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Abstract—The recent advances in representation learning in-
spire us to take on the challenging problem of unsupervised image
classification tasks in a principled way. We propose ContraClus-
ter, an unsupervised image classification method that combines
clustering with the power of contrastive self-supervised learning.
ContraCluster consists of three stages: (1) contrastive self-
supervised pre-training (CPT), (2) contrastive prototype sampling
(CPS), and (3) prototype-based semi-supervised fine-tuning (PB-
SFT). CPS can select highly accurate, categorically prototypical
images in an embedding space learned by contrastive learning.
We use sampled prototypes as noisy labeled data to perform semi-
supervised fine-tuning (PB-SFT), leveraging small prototypes and
large unlabeled data to further enhance the accuracy. We demon-
strate empirically that ContraCluster achieves new state-of-the-
art results for standard benchmark datasets including CIFAR-10,
STL-10, and ImageNet-10. For example, ContraCluster achieves
about 90.8% accuracy for CIFAR-10, which outperforms DAC
(52.2%), IIC (61.7%), and SCAN (87.6%) by a large margin.
Without any labels, ContraCluster can achieve a 90.8% accuracy
that is comparable to 95.8% by the best supervised counterpart.

I. INTRODUCTION

Supervised learning approaches in deep learning have
shown to provide a human-level performance in computer
vision tasks such as image classification [1] and object de-
tection [2]. Unsupervised learning, in contrast, has long been
considered too challenging for discriminative machine learning
tasks [3], [4] and difficult to provide an accuracy comparable
to that of supervised learning.

But advances in self-supervised representation learning
makes it possible for pre-train models to learn general features
from unlabeled data by generating pretext tasks [5]–[8]. Re-
cently, contrastive self-supervised representation learning such
as CPC [9], DIM [10], MoCo [11], and SimCLR [12] has
significantly enhanced the quality of learned representations
by using the InfoMax principle [13].

It enables the paradigm of unsupervised pre-training fol-
lowed by fine-tuning with few labels [12]. For example,
SimCLRv2 [14] propose a distillation stage that takes place
after supervised fine-tuning. S4L [15] and SelfMatch [16]
show that semi-supervised fine-tuning further enhance the
accuracy and label efficiency.

Fig. 1: An example clustering result of ContraCluster for
CIFAR-10. For visualization, ten images are randomly sam-
pled from the final clustering result. Each rows is a cluster
discovered by ContraCluster. Red rectangles denotes misclas-
sified images in each cluster. In this example, there are only 8
errors over 100 samples. This example approximately shows
that ContraCluster provides such high accuracy (i.e., 90.8%)
without labels.

Combining them, end-to-end unsupervised learning schemes
emerge, such as SCAN [17] and RUC [18]. SCAN consists
of three stages: (1) contrastive self-supervised pre-training
(SimCLR), (2) fine-tuning with SCAN loss, and (3) fine-
tuning with self-labeling. The main idea of SCAN is the
SCAN loss neighborhood consistency that encourages the
model to make consistent predictions between a sample and its
neighboring samples. RUC is based on SCAN, and proposes
additional fine-tuning stages: (4) clean sample selection based
on confidence scores, and (5) semi-supervised fine-tuning with
MixMatch [19], which is known as interpolation consistency
regularization.

They are robust methods and show high performances.
Some weak points, however, exist. the SCAN loss has high
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Fig. 2: The overview of ContraCluster. It consists of three
stages: (1) contrastive self-supervised pre-training (CPT), (2)
contrastive prototype sampling (CPS), and (3) prototype-based
semi-supervised fine-tuning (PB-SFT). It selects highly accu-
rate prototypical samples (i.e., prototypes) from an embedding
space learned by contrastive self-supervised pre-training. They
are used as noisy labeled data in PB-SFT. Note that, in the
proposed pipeline, ContraCluster does not use any human-
labeled data to classify images.

computational complexity, as it needs to select k neighboring
samples for each sample at every optimizing steps. And
MixMatch used in RUC suffers from relatively low accuracy
when only small number of labeled data available. Moreover,
SCAN uses k-Nearest Neighbor (k-NN) for sematic clustering,
and RUC utilizes both k-NN and confidence scores. But, k-NN
is hard to reveal global structure of embedding space. It could
mix noisy cluster boundaries in the pseudo-label, resulting
memorization. It is also well known that confidence scores
provided by neural networks are not good estimates for the
uncertainty of class assignment.

