotes the L1-distance. We then use p̂t∗+1 as a proxy for p̂t+1. In other words, we forecast that the situation
one time step after the current, t + 1, will be similar to the situation that had emerged one time step after a similar
situation had occurred in the past, t∗ + 1.

The combination of both steps, adaptation at training time and forecasting of the next class distribution, we call LIMES
(Lightweight Model Extrapolation for Streaming Data). It has a number of desirable properties. First, it is easy to
implement, as it requires neither a new model architecture nor a special form of optimization. Instead, one simply trains
a model continuously on the incoming data, and only adjusts the model’s bias terms at each new time step. LIMES’s
computational and memory overheads are negligible, as only the vectors of prior class distributions have to be stored
and searched. For very long-running systems, the forecasting step could be made even more efficient (time and memory
complexity O(1) instead of O(t)) by either using a rolling history buffer, or by selecting a finite number of prototypical
histories in a data-dependent way. Such steps are orthogonal to our main contribution in this work, so we leave them to
future work.

3 Experimental Evaluation

We evaluate LIMES on the geo-tweets dataset2. It consists of a large number of tweets with geographic information
that were collected using Twitter’s free Streaming API3 from April to July 2020. The associated classification task is to
predict from which of 250 countries a tweet was sent based on its textual content and/or the user metadata. Because

2https://cvml.ist.ac.at/geo-tweets
3https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
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users in different time zones are active at different times of the day, the country distribution fluctuates strongly across
time. Figure 1 illustrates this effect: the x-axis shows the hours of a day in GMT time zone. Between hours 14 and
23 as well as 0 and 6, the most active countries on Twitter are the USA and Brazil. At their peak (hours 22-4), they
together are responsible for more than half of all tweets in the dataset. In contrast, between hours 7-14, tweets from the
USA and Brazil are less frequent, whereas Japan, Great Britain and the Philippines are responsible for larger shares.

To reflect the time-varying nature of the data, we split the data into hourly chunks, which on average contain approx-
imately 127000 tweets (minimum: 61000, maximum: 149000). We use random subsets of 80% of each chunk for
training and 20% for evaluation. In order to assess statistical variations, we subdivide the data further. First, we create
two subsets, one containing tweets of the 1st to 5th day of each month ("early") and one for the 11th to 15th ("late").
From each subset, we create ten realizations of the time series by subsampling the data with a stride of 10 from different
starting indices.

From each tweet we extract two 512-dimensional feature vectors using the pretrained
distiluse-base-multilingual-cased-v1 multi-lingual sentence embedding network (Reimers and Gurevych
[2019]). One is of the tweet text itself and one is of the text in the location meta-data, which is a user-provided free text
that might or might not be related to the actual location of the user. As target labels, we use the tweet’s country of origin,
which for geo-tagged tweets can be extracted from the tweet’s meta-data. Specifically, we infer the country either from
the lat-long coordinates, or, if those are not provided, we use the user-specified country_code entry of the meta-data.

The input features can be extracted also for tweets without geo-tags. Therefore, the classifier resulting from the described
training method can be used to predict the country of origin from any tweet, which is an often-required step in social
media analysis (Han et al. [2014]). Note, however, that in this work, we are not trying to compete with existing methods
for this specific task, as the Twitter data serves just as a real-world testbed for our proposed general-purpose model
adaptation technique.

As an instantiation of LIMES, we implement a logistic regression model in the keras toolkit with tensorflow backend.
The training is performed incrementally by Equation (10) using the Adam optimizer with mini-batches of size 100. No
regularization is used and all hyperparameters are left at their defaults (learning rate 0.001, β1 = 0.9, β2 = 0.999).

As baseline, we use alternative methods discussed in Section 2.2, relying on the same model architecture and optimization
routines as for LIMES. Incremental is a classifier that is trained incrementally to minimize (1), i.e. identically to LIMES
but without adaptation and forecasting. Random uses the same adaptation as LIMES, but using a randomly selected time
step from history instead of the extrapolation. Ensemble is an ensemble of 24 classifiers, one per hour. Each classifier is
trained incrementally on the data of the respective hour. For prediction at time step t+ 1, the model with index (t+ 1)
mod 24 is used. Restart trains a new model at every time step t from the data St and uses it for predictions at step t+1.

All four methods are tested in 60 experimental settings: 2 subsets (early, late), 3 feature types (tweet, location or their
concatenation), and 10 different data realization. In each case, we measure the accuracy of the resulting classifier. We
then report average and standard deviation across the ten realizations, once for the average accuracy across all hours
(avg-of-avg) and once for the average of the minimum accuracy within each day (avg-of-min). The latter value is often
a quantity of interest for real-world systems, because customer satisfaction tends to depend not on the average of their
experience but rather on the worst case.

3.1 Results

Table 1 summarizes the results. Overall, one can see that the task of predicting the country from the tweet text is
more difficult than from the user-provided meta-data. Combining both feature types yields the highest accuracy. In all
cases, the minimal accuracy across the day is substantially lower than the average. This indicates that the difficulty of
the classification task varies over time, presumably due to changes in the label distribution.

Comparing the different methods, we observe a ranking that is stable across all experimental settings: LIMES achieves
the best results, followed by incremental and random. Ensemble performs substantially worse, and restart even worse
than that. Given that incremental differs from LIMES only in the lack of an adaptation and forecasting step, we can
conclude that the way we propose the adaptation to the class distribution indeed has a positive effect. For the avg-of-avg
accuracy measure, the gain due to adaptation and forecasting is the biggest for the most difficult task: 0.53–0.65%
when predicting the country based on the tweet text itself. It gets smaller, the easier the task becomes: 0.13–0.19%
for location features, and 0.07–0.12% for the concatenation of both. More apparent, however, is the positive effect
on the avg-of-min accuracy: for tweet features, it is 2.64–3.00%, for location 0.71–0.83% and for their concatenation
0.53–0.60%.

