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Abstract—AI-enabled systems in security, autonomous systems,
safety, and healthcare do not only need to effectively detect Out-
of-Distribution (OoD) samples, but also to recognize Objects of
Concern (OoC), e.g. multiple thorax diseases, efficiently with few-
shots. Detecting OoD samples is crucial, because reporting an
out-of-domain input as abnormal is better than falsely classifying
it. Data samples, during inference, are not confined to a finite
labelled set, and thus closed-set approaches are limiting, as they
misclassify OoD inputs, and they may assign them high prediction
confidence. Furthermore, although anomaly detection is possible,
recognizing new OoC fast using only few-shot samples remains
challenging. There is a lack of methodologies for joint anomaly
detection and few-shot OoC classification. Our contribution is the
development of a framework for joint few-shot OoC detection and
classification and anomaly detection in the unknown previously-
unseen, in the wild, environment, which is known as Open-World
Recognition (OWR). We propose a novel methodology, the data
distribution boundary Contrastive Training Recognition (CTR)
classifier for few-shot OWR. CTR takes advantage of labels and
classes to learn the normal (and few-shot abnormal) data better,
to more accurately detect OoD. The proposed model: (i) reduces
failures to detect anomalies in health- and safety-critical applica-
tions for avoiding unfavourable consequences, (ii) decreases false
alarms, and (iii) improves performance overall. Our framework
differs from existing approaches because: (a) anomaly and OoC
detection are combined, which has several benefits, including
improved OoD performance, (b) the performance, accuracy, and
robustness of OoD and few-shot OoC detection are improved by
strengthening the estimation of the normal class distribution at
the boundary of its support, self-generating samples and setting
them as abnormal, and (c) the knowledge base of models is also
augmented by learning class-incrementally, alleviating forgetting.
CTR outperforms baselines in several settings, including on the
SVHN, CIFAR-FS, and BSCD-FS ChestX and ISIC datasets.

I. INTRODUCTION

Joint anomaly detection and classification. The simultane-
ous detection of Out-of-Distribution (OoD) samples and multi-
class classification is crucial for systems to be deployed in
real-world settings, because declaring an out-of-domain input
as an OoD sample is better than misclassifying and possibly
assigning a high prediction confidence to it. Joint OoD de-
tection and classification, which refers to the classification of
K existing classes and OoD detection with respect to these K
classes, to effectively discern between K+1 classes, i.e. Open-
Set Recognition (OSR), is important because in the real world,
classifiers should know when they do not know, and have the
capability to reject inputs. If an input belongs to an existing

class, classification is performed. Otherwise, the input data
sample is flagged as OoD. This is inspired by how humans,
e.g. children [18], are dealing with seen (normal and abnormal)
data and unseen unknown data, which also approximates even
how expert security screening operators at airport checkpoints
[10] act. Correspondingly, our brain can learn from limited
seen (normal and abnormal) data, can discern between classes,
and discern between the OoD class and the learned classes.

Moreover, knowing the normal and the (few-shot) abnormal
data better, i.e. by taking advantage of labels, which provide
additional information that we can take advantage of, helps
us to more accurately detect OoD [33] and perform few-shot
learning. For applications that need zero failures to detect OoD
data, e.g. false negatives in medical imaging, labelled data and
classes can be used to improve accuracy and robustness.

Joint few-shot classification and OoD detection. In several
real-world settings, e.g. security screening at critical national
infrastructure, anomaly detection on its own is not robust to
adversarial and near-OoD samples [27] due to occlusion, clut-
ter, concealment, disassembled objects, small items, and the
problem’s adversarial nature, i.e. humans might want to make
threat objects look normal. We hence propose to combine few-
shot learning and anomaly detection. Robust class-incremental
few-shot learning is performed because OoD objects are rare,
not confined to a finite labelled set, and learning such OoD
items in an object- and class-incremental manner fast with few-
shots is an ideal way to widen the knowledge base of models.
We are interested in both low- and few-shot learning and in
learning quickly with few-shots. Both these cases comprise
classifying new classes and modifying the knowledge base of
models. Augmenting the knowledge base of models, within a
robust class-incremental framework that tries to alleviate for-
getting, is also of our great interest. Enlarging the knowledge
base of models efficiently with few-shots, while maintaining
their desirable OoD detection capability, is known as few-shot
Open-World classification. While class-incremental learning is
useful in this setting, the problem remains challenging. Prior
art in this context is limited, [1]–[3]. Generalised few-shot
learning, to prevent forgetting, and cross-domain learning have
also recently been attracting considerable interest, [46].