We introduce ContraCluster, an unsupervised image clas-
sification method that leverages the advances of contrastive
self-supervised learning via clustering. Figure 1 shows an
example clustering result of ContraCluster. As shown in Fig-
ure 2, ContraCluster consists of three stages: (1) contrastive
self-supervised pre-training (CPT), (2) contrastive prototype
sampling (CPS), and (3) prototype-based semi-supervised fine-
tuning (PB-SFT).

In the first stage, we aim to discover a linearly separable
embedding space by using only unlabeled data. To achieve
this goal, we perform contrastive self-supervised pre-training

(CPT). Among many promising methods, we adopt SimCLR
[12]. Unlike SCAN, we directly use SimCLR results, resulting
simpler pipeline. (for details see III-A).

For the second stage, we develop contrastive prototype
sampling (CPS) that selects prototypical images that are highly
categorical from the learned embedding space in the first stage.
(see Figure 4). Conceptually, highly categorical prototypes are
sampled based on cluster centroids in a projected embedding
space (see Figure 2). The main idea is that cluster centroids
in a low-dimensional space approximately represent the most
discriminative samples. (for details see III-B).

In the third stage, we use the prototypes as noisy labeled
data to perform prototype-based semi-supervised fine-tuning
(PB-SFT) that can increase the accuracy by leveraging both
small noisy labeled data (i.e., prototypes) and large unlabeled
data. PB-SFT can avoid the problem of over-fitting during fine-
tuning with few labeled data. For leveraging unlabeled data,
we adopt FixMatch [20], one of the most successful single-
stage semi-supervised learning method. (for details see III-C).

We empirically demonstrate that ContraCluster achieves
new state-of-the-art results for standard benchmark datasets
including CIFAR-10 [21], STL-10 [22], and ImageNet-10 [23]
(see Table III). For CIFAR-10, ContraCluster achieves about
90.8% accuracy that outperforms strong previous method such
as DAC [3] (52.2%), IIC [4] (61.7%), and SCAN [17] (87.6%)
by a large margin. Note also that without labels, ContraCluster
can achieve about 90.8% accuracy that is comparable with
the accuracy of supervised learning with full labels (95.8%)
[24]. Note that our method cannot be directly compared to
deep clustering like [25]–[27], because ours does not repeat
clustering procedure for new data, but inference classes with
the trained model.

Our contributions are summarized as follows.
• We propose novel unsupervised image classification

method of robust prototype sampling.
• We empirically achieve new state-of-the-art results for

standard benchmark datasets.
The rest of this paper is organized as follows. Section 2

discusses related work. In Section 3, we explain ContraCluster
in detail. Section 4 presents our experimental results on the
standard image benchmarks. The paper concludes in Section
5.

II. RELATED WORK

A. Self-supervised representation learning

a) Task-specific self-supervised learning.: Self-
supervised learning aims to learn general representations
from unlabeled data by performing a pretext task, then to
reuse them in downstream tasks. For example, the pretext
task includes context prediction [5], jigsaw puzzle solving
[6], image colorization [7], and rotation prediction [8].

b) Contrastive self-supervised learning.: Contrastive
self-supervised learning extracts general representations from
unlabeled data by using contrastive loss, which is based on the
InfoMax principle [13] that encourages the agreement between



multiple views from an instance. It provides much higher
quality visual representations in terms of the linear separability
than the task-specific self-supervised learning. They include
CPC [9], DIM [10], AM-DIM [28], MoCo [11], and SimCLR
[12].

B. Semi-supervised learning

Semi-supervised learning enables to learn from small la-
beled data by leveraging large unlabeled data. Approaches
to semi-supervised learning includes pseudo-labeling [29], en-
tropy minimization [30], and consistency regularization [31]–
[33]. We mainly discuss consistency regularization in this
paper.

a) Consistency regularization.: Consistency regulariza-
tion aims to use unlabeled data to regularize the cross-entropy
loss with few labeled data. Its objective encourages a model
to predict consistent class probabilities over stochastically
transformed samples. It has been introduced in Π-Model [31]
and further developed by MeanTeacher [32], [33]. Recently,
advanced methods are introduced. They include MixMatch
[19], UDA [34], ReMixMatch [35], FixMatch [20].

b) Self-supervised pre-training-based.: Recent work ex-
tends the self-supervised paradigm with more sophisticated
fine-tuning techniques. For example, SimCLRv2 [14] proposes
to use the third stage of distillation after supervised fine-tuning
with few labels. S4L [15] and SelfMatch [16] show that semi-
supervised fine-tuning further enhance the accuracy and label
efficiency.

