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Abstract—We propose a self-supervised learning method for
long text documents based on contrastive learning. A key to
our method is Shuffle and Divide (SaD), a simple text aug-
mentation algorithm that sets up a pretext task required for
contrastive updates to BERT-based document embedding. SaD
splits a document into two sub-documents containing randomly
shuffled words in the entire documents. The sub-documents are
considered positive examples, leaving all other documents in
the corpus as negatives. After SaD, we repeat the contrastive
update and clustering phases until convergence. It is naturally a
time-consuming, cumbersome task to label text documents, and
our method can help alleviate human efforts, which are most
expensive resources in AI. We have empirically evaluated our
method by performing unsupervised text classification on the
20 Newsgroups, Reuters-21578, BBC, and BBCSport datasets.
In particular, our method pushes the current state-of-the-art,
SS-SB-MT, on 20 Newsgroups by 20.94% in accuracy. We
also achieve the state-of-the-art performance on Reuters-21578
and exceptionally-high accuracy performances (over 95%) for
unsupervised classification on the BBC and BBCSport datasets.

I. INTRODUCTION

Self-supervised Learning (SSL) can provide label-equivalent
information necessary in gradient descent updates to a neu-
ral network. A carefully-designed pretext task facilitates the
source of label-equivalent information. In a modern paradigm
for natural language processing (NLP), an upstream task is set
up in a self-supervised manner to pre-train a model, followed
by a downstream task that is fine-tuned on the pre-trained
model. The upstream task typically requires no labeled data
examples (large text corpora) to build a language model,
whereas the downstream task can be fine-tuned on a relatively
smaller number of labeled examples.

In NLP, Transformer [1] has enabled some important SSL
methods that produce outstanding results. The Transformer-
based models such as BERT [2] and ALBERT [3] have
empirically demonstrated the effectiveness of SSL. Up until
now, however, its success is mainly for upstream tasks, not for
the downstream. It requires yet another labeled data to fine-
tune the pre-trained models. In other words, it still depends
on supervised learning that requires much manual effort.
NLP downstream tasks and their performances are limited by
disadvantages of supervised learning.

In image processing, on the other hand, numerous ap-
proaches to utilize SSL have been fruitful. Especially, con-
trastive learning method has shown great advances in image
classification with massive unlabeled data. It aims to use
similarities and differences between images. SimCLR [4] is

a prominent work for this approach. As its pre-trained model
applies to downstream task of classification, it outperforms
even supervised learning models. But, it also need two stage
process of upstream and downstream task.

To take one step further, some works make downstream task
also self-supervised, to minimize human intervention. They
include SCAN [5], RUC [6], SelfMatch [7], yielding tangible
results.

There is not much work to extend SSL or unsupervised
learning method to downstream task in natural language pro-
cessing field. A few has tried contrastive learning in the field.
Although image can be augmented quite naturally and many
image augmentation techniques already exist, natural language
has relatively little techniques. Naturally, many has tried SSL
with sentence similarity. Basic way of it is to use TF-IDF of
documents. But it simply regards documents with the same
frequency of a token similar. Moreover, it cannot distinguish
homonym.

To overcome these shortcomings, some approaches have
tried with semantic sentence similarity. They are G-BAT [8]
and SS-SB-MT [9]. SS-SB-MT yields the state-of-the-art
performance in unsupervised text classification. It generates
keyword correlation graph with edges and nodes by using
sentence similarity (SS) and Sentence BERT (SB). Then,
multi-task graph autoencoder (MT) transform the graph into
latent feature, which is to get document clusters. In short, it
converts document features into graphs, then gathers similar
ones together.

Pioneering work of SS-SB-MT outperforms previous works
in long sentence classification with SSL. However, it only
learns graphs summarizing documents, not the whole text.
It is not effective for exploiting information of documents,
compared to methods to learn feature vectors from whole text.
New way of generating supervision effectively by conserving
semantic features is needed.

We propose a new contrastive learning technique for docu-
ment classification and corresponding effective sentence aug-
mentation in this paper. Contrastive learning is to build positive
relation between input data and its augmented ones, and
negative with the others. So, optimal way of data augmentation
is crucial. One method is back translation, which translates
back to original language. But translation could be noisy.
Moreover, its result is very similar to the input, i.e., weak
augmentation.

To overcome previous limitations, we have developed new
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augmentation for contrastive learning: shuffling whole sen-
tences in a document, then dividing them into two groups.
It conserves meaning of individual sentence, simultaneously
augments input strongly. Strong augmentation with whole
semantics can make contrastive training optimal.

Experiments with 20 news group datasets for document
classification task shows classification accuracy 68.34 %,
outperforming G-BAT (41.30 %) and SS-SB-MT (47.40%)
by 27.04 %p and 20.94 %p improved respectively, achieving
new state-of-the-art. Experiments with datasets like router also
shows outstanding results.