Few-shot OWR. Open-World Recognition (OWR) is de-
fined by class-incremental OSR and refers to Open-Set adap-
tation and classification, [4]– [9]. Few-shot OWR has applica-



Fig. 1. K + 1 OSR prior and new few-shot K +N + 1 OWR adaptation.

Fig. 2. Prior and few-shot OWR adaptation. MCC is multi-class classification.

tions in safety, surveillance and reconnaissance, and medical
imaging. For unmanned vehicles, learning novel classes and
recognizing OoD samples is crucial because the consequences
of not accurately learning the new multi-class few-shots might
be severe, leading to car accidents. Open-World classification
is important for bacteria class recognition, for discovering new
bacteria classes [81], where unsupervised training and masking
are utilized for near-OoD detection of genomic sequences.

Proposed methodology. We devise the Contrastive Training
Recognition (CTR) classifier for few-shot class-incremental
joint Objects of Concern (OoC) classification and OoD detec-
tion in the unknown, in the wild, environment, which is known
as Open-World classification. CTR is a methodology to first
perform Open-Set classification and then few-shot OWR, when
novel few-shot classes are introduced. Our contribution is the
development of the CTR framework. To illustrate our setting,
we present an example in Fig. 1: (A) Prior for OSR. For two
base classes (normal class), (a) Cat with 5000 samples, and
(b) Dog with 5000 samples, we classify the three classes of
OoD, Cat, and Dog. This prior performs joint OoD detection
and classification. (B) Adaptation. We learn new object classes
quickly with low- and few-shots. For two novel classes, (i)
Chair (5 samples), and (ii) Glass (5 samples), we classify the
five classes of new OoD, Chair, Glass, Cat, and Dog. For few-
shot OWR, the new OoD is with respect to the new and base
classes. We discern between the novel classes, and learn class-
incrementally, learning both the new classes and the OoD.

Our contribution. To address the important few-shot OWR
setting and use few-shot learning models in the real world,
we perform joint OoD detection and few-shot classification.
To the best of our knowledge, we are the first to address this
Open-World classification setting within a novel robust class-
incremental learning framework, detecting unknown, in the
wild, new anomalies, [1]–[3]. From a methodological point of
view, we use negative training via our distribution boundary
contrastive loss, and our Prediction Confidence f -Divergence

criterion with the prediction confidence, for few-shot OWR.
No other methodology performs few-shot contrastive training
enhanced by our self-supervised learning with normal class
data distribution boundary generation algorithm, followed by
our class-assignment criterion. CTR outperforms baselines,
and we achieve improved performance, accuracy, and robust-
ness. CTR differs from existing methods because we: (a) com-
bine anomaly detection and OoC detection, which has several
benefits, including improved operational capability because of
declaring out-of-domain inputs as abnormal, to avoid being
falsely classified, (b) improve the performance, accuracy, and
robustness for OoD and few-shot OoC detection, strengthening
the estimation of the normal class distribution at its support
boundary, self-generating samples and setting them as OoD,
and (c) augment the knowledge base of models learning class-
incrementally, alleviating forgetting: classes initially learned
are effectively detected after learning new few-shot classes.

II. RELATED WORK

Open-set classification and adaptation. Most supervised-
learning methods classify base classes in a closed-set; this is
limiting due to no anomaly detection capability and new class
inclusion functionality, [3]. Such models are not applicable for
the real world, as they classify unseen classes as base classes.
In contrast, CTR for cross-domain few-shot OWR addresses
such limitations, performs robust joint classification and OoD
detection, and learns new classes efficiently with few-shots.

Few-shot learning. Including new few-shot classes is hard
for supervised learning that needs many samples. It is difficult
to generalize from few-shots, due to overfitting. It is expensive
to label data for novel classes, and train from scratch. Gradient
Magnitude [19] learns new classes, without training again from
the start. CTR also effectively addresses such challenges.