C. Unsupervised classification / clustering

a) From-scratch approach.: Unsupervised image clas-
sification, or image clustering, can be broadly categorized
into two: generative and discriminative. Generative approach
attempts to learn general representations by using reconstruc-
tion or adversarial losses. This approach includes Autoencoder
(AE) [36], GAN [37], VAE [38], and ClusterGAN [39].
In contrast, discriminative approach tries to learn general
representations by using unsupervised loss that encourages
proper cluster assignment in a label space. This approach in-
cludes DEC [40], DAC [3], DeepCluster [41], IIC [4], DCCM
[42]. However, these two approaches usually suffered from
relatively low accuracy since they do not directly optimize
representations in an embedding space.

b) Self-supervised pre-training-based.: Most recently,
the use of contrastive self-supervised pre-training has been
proposed for unsupervised image classification or clustering.
Since contrastive self-supervised pre-training aims to learn
general representations by directly optimizing them in the
embedding space, it has a huge potential to improve the
clustering accuracy compared to the previous approaches. This
approach includes SCAN [17] and RUC [18].

c) Comparison with other methods.: SCAN [17] pro-
poses to fine-tune the SimCLR [12] pre-trained encoder by
using an unsupervised loss that encourages the similarity
of cluster assignment probabilities between a sample and k
nearest neighborhoods. RUC [18] proposes to further fine-tune

Fig. 3: The model architecture of ContraCluster.

the SCAN model by using interpolation consistency regular-
ization (e.g., MixMatch [19]). In contrast to these methods,
ContraCluster proposes to fine-tune the pre-trained encoder by
using prototype-based semi-supervised fine-tuning (PB-SFT).
To achieve this goal, we develop contrastive prototype sam-
pling (CPS) that selects categorically-accurate prototypes to
use as noisy labeled data for semi-supervised learning. Similar
to ContraCluster, RUC selects clean labeled data by using
confidence. However, ContraCluster selects clean labeled data
represented by prototypes based on cluster centroids that can
be discovered in embedding space.

III. METHOD

In this section, we describe the details of ContraCluster.
Figure 3 shows the model architecture. It consists of three
stages: (1) contrastive self-supervised pre-training (CPT), (2)
contrastive prototype sampling (CPS), and (3) prototype-based
semi-supervised fine-tuning (PB-SFT). The weight of the
encoder pre-trained in the first stage is transferred in the
following stages. In the final stage, the pre-trained encoder is
further fine-tuned by using both small noisy labeled data (i.e.,
prototypes) and large unlabeled data. The model pmodel(y|x)
consists of an encoder f(·) and a head c(·). The learning
algorithm of ContraCluster is presented in Algorithm 1.

A. Contrastive self-supervised pre-training

ContraCluster aims to learn a linearly separable embedding
space by using only unlabeled data in the first stage. For CPT,
it adopts SimCLR [12], one of the most effective methods.
SimCLR learns representations by simultaneously encouraging
two objectives: (1) maximizing the similarity between different
views ũi and ũj from the same sample and (2) minimizing
the similarity between different views ũi and ũk (k 6= i) from
different samples.

As shown in Figure 3, SimCLR consists of four com-
ponents: (1) data augmentation T (·), (2) encoder f(·), (3)



Algorithm 1 The ContraCluster 3-stage learning algorithm.

Require: Unlabeled data U
Require: Randomly initialize encoder f(·), projection head

g(·), and classification head c(·)
1: # Stage 1: Contrastive self-supervised pre-training
2: for n = 1 to ECPT do
3: for k = 1 to BCPT do
4: uk ∼ U . unlabeled batch
5: t ∼ T , t′ ∼ T
6: ũi = t(uk), ũj = t′(uk) . transformation
7: hi = f(ũi), hj = f(ũj) . encoding
8: zi = g(hi), zj = g(hj) . projection
9: LCPT = − log

exp(sim(zi,zj)/τ)∑2BCPT
k=1 1(k 6=i)exp(sim(zi,zk)/τ)

. Eq. 1
10: SGD(ηCPT )

11: # Stage 2: Contrastive prototype sampling
12: for ∀ui ∈ U do
13: Hhigh ← f(ui)