Figure 2 provides an illustrative explanation of these results. Subfigure (a) shows the four methods’ accuracy curves
over the first 120 hours of one exemplary learning run (tweet features, subset early, realization 0). First, one can clearly
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Table 1: Experimental Results: classifier accuracy of the proposed LIMES method and baselines as mean and standard
deviation across 10 data splits for six experimental settings (see main text for details). Reported are the average per-day
accuracy (avg-of-avg) and the minimum-across-the-day accuracy (avg-of-min). The difference of LIMES to the other
methods is significant according to a Wilcoxon signed rank test at a below 0.5% level in all cases.

(a) features: tweet, subset 0–5

method avg min
LIMES 52.35±0.04 43.15±0.21

incremental 51.81±0.05 40.51±0.25

random 48.85±0.13 35.13±0.71

ensemble 38.94±0.03 29.48±0.18

restart 34.28±0.05 24.62±0.27

(b) features: location, subset 0–5

method avg min
LIMES 81.23±0.03 75.20±0.07

incremental 81.09±0.03 74.49±0.14

random 79.72±0.06 71.84±0.50

ensemble 68.48±0.05 62.09±0.13

restart 54.33±0.05 44.28±0.17

(c) features: tweet–location, subset 0–5

method avg min
LIMES 85.54±0.03 79.92±0.11

incremental 85.48±0.03 79.40±0.14

random 84.13±0.04 76.80±0.19

ensemble 72.37±0.04 66.16±0.15

restart 58.36±0.04 48.08±0.18

(d) features: tweet, subset 10–15

method avg min
LIMES 52.15±0.04 42.90±0.22

incremental 51.51±0.03 39.90±0.22

random 48.63±0.13 34.79±0.62

ensemble 38.74±0.05 29.39±0.16

restart 33.81±0.05 24.21±0.19

(e) features: location, subset 10–15

method avg min
LIMES 81.17±0.04 75.07±0.16

incremental 80.98±0.04 74.24±0.17

random 79.62±0.05 71.79±0.30

ensemble 68.18±0.04 61.30±0.22

restart 53.94±0.09 43.34±0.39

(f) features: tweet–location, subset 10–15

method avg min
LIMES 85.48±0.03 79.74±0.11

incremental 85.36±0.02 79.15±0.10

random 84.09±0.07 76.64±0.19

ensemble 72.09±0.05 65.60±0.25

restart 57.73±0.06 46.53±0.26

0 24 48 72 96 120
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10

20

30

40

50

60

70

LIMES
incremental
random
ensemble
restart

(a) Exemplary curve (realization 0) of per-hour accuracy for first 120 hours (March 1st–5th, 2020).
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(b) Curve of average per-day accuracy over 20 days
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(c) Curve of minimum-across-day accuracy over 20 days

Figure 2: Classifier accuracy over time for the proposed LIMES and baseline methods in one of the tested settings
(tweet features, subset early).

see the 24-hour cycle by which the accuracies of all classifiers fluctuate. The accuracies are highest at around 2:00 GMT.
As we know from Figure 1, this corresponds to the time the USA and Brazil are by far the most common countries from
which tweets originate. The accuracy is the lowest around 9:00 GMT, which is the time when tweets come from several
different countries in comparable amounts.

Second, one can also see that ensemble, which does not share information between different hours, starts working only
after 24 hours and afterwards increases its prediction quality quite slowly. In contrast, the other models make reasonable
predictions already after the first hour, because they transfer information between different hours.
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Finally, one observes that LIMES is superior over incremental mostly in the valleys around 9:00 GMT, i.e. during
the hours where the classification problem is the hardest. Presumably, this is because incremental learns parameters that
are adapted to the average data distribution, and that is closer to the simple situation with two dominant countries than
to the difficult situations where many countries are similarly likely.

Subfigures (b) and (c) make the difference between the methods more visible by suppressing the daily fluctuations.
They show the accuracy values for all 20 days aggregated as the per-day-average and per-day-minimum, respectively.
The line plots show mean of results over all ten realizations, whereas the error bars reflect the standard deviation.
As expected, standard deviation is the biggest in the case of random method as for each time step, it draws a class
distribution vector from historical values. This effect of randomness is alleviated when the average per-day is computed.

At subfigures (b) and (c), one can see the difference between LIMES and incremental well: it is small but consistent for
the per-day-average accuracy, and bigger for the per-day-minimum accuracy.

Incremental training is clearly effective, as can be seen from the fact that the accuracy curves for the three incrementally
trained methods, LIMES, incremental and ensemble, increase over time. In contrast, restart’s accuracy is approximately
constant (up to the hourly fluctuations) over the runtime of the system.

4 Summary and Conclusions

In this work, we introduced LIMES, a lightweight method for continuous classifier training from streaming data with
class-prior shift. Inspired by the success of recent meta-learning methods, we introduced a system that trains multiple
models, each adapted to a specific class distribution, but requires only a single set of parameters, as each model is
derived from a base model by analytic classifier adaptation. The adaptation parameters are extrapolated for the next data
distribution based on the data observed so far. Our experiments on the large-scale geo-tweets dataset show that this
process results in improved prediction quality compared to common baselines, especially when judged by the worst-case
measure of the lowest accuracy across a day.

Despite the promising results, the problem of continual learning from data streams with time-varying distribution is far
from solved. In particular, our results suggest that new methods are required to tackle the problem that classifiers for
certain data distributions are harder to learn than others. This suggests that one might have to adapt not only the model
parameters, but also the model architecture. We plan to address this aspect in future work.
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