Contrastive training. A generalized version of contrastive
learning with data augmentation in [28] performs representa-
tion learning by computing the cosine similarity in the feature
space to group same-class samples and repel different classes.
In this context, several approaches propose contrastive training
procedures, including [30], [1], [34]–[36], and [61], [62].
CTR performs contrastive training with the proposed algorithm
based on the self-supervised data distribution boundary and the
new multi-class few-shots to avoid them. To improve few-shot
generalization and the robustness of our model for Open-World
simultaneous classification and anomaly detection, CTR uses
our proposed distractor/ negative training loss term to move
away from our self-supervised data distribution boundary and
the new multi-class few-shots. The proposed data distribution
boundary contrastive algorithm sets the samples from the base
classes as positive samples, and the self-generated boundary
samples and the new few-shot classes as negative samples.

Models operating in the feature space may show limitations,
e.g. dimensional [77] and complete collapse, which resembles
mode collapse, [60]. Another challenge is representation col-
lapse [78], which is like forgetting and it is the performance
degradation of generalizable representations of the prior during
adaptation. For classes with same characteristics, logits may



be on top of others, [26]. Such models [24] do not perform
few-shot OWR and OoD detection. [25] uses 75 queries in
the evaluation, which leads to better results [59]. Instead, we
compute the prediction confidence and distribution metrics for
few-shot OWR, and enforce our model to avoid the learned
source data distribution boundary. For adaptation, CTR classi-
fies multi-class few-shots jointly with OoD detection using our
distribution boundary contrastive training and our inference.

OSR. For K base classes, OSR discerns between K + 1
classes: OoD+ base, [31]–[42]. Classification and OoD detec-
tion has been tackled in [2], [31]–[38], few-shot OSR in [1],
[43], [44], and cross-domain class recognition in [46]–[51].
To the best of our knowledge, the few-shot class-incremental
OWR setting has not been solved. Existing models are lacking
for few-shot OWR and may suffer from forgetting [1], [43]–
[45]. oPen sEt mEta LEaRning (PEELER) [1] takes advantage
of additional abnormal data, provided by the user, and it does
not perform few-shot Open-World classification, because the
class-incremental learning capability is missing. PEELER may
generalize only to the provided OoD, and potentially fails to
generalize to OoD data that are disjoint from the ad hoc se-
lected OoD, as the provided anomalies might be far away from
the distribution boundary, i.e. they are neither task-specific
[18], nor well scattered. In contrast, CTR does not randomly
choose OoD data, as we use our learned distribution boundary.
CTR discerns between OoD, the novel few-shot OoC and the
existing classes, and performs Open-World classification.

In the few-shot setting, Open woRld object dEtector (ORE)
[3] may overfit the new few-shot classes, and may encounter
representation collapse. It is not tested in the few-shot setting.
Instead, it uses approximately 800 data samples to learn new
classes. It is primarily designed for many-sample Open-World
classification. In contrast, CTR performs few-shot OWR.

Cross-domain. Broader Study of Cross-Domain Few-Shots
(BSCD-FS) is a satellite, medical, and plant dataset, [52], [48].
Many prior classes can lead to high accuracy for new classes,
[53], [46]. Domain adaptation in [49] uses meta-learning [54],
[45], while [51] stores features. In contrast, CTR for cross-
domain OWR obviates data diversity memorization issues.

III. CTR FOR FEW-SHOT OWR

CTR for few-shot class-incremental Open-World classifica-
tion and learning is presented in Fig. 2. CTR performs N -way
R-shots classification [55], even for cross-domains. We first
learn a prior on the base classes, and perform OoD detection.
When novel few-shot classes are provided, we refine the prior
to perform joint few-shot classification and OoD detection.

A. Prior for the base. Our prior learns the source dataset,
where the base classes are the normal class, e.g. from CIFAR-
10 (C10). Joint classification and OoD detection is performed
using our self-supervised distribution normal class boundary.
We denote this learned boundary by BS(z), where z are sam-
ples from a standard Gaussian distribution, i.e. z ∼ N(0, I).
We use BS(z) for contrastive training, for OoD detection, by
setting them as self-generated negative data samples. Our prior
performs OoD detection, using the prediction confidence.

B. Adaptation. We learn the target classes efficiently with
few-shots, e.g. SVHN or BSCD-FS datasets for cross-domain
and CIFAR-FS for intra-domain. Class-incremental learning
and inclusion of the new classes are performed. OoD detection,
with respect to the new classes and the base, is achieved. CTR
discerns between OoD, the base, and the new few-shot classes.
Few-shot contrastive retraining using the target-domain classes
is employed to make the decision boundary tighter, because
the new few-shot classes are OoD with respect to the base.