14: Zlow = projection(Hhigh, Nneigh, Ndim)
15: Ck = clustering(Zlow, kpart)
16: P = sampleCentroidNeighbors(Ck, Nproto)
17: # Stage 3: Prototype-based semi-supervised fine-tuning
18: for n = 1 to ESFT do
19: for k = 1 to BSFT do
20: xk ∼ P . prototype batch
21: t ∼ T
22: x̃k = t(xk)
23: qk = c(f(x̃k))
24: Lproto = 1

BSFT

∑BSFT

k=1 H(ŷk, qk) . Eq. 3

25: for i = 1 to µBSFT do
26: ui ∼ U . unlabeled batch
27: t ∼ Tweak, t′ ∼ Tstrong
28: ũwi = t(ui) . weak augmentation
29: ũsi = t′(ui) . strong augmentation
30: qwi = c(f(ũwi ))
31: qsi = c(f(ũsi )) . hard prediction
32: q̂wi = argmax(qwi ) . consistency target
33: m = 1(max(qwi ) ≥ c) . mask
34: Lconsi = 1

µBSFT

∑µBSFT

i=1 mH(q̂wi , q
s
i )

. Eq. 4
35: LPB−SFT = Lproto + λuLconsi . Eq. 2
36: SGD(ηSFT )

return encoder f(·), classification head c(·)

projection head g(·), and (4) contrastive loss Lc. The data
augmentation uses random crop and color distortion. The
encoder is ResNet-50 [1]. The projection head is a two-layer
MLP with dropout [43] and ReLU activation. Finally, the
contrastive loss is formulated as follows:

LCPT = − log
exp(sim(zi, zj)/τ)∑2BCPT

k=1 1(k 6= i)exp(sim(zi, zk)/τ)
(1)

where BCPT is a batch size, 1(k 6= i) is an indicator function

evaluating to 1 only if k 6= i, sim(·) is a similarity function,
and τ is a temperature parameter scaling the similarity. The
contrastive learning hyperparameters are listed in Table II.

B. Contrastive prototype sampling

CPS is to select highly accurate prototypical images from
the embedding space of the first stage. For prototypes, CPS
simply chooses n nearest neighbors from the cluster cen-
troids. To do so, CPS first reduces the dimension of space
(Hhigh → Zlow) by using a non-linear dimensionality reduc-
tion algorithm such as UMAP [44] and t-SNE [45]. Then, k-
means clustering [46] (Ck) applies on the projected embedding
space (e.g., a 2-dimensional space) to find cluster centroids,
assuming the groud-truth number of clusters is given, holding
the same condition with previous works [17], [18] to compare.
Finally, CPS selects n nearest neighbors (P) from the cluster
centroids. We have empirically found out that non-linear
dimensionality reduction is essential to increase the accuracy
(see Table IV). We conjecture that this is mainly due to
the fact that classic clustering algorithms such as k-means
suffer from the low accuracy problem because of the curse
of dimensionality. Note that DBSCAN [47], an alternative to
k-means, cannot be applied by lack of cluster centroids.

To determine the proper hyperparameter values for UMAP
(e.g., # of neighbors Nneigh, # of dimension Ndim, etc.), we
use Silhouette Coefficient [48] (see Figure 4). The Silhouette
Coefficient (y−x)/max(x, y) is evaluated on the mean intra-
cluster distance (x) and the mean nearest-cluster distance (y)
for each sample. Since Silhouette Coefficient is calculated
with clustering results (i.e., no ground-truths required), we can
approximately choose the best hyperparameters of UMAP and
k-means by using only unlabeled data. Hyperparameters are
summarized in Table II.

C. Prototype-based semi-supervised fine-tuning

PB-SFT can further increase the accuracy by leveraging
both small noisy labeled prototypes and (large) unlabeled data.
We adopts FixMatch [20] that exploits augmentation-based
consistency regularization for unlabeled data. It encourages
the consistent prediction between weakly and strongly aug-
mented examples. More specifically, its objective function is
to minimize the cross entropy H(p, q) between the prediction
q̂wi of a weakly augmented input ũwi and the class probability
distribution qsi of a strongly augmented input ũsi (see Figure
3). The weak augmentation uses random crops and horizontal
flips. The strong one adopts RandAugment (RA) [49], an
effective automated method. The classification head c(·) is a
MLP of two layers with dropout [43] and ReLU activation.