Contrastive training of the OSR prior with our learned
distribution boundary. For N -way R-shot Open-World clas-
sification, CTR first trains an Open-Set classifier for joint clas-
sification and OoD detection with K base classes. Thus, K+1
classification is performed. We first minimize cross-entropy,
jointly with negative training. In contrastive training, we set
our generated distribution boundary, BS(z), as OoD data [27],
[33], and we use the following negative-data optimization,

arg minf − 1

Q

Q∑
j=1

log
exp(fyj

(xj))∑K
k=1 exp(fk(xj))

− κ
1

R
× (1)

R∑
m=1

log

(
1− maxr=1,2,...,K

exp(fr(BS(zm)))∑K
k=1 exp(fk(BS(zm)))

)
,

where arg minBS

1

R− 1

R∑
m=1, zm ̸=z

||z − zm||2
||BS(z)−BS(zm)||2

+ µ max
l=1,2,...,K

exp(fl(BS(z))− fl(x))∑K
k=1 exp(fk(BS(z))− fk(x))

(2)

+ ν minj=1,2,...,Q ||BS(z)− xj ||2,

where the normal class is x, and xj are the labeled data with
labels yj , [34], [35]. For the within-distribution data in the first
term in (1), Q, j and k are respectively the batch size, sample
and class indices. Here, the index j takes values from 1 to Q.
We denote our data by (xj , yj)Qj=1, e.g. xj is a vector of length
3072 for C10. For the OoD data samples in the second term,
R is the batch size, m a sample, and κ a hyper-parameter
which is found by using a validation dataset, [33]–[35].

For the nested optimization, the inner optimization is our
learned distribution boundary, BS , in (2). The outer is cross-
entropy with contrastive training in (1). In (2), we generate the
boundary of the normal base classes [27], [60]. The first term
is for scattering the BS(z) samples. This measure preserves
distance proportionality in the z and x spaces, alleviating mode
collapse. The second term guides to find the boundary, BS ,
by penalizing the prediction confidence, and by pushing the
generated samples OoD. The third term penalizes deviations
from normality, using the distance from a point to a set.

Multi-class few-shot contrastive loss. The focal point of
this research is multi-class few-shot Open-World classification.
CTR contrastively trains our network to enforce the normal
class to avoid the multi-class few-shots, FS, where FSi are the
labeled few-shot data with labels i, where i is between 1 and
N . Our objective is based on our self-supervised distribution
boundary and the new multi-class few-shots, to avoid them
and repel them from the base classes. We, thus, minimize:



argminf − 1

Q

Q∑
j=1

log
exp(fyj

(xj))∑K
k=1 exp(fk(xj))

− λ
1

NR
× (3)

N∑
i=1

R∑
m=1

log

(
1− maxr=1,2,...,K

exp(fr(FSim))∑K
k=1 exp(fk(FSim))

)
,

where (3) has two terms that operate on different samples for
positive and negative training, respectively. The first term is
the cross-entropy between yj and the predictions to penalize
deviation from existing classes and reward correct within-
distribution classification of the labelled data. We use fyj (xj),
where j is the base-class sample index (1 to Q). The second
term repels the provided new multi-class few-shots from the
base classes. We penalize the prediction confidence on the
multi-class few-shots, for FSi detection. CTR uses fr(FSim)
and enforces our model to move away from the N new classes.
A level of robustness is enforced with the second term, sep-
arating the new classes from the base. An improved decision
boundary is learned by setting the few-shots as OoD. We learn
new items efficiently with few-shots, using contrastive training
(refinement loss) and the separateness objective, alerting for
OoD. In (3), f(·) is a Convolutional Neural Network (CNN)
with the final layer being linear, followed by softmax. We
denote the sample index of the new class by m (1 to R). r
and k are the class indexes of the base classes (1 to K).