The loss function consists of prototype-based cross-entropy
loss and consistency regularization loss:

LPB−SFT = Lproto + λuLconsi (2)

The prototype-based supervised loss Lproto is formulated
as follows:

Lproto =
1

BSFT

BSFT∑
k=1

H(ŷk, qk) (3)



where BSFT is a fine-tuning batch size, ŷi is a noisy label of
a prototype.

The augmentation-based consistency regularization loss
Lconsi is formulated as follow:

Lconsi =
1

µBSFT

µBSFT∑
i=1

1(max(qwi ) ≥ c)H(q̂wi , q
s
i ) (4)

where c is a confidence threshold, 1(max(qwi ) ≥ c) is an
indicator function, BSFT is a fine-tuning batch size, and µ is
the ratio of prototypes and unlabeled samples in a batch.

For training, it utilizes Exponential Moving Average (EMA)
[32] with a weight decay for stable training and inference.
The hyperparameters are described in Table II. Many of them
follows SimCLR [12] and FixMatch [20], to make a fair
comparison with the other methods.

IV. EXPERIMENTS

A. Datasets

We empirically validate ContraCluster using standard
benchmark datasets: CIFAR-10 [21], STL-10 [22], and
ImageNet-10 [23], as in Table I.

Dataset CIFAR10 STL10 ImageNet10

Size 32x32 96x96 224x224
Classes 10 10 10
Train split train train+test train
Test split test train+test train
Train samples 50,000 5,000+8,000 13,000
Test samples 10,000 5,000+8,000 13,000

TABLE I: Summary of datasets.

B. Hyperparameter setting

Hyperparameters CIFAR10 STL10 ImageNet10

Temperature τ 0.1 0.1 0.1
Batch size BCPT 512 256 64
Optimizer SGD SGD SGD
Learning rate ηCPT 0.6 0.3 0.075
Max epoch ECPT 1024 1024 1024

# of neigh. Nneigh 20 50 50
Projection dim. Ndim 2 2 2
Min. distance Dmin 0.5 0.0 0.0
Similarity metric correl. correl. correl.
# of proto. Nproto 250 1000 1000

Batch size BSFT 64 64 64
Unlab. batch ratio µ 7 7 7
Unlab. loss ratio λl 1 1 1
Confidence thre. c 0.95 0.95 0.95
Optimizer SGD SGD SGD
Learning rate ηSFT 0.03 0.03 0.03
Max epoch ESFT 400 400 400

TABLE II: Hyperparameters of ContraCluster.

Table II presents a complete list of the hyperparameters.
Each partition of the table shows the values used in the stage
one to three respectively. They are empirically determined.

C. Hyperparameter selection for contrastive prototype sam-
pling

Fig. 4: Hyperparameter selection with Silhouette Coefficient
for contrastive prototype sampling and prorotype accuracy of
ContraCluster. (Left) w.r.t the projection dimension. (Center)
w.r.t the number of neighbors. (Right) w.r.t prototype accuracy.

To choose the proper hyperparamter values for CPS, we use
Silhouette Coefficient. Figure 4 shows the variation of it with
respect to # of neighbors Nneigh and the projected dimension
Ndim of UMAP. For CIFAR-10, we choose 2 for Ndim and
20 for Nneigh, where it is the highest (see Table II).

D. Unsupervised image classification accuracy

Table III shows a comparison of unsupervised image clas-
sification performance measured in accuracy (%) and NMI
(normalized mutual information) [52]. Asterisked (∗) results
come from the SCAN [17] paper, and the others from re-
spective original publications. We provide both the mean and
maximum accuracy of ContraCluster. The mean is computed
by averaging five evaluations with different random seed
numbers. It achieves state-of-the-art results for CIFAR-10,
STL-10, and ImageNet-10.

a) CIFAR-10.: ContraCluster achieves a 90.8% classifi-
cation accuracy that outperforms DAC (52.2%), IIC (61.7%),
and SCAN (87.6%) by significant margins. Note that, without
any labels, it is comparable with the accuracy of supervised
learning with full labels (95.8%).

b) STL-10.: ContraCluster achieves a 87.5% accuracy
that also outperforms DAC (47.0%), IIC (59.6%), and SCAN
(76.7%) significantly.

c) ImageNet-10.: ContraCluster achieves a 90.5% ac-
curacy, which corresponds to outperform notable existing
methods such as DCCM (71.0%) and CC (89.3%).