Prediction Confidence f-Divergence. We propose the Pre-
diction Confidence based f -Divergence (PCD) criterion to
classify novel classes for OWR efficiently with few-shots. CTR
computes the metric, m0, between the queried test sample,
x̃, and the base classes. The metrics, m1 and m2, based on
confidence and Kullback-Leibler (KL) divergence, between the
first new few-shot class, FS1, and x̃ and between the second
new class, FS2, and x̃, respectively, are then found. We repeat
this for any new class i: we find the metrics, mi, between x̃
and the new classes. For the final class, the metric, mN , is
between FSN and x̃. We denote the assigned class by c. The
metric on which we set a threshold on for OoD detection, is
mc. If mc > τ where τ is a class-independent threshold, then
x̃ is OoD. Our inference criterion [27], [85] is given by

mc = max(m0,m1, ...,mN ), (4)
c = arg max(m0,m1, ...,mN ) if mc < τ (5)
and c = OoD if mc ≥ τ,

where mi =
M(x,FSi)

exp(L(x,FSi, x̃))
, (6)

and where L(x,FSi, x̃) =
KL(FSi, x̃)
M(x,FSi)

, (7)

where M(x, x̃) = maxr=1,2,...,K
exp(fr(x̃))∑K
k=1 exp(fk(x̃))

, (8)

where KL is f -divergence and M is prediction confidence. In
(6)-(8), we use x to denote the labelled data from the base
classes, and x̃ is the queried sample. Here, we have N new
and K base classes. In (5), the threshold τ is set at 95% True
Positive Rate (TPR), [18]. For recognizing the multi-class few-
shots, OWR class assignment on OoD, base and new classes,

we utilize our proposed PCD criterion. The reference point in
the metric computations is the base classes, x. CTR uses (4)-
(8) for few-shot classification using distribution metrics, i.e.
KL divergence, and the prediction confidence with the normal
class as our reference. We devise meaningful divergence met-
rics between the new classes using the prediction confidences
of new-class samples and distribution metrics. We denote our
metric by mi in (6), where the numerator is confidence. We
discern between OoD and few-shot and base classes using mi,
by analogy to prediction confidence with (arg)max, [33]–[35],
[32]. Here, we denote our confidence-based f -divergence by
L(·) in (7), where the numerator is KL and the denominator
is confidence based on the definition of the KL divergence.

We adapt to the ever-evolving OoD, and we add new classes
efficiently with few-shots. To the best of our knowledge,
there is no other few-shot OWR method that uses contrastive
training followed by our PCD criterion, [6]–[9]. This differs
from Minimum Euclidean Distance in the feature space [57],
which is suboptimal for OSR, [1]. In [26], nearest is maximum
cosine similarity. We use (4)-(8) for OWR instead of implicit
distributions, [27]. In (6)-(8), when x̃ is near FSi, then mi is
close to M(x,FSi), while if x̃ is far from FSi, then mi is much
less than M(x,FSi). In (4) and (5), m0 = (exp(KL(x, x̃)))−1.
Here, when x̃ is near the initial base classes, then m0 is close
to 1. If x̃ is far from the base classes, then m0 is much less than
1. The KL f -divergence metric is computed with a discrete
distribution and Dirac functions, [86], [87]. The images of the
novel class i, FSi, (discrete distribution with Dirac functions)
and the unknown test image, x̃, (Dirac function) are used.

IV. EVALUATION OF CTR AND RESULTS

CTR is evaluated and compared to benchmarks. Here, we
test CTR’s performance with respect to classification and OoD
detection. The source dataset is C10 or Mini-ImageNet (MIN).
The target set is SVHN, CIFAR-FS, BSCD-FS, or MIN.

Architecture. We implement CTR using CNNs for our
classifier and for our data distribution boundary generator.

CTR results in the cross-domain setting. The top part of
Table I presents the evaluation of CTR on SVHN, denoting
N -way R-shots by Nw Rs. In these results, the source dataset
is C10, while the target domain dataset (i.e. both the support
and query sets) is SVHN. We compare CTR to second-order
MAML and to Siamese using 5-way 5-shots [54], [58]. The
percentage accuracy improvement of CTR here is at least 54%,
consistently outperforming the examined baseline models.

Cross-domain robustness. In the bottom part of Table I,
we show CTR’s robustness to the number of few-shots. For
≥ 10-shots, CTR achieves its best performance: accuracy 0.98.
CTR is robust to few-shots, achieving accuracy 0.91 with 5-
shots. Regarding source generalization on the C10 dataset, the
accuracy of CTR on C10 before and after SVHN adaptation
is similar. This shows reduced forgetting despite the class-
incremental setting, thanks to contrastive training which uses
the learned distribution boundary, BS(z), [33], [45], [88].

Intra-domain results on CIFAR-FS. We evaluate CTR in
Table II with 10- and 5-way R-shots, for R between 1 and



TABLE I
CTR CROSS-DOMAIN ROBUSTNESS TO THE NUMBER OF MULTI-CLASS

FEW-SHOTS FROM SVHN (SOURCE DOMAIN C10) IN FEW-SHOT
CLASSIFICATION METRICS, AND COMPARISON TO BASELINES, [58].

MODEL ACC. PREC. REC. F1

CTR 5W 5S 0.83 0.75 0.83 0.78
MAML 5W 5S 0.54 0.45 0.54 0.47

SIAMESE 5W 5S 0.42 0.34 0.42 0.37

CTR 10W 1S 0.55 0.38 0.55 0.42

CTR 10W 5S 0.91 0.86 0.91 0.88

CTR 10W 10S (TO 200S) 0.98 0.94 0.96 0.95

TABLE II
CTR ROBUSTNESS TO THE NUMBER OF MULTI-CLASS FEW-SHOTS FROM
CIFAR-FS (SOURCE DOMAIN C10). COMPARISON TO BASELINES, [1].

CTR | PEELER ACCURACY PRECISION RECALL

10W 1S 0.69 | 0.42 0.60 | 0.35 0.68 | 0.42
5W 1S 0.83 | 0.58 0.75 | 0.50 0.83 | 0.57
5W 5S 0.83 | 0.75 0.75 | 0.67 0.83 | 0.74
5W 10S TO 20S 0.95 | 0.86 0.84 | 0.78 0.92 | 0.83

20. We train the prior on C10. CTR in Table II outperforms
PEELER in [1] by a large margin. In accuracy, for the 10-way
1-shot setting, the percentage improvement is 64% for CTR,
compared to PEELER. The raw improvement is 0.27 points.
PEELER begins from a stronger position, since it uses more
information during training, due to the provided OoD samples,
e.g. 2 C10 classes, used for Outlier Exposure. For intra-domain
evaluation, CTR achieves improved accuracy: for 1-shot, 0.83.
For 10-shots, CTR achieves high accuracy, i.e. 0.95. PEELER,
which may suffer from forgetting [45], also employs a very
different base model, i.e. ProtoNet [1], while our base model is
[33]. Now, the relative percentage improvement, over the base
model, for PEELER is 7% [1], while CTR’s relative percentage
improvement over our base model is approximately 11%.

Intra-domain results. CTR, in Table III, outperforms the
baselines that start from the same position as CTR: ProtoNet1
and MetaOp1, [59]. CTR achieves comparable performance to
ProtoNet5 and MetaOp5, which take advantage of more eval-
uation queries (five), while we use 1. ProtoNet5 and MetaOp5
cannot detect OoD, do not perform class-incremental learning,
may suffer from forgetting, and do not train contrastively.
In contrast, CTR performs OWR, learns class-incrementally,
and performs contrastive negative training. CTR outperforms
MetaOp5 for 5-way and for 10-shots. CTR also outperforms
ProtoNet1 as we use distribution metrics and confidence.

CTR outperformance on BSCD-FS. CTR significantly
outperforms MAML and ProtoNet for cross-domain few-shots
in Table IV, in Acc. The prior is on MIN. MAML lacks OoD
detection and may encounter catastrophic forgetting, [45].

CTR compared to benchmarks on BSCD-FS. In Table V,
for 5-way 1-shot, CTR outperforms the benchmarks on ISIC

TABLE III
CTR ROBUSTNESS TO THE NUMBER OF MULTI-CLASS FEW-SHOTS FROM
CIFAR-FS (SOURCE DOMAIN C10). COMPARISON TO BASELINES, [59].

MODEL ACC. PREC. REC. F1

CTR 5W 1S 0.83 0.75 0.83 0.78
PROTONET1 5W 1S 0.72 0.61 0.68 0.65

METAOP1 5W 1S 0.71 0.64 0.70 0.68

PROTONET5 5W 1S ∗ 0.83 0.73 0.81 0.77

METAOP5 5W 1S ∗ 0.83 0.74 0.82 0.79

CTR 5W 5S 0.83 0.75 0.83 0.78
PROTONET1 5W 5S 0.71 0.61 0.68 0.65

METAOP1 5W 5S 0.72 0.64 0.70 0.68

PROTONET5 5W 5S ∗ 0.84 0.73 0.81 0.77

METAOP5 5W 5S ∗ 0.85 0.74 0.82 0.79

CTR 5W 10S (TO 20S) 0.95 0.84 0.92 0.89
PROTONET1 5W 10S (TO 20S) 0.71 0.62 0.67 0.64

METAOP1 5W 10S (TO 20S) 0.72 0.64 0.71 0.69

PROTONET5 5W 10S (T 20S)∗ 0.84 0.74 0.83 0.79

METAOP5 5W 10S (TO 20S)∗ 0.84 0.75 0.84 0.81

∗ METAOP5 AND PROTONET5 USE 5 QUERY SAMPLES IN THE EVALUATION.