E. Prototype accuracy

Figure 4 shows the variation of prototype accuracy with
respect to the number of them. This figure shows that Contra-
Cluster can select highly accurate prototypes (about 95.0%)
that can be used as noisy labeled data for PB-SFT. We
choose 250 prototypes for CIFAR-10 (about 96.5%), 1,000
for STL-10 (about 96.2%), and 1,000 for ImageNet-10 (about
94.0%), all based on empirical trials. For CIFAR-10 and
STL-10, although 40 prototypes provide the highest accuracy



CIFAR-10 STL-10 (train+test) ImageNet-10
Method Acc.(%) NMI Acc.(%) NMI Acc.(%) NMI

Supervised (full labels) [24] 95.8 - - - 91.4 -

k-means* [46] 22.9 0.087 19.2 0.125 - -
Spectral clustering* [50] 24.7 0.103 15.9 0.098 - -

Autoencoder (AE)* [36] 31.4 0.234 30.3 0.250 - -
DCGAN* [37] 31.5 0.265 29.8 0.210 - -
ClusterGAN [39] 41.2 0.323 42.3 0.335 - -

DEC* [40] 30.1 0.257 35.9 0.276 - -
DAC* [3] 52.2 0.400 47.0 0.366 - -
DeepCluster* [41] 37.4 - 33.4 - - -
DCCM [42] (only train set) 62.3 0.496 48.2 0.376 71.0 -
IIC* [4] 61.7 0.511 59.6 0.496 - -

CC [51] 79.0 0.705 85.0 0.764 89.3 0.859
SCAN* [17] (only train set) 87.6±0.4 0.787 76.7±1.9 0.680 - -
RUC (Conf.) [18] 90.3 - 86.7 - - -

ContraCluster (avg.) 90.8±0.5 0.837 87.5±0.3 0.784 90.2±0.4 0.804
ContraCluster (max) 91.7 0.857 87.9 0.787 90.5 0.809

TABLE III: Comparison of unsupervised image classification accuracy.

(more than 95.0%), sufficient number of prototypes (i.e., more
than 100) is required for PB-SFT to achieve high clustering
accuracy.

F. Ablation study

Method Accuracy(%)

ContraCluster w/o SimCLR 29.0 (-61.8)
ContraCluster w/o UMAP 82.4 (-8.4)
ContraCluster w/o FixMatch 84.4 (-6.4)

ContraCluster 90.8

TABLE IV: Ablation study of ContraCluster for CIFAR-10.

Table IV shows an ablation study result of ContraCluster for
CIFAR-10. It proves that the each stage is essential for achiev-
ing the stage-of-the-art results. ContaCluster w/o SimCLR
means applying UMAP and k-means on raw pixels (i.e., a sam-
ple space) without performing CPT. Since it is very difficult
to capture semantic information from high-dimensional raw
pixels, it shows significant performance degradation. Without
UMAP, ContraCluster does not provide the state-of-the-art
accuracy because UMAP can effectively help find cluster
centroids in a low-dimensional space. Note that it is one reason
why trivial application of the projection head of SimCLR as
prototype sampler is suboptimal. Finally, without FixMatch,
we could not have achieved the state-of-the-art either. This
shows that PB-SFT is effective to further increase the accuracy.

G. Example results
a) Embedding space.: Figure 5 shows an example of the

embedding space learned by ContraCluster for CIFAR-10. The
left side shows an projected embedding space of UMAP. The
right side shows a clustered embedding space by k-means. We
present the more examples in the appendix.

Fig. 5: Visualization of the embedding space. It is learned
by ContraCluster for CIFAR-10. (Left) a projected embedding
space by UMAP. (Right) a clustered embedding space by k-
means.

b) Clustering results.: Figure 1 shows an example of the
final clustering result by ContraCluster. The example shows
90.8% class-accurate clustering (see Table III). We present
more examples in the appendix.

V. CONCLUSION

We have presented ContraCluster, an unsupervised image
classification method based on contrastive self-supervised
learning. Combining the three stages, (1) contrastive self-
supervised pre-training (CPT), (2) contrastive prototype sam-
pling (CPS), and (3) prototype-based semi-supervised fine-
tuning (PB-SFT), it build a high-performance classification
pipeline without relying on labeled data. Our experimental
evaluation indicates that it achieves new state-of-the-art results
on CIFAR-10, STL-10, and ImageNet-10.
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