TABLE IV
CTR CROSS-DOMAIN ROBUSTNESS TO THE NUMBER OF MULTI-CLASS

FEW-SHOTS ON THE BSCD-FS TARGET DATASET (SOURCE DOMAIN MIN)
IN ACCURACY. COMPARISON TO MAML AND PROTONET, [46], [47].

MODEL ESAT ISIC CHEX CDIS.

CTR 5W 5S 0.85 0.52 0.48 0.86
MAML 5W 5S 0.72 0.40 0.23 0.78

PROTONET 5W 5S 0.73 0.40 0.24 0.80

CTR 5W 20S 0.94 0.55 0.58 0.92
MAML 5W 20S 0.82 0.52 0.23 0.90

PROTONET 5W 20S 0.82 0.50 0.28 0.88

CTR 5W 50S 0.97 0.81 0.85 0.92
MAML 5W 50S 0.85 0.63 0.49 0.92
PROTONET 5W 50S 0.80 0.41 0.29 0.91

and ChestX (CheX). For 5-shots, CTR outperforms the bench-
marks on CheX. Here, the percentage improvement of CTR
over STARTUP [46], which uses expensive student-teacher
retraining, is 78%. STARTUP starts from a more advantageous
position, using additional unlabeled target data. The baseline
models also lack OoD detection. For 5-way 20-shots, CTR
outperforms the baselines on CheX, by approximately 61%,
and yields comparable results on EuroSAT (ESAT). For 5-
way 50-shots, CTR outperforms the baselines on CheX data
and on ISIC by approximately 73% and 8%, respectively.

CTR results on same source-target sets. CTR in Table VI
performs classification on the same source and target datasets,



TABLE V
CTR CROSS-DOMAIN FEW-SHOT ROBUSTNESS ON BSCD-FS IN ACC.

SOURCE DOMAIN MIN. COMPARISON TO BENCHMARKS [46], [47], [49].

MODEL ESAT ISIC CHEX CDIS.

CTR 5W 1S 0.70 0.52 0.38 0.72
STARTUP 5W 1S ∗ [46] 0.64 0.33 0.27 0.76

SSLFS 5W 1S ∗ [47] 0.61 0.39 0.28 0.78

CDFSL 5W 1S ∗ [49] 0.60 0.37 0.25 0.74

CDFSMFT 5W 1S ∗ [49] 0.69 0.48 0.26 0.79

CDFSREC 5W 1S ∗ [50] 0.69 0.35 0.23 0.83
HVMFSLCD 5W 1S∗ [51] 0.54 0.31 0.20 0.72

CTR 5W 5S 0.85 0.52 0.48 0.86
STARTUP 5W 5S ∗ 0.82 0.47 0.27 0.93

SSLFS 5W 5S ∗ 0.83 0.50 0.29 0.92

CDFSL 5W 5S ∗ 0.80 0.47 0.26 0.89

CDFSMFT 5W 5S ∗ 0.90 0.62 0.28 0.96
CDFSREC 5W 5S ∗ 0.88 0.48 0.28 0.96
HVMFSLCD 5W 5S ∗ 0.75 0.42 0.27 0.88

CTR 5W 20S 0.94 0.55 0.58 0.92
STARTUP 5W 20S ∗ 0.88 0.51 0.33 0.95

SSLFS 5W 20S ∗ 0.90 0.61 0.34 0.97

CDFSL 5W 20S ∗ 0.88 0.60 0.32 0.96

CDFSMFT 5W 20S ∗ 0.94 0.65 0.36 0.99
CDFSREC 5W 20S ∗ 0.91 0.57 0.32 0.98

HVMFSLCD 5W 20S ∗ 0.85 0.55 0.31 0.95

CTR 5W 50S 0.97 0.81 0.85 0.92
STARTUP 5W 50S ∗ 0.92 0.63 0.37 0.98

SSLFS 5W 50S ∗ 0.95 0.67 0.39 0.99
CDFSL 5W 50S ∗ 0.91 0.65 0.37 0.98

CDFSMFT 5W 50S ∗ 0.96 0.75 0.45 0.99
CDFSREC 5W 50S ∗ 0.93 0.68 0.38 0.99
HVMFSLCD 5W 50S ∗ 0.87 0.62 0.33 0.98

∗ STARTUP [46] USES AN ADDITIONAL UNLABELED TARGET DOMAIN SET.

C10 and MIN, and detects OoD. We test CTR on C10 using
leave-4-out evaluation with 6 classes as the closed-set, and the
rest 4 as open-set. Now, for anomaly detection, we compute
the Area Under the Receiver Operating Characteristics Curve
(AUROC), [60]. CTR on C10, compared to MIN, achieves an
improvement of about 18% in accuracy and 3.5% in AUROC.
On C10, we compare CTR to PEELER and to SoftMax [1].
We consistently outperform the benchmarks in accuracy and
AUROC with an improvement of more than about 13%. Like-
wise, on MIN, CTR outperforms the benchmarks in accuracy
and AUROC, with an improvement of more than about 4%.
In contrast to PEELER, which avoids the provided anomalies
using its negative entropy loss, CTR moves away from the new

TABLE VI
CTR PERFORMANCE TO RECOGNIZE NEW MANY-SHOT CLASSES AND

PERFORM OWR. COMPARISON TO BASELINES, [1]. C10 is CIFAR-10 with
6 closed-set classes for classification and 4 open-set classes, and MIN is
Mini-Imagenet with 64 classes for classification and 20 open-set classes.

SOURCE MODEL ACCURACY AUROC

C10 CTR 0.93 0.88
C10 SOFTMAX 0.80 0.70

C10 BASICPEELER 0.82 0.75

C10 PEELER 0.82 0.77

MIN CTR 0.79 0.85
MIN SOFTMAX 0.76 0.78
MIN BASICPEELER 0.76 0.81
MIN PEELER 0.76 0.82

classes and computes our PCD criterion in (4)-(8). PEELER,
which does not perform class-incremental learning and OWR,
may fail to generalize to OoD data that are disjoint from the
given OoD, due to ad hoc selection of OoD during training [1],
[61], [63]. CTR offers improved convenience for the user using
our learned distribution boundary for contrastive training.

CTR contributions. According to all the above evaluations,
CTR using (i) our proposed self-learned distribution boundary
contrastive training, and (ii) recognition of the new few-shot
classes with our inference criterion, outperforms baselines.

V. CONCLUSION

Few-shot Open-World classification is crucial in the real
world. The CTR classifier was presented in this paper, for
multi-class few-shot class-incremental learning, cross-domain
adaptation, and few-shot OWR. CTR performs contrastive
training using the learned data distribution boundary, as well
as negative training, followed by the Prediction Confidence f -
Divergence criterion. Avoiding and moving away from the new
classes and the self-generated distribution boundary, proved to
be beneficial. The evaluation of CTR on several benchmark
datasets shows its superiority in various settings, including on
the SVHN, CIFAR-FS, BSCD-FS, EuroSAT, ChestX, ISIC,
C10, and MIN datasets. CTR, when trained on C10, outper-
forms benchmarks in accuracy on SVHN by at least 54%
(Table I), and on CIFAR-FS by approximately 11% for 5-ways
and for more than 10-shots (Table II). CTR, when trained on
MIN, outperforms baselines in terms of accuracy on BSCD-
FS ChestX by approximately 36%, 66%, 61%, and 73% for
1, 5, 20, and 50 few-shots, respectively (Tables IV and V).
On the BSCD-FS ISIC dataset, for 1, and 50 few-shots, CTR
outperforms benchmarks by approximately 8%. For 5-way 50-
shots, CTR achieves high accuracy on EuroSAT, ISIC, ChestX
and CropDisease data, 0.97, 0.81, 0.85 and 0.92, respectively.
In AUROC, using leave-4-out evaluation on C10 and MIN,
CTR outperforms recent benchmarks in Table VI. We think
CTR opens the road to few-shot Open-World classification and
will inspire others to adopt and use this real-world setting.
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