In conclusion, we suggests novel SSL techniques for unsu-
pervised document classification, resulting in state-of-the-art
accuracy performances. We have empirically demonstrated the
efficacy of contrastive learning in unsupervised text classifica-
tion.

In the paper, our contributions are summarized as follows.
• We present state-of-the-art contrastive SSL for long text

(intent) classification;
• We suggest contrastive learning can apply to tasks in

natural language processing;
• We propose Shuffle and Divide (SaD), a novel text

augmentation algorithm for effective contrastive learning
of document classification.

The rest of this paper is organized as follows. Section 2 de-
scribes related work. In Section 3, we explain our architecture
and algorithms in detail. Section 4 presents our experimental
results and gives quantitative comparison with previous work.
The paper concludes in Section 5.

II. RELATED WORK

We review widely-used approaches, self-supervised learning
and text augmentation, which are related to our work in this
session.

A. Self-supervised learning

Self-supervised learning is to learn representation with
unlabeled large-scale datasets. Traditionally, most deep learn-
ing models have relied on supervised learning. But they
have required human supervision. SSL techniques includes
MLM(Masked Language Model) [2], NSP(Next Sentence Pre-
diction) [2], and contrastive learning [4]. They uses tasks
which can be defined with unlabeled data, i.e, pretext task. A
model pre-trained with pretext task is transferred to domain-
specific situations. It is called downstream task.

Pre-training methods for SSL includes context predic-
tion [10], image colorization [11], Jigsaw puzzle solving [12],
and rotation prediction [13]. As contrastive learning based on
InfoMax principle [14], SSL for image have advanced, with
the works of CPC [15], DIM [16], AM-DIM [17], MoCo [18],
and SimCLR [4]. Pre-trained models for text SSL includes
BERT [2] and GPT-3 [19]

a) BERT: A language representation model BERT uses
only encoder part of transformer [1]. Language pre-trained
models have outperformed previous ones in various natural
language tasks [20]. With unlabeled large-scale dataset, BERT

defines two pretext tasks: MLM and next sentence prediction.
MLM is to predict randomly masked words by learning context
of sentences or words with attention. Next sentence prediction
is to infer relationship between given two sentences.

b) SimCLR: SimCLR learns visual representation from
unlabeled large-scale datasets with SSL method. It applies two
different augmentations for each image. Then, augmentations
from the same image becomes positive pair, the others negative
pair, contrasting them to learn features. Its performance come
close to supervised learning models.

B. Text augmentation

Data augmentation aims to generate new data from the
original, conserving their labels. For text, it includes text
modification and generation. Examples of modification are
random noise injection [21], randomly removing, inserting,
or replacing words, and TF-IDF based word replacement,
modifying less important words which are not in principal
component of TF-IDF matrix. Examples of text translation
are Back translation [22], translating back and forth, and
generative methods [23], using sentence-generating models.

C. Document clustering

Embedding for documents should be extracted, to cluster
them. Traditional ways of embedding are well-known, such
as TF-IDF [24], which counts the occurrence of words per
document to give weight, LSI (Latent Semantic Indexing) [25],
LDA (Latent Dirichlet Allocation) [26], and glove embedding
average. Deep learning approaches have added new options.
BAT, G-BAT [8] and SS-SB-MT [9] use neural networks to
embed documents, to outperform traditional clustering meth-
ods. According to [9], ELMo [27] and SBERT [28] extract
embedding of sentences or words, then averaging them to get
better embedding.

a) BAT and G-BAT: BAT trains generative adversarial
network (GAN) with TF-IDF vector and topic distribution.
The encoder of that network is re-used to get embedding of
documents to cluster. G-BAT, which apply multivariate Gaus-
sian to the generator model of BAT, outperformed traditional
methods on 20NG datasets.

b) SS-SB-MT: SS-SB-MT is to build keyword correlation
graphs with sentence similarity (SS) and sentence BERT (SB).
Multi-task graph autoencoder (MT) extracts latent features
form graphs. Document clustering works in that feature space.
It is innovative, but quite complicated model to handle.
It achieved previous state-of-the-art on 20 newsgroup and
Reuters datasets.

III. METHOD

Since contrastive learning does not depend on the model
architecture, it can be used to enhance a pre-trained NLP
model in a specific way by running large corpora, all without
additional labeled data. In NLP, however, it is difficult to
make positive and negative examples necessary for contrastive
learning by using augmentation, unlike SimCLR used for
vision applications.



By overcoming the limitations of text augmentation, we pro-
pose a method of fine-tuning the NLP model in a contrastive
self-supervised method without additional labels.

A. Model Architecture

Fig. 1: Model Architecture. The encoder model receives n
documents and outputs 768-dimensional vectors. l is the
max sequence length and is predefined. Encoder consists of
transformers and Mean Pooling Layer. Various models such as
BERT and RoBERTa can be used as Transformers. The mean
pooling layer calculates the mean of all output vectors like
that of Sentence BERT.

Figure 1 shows the overall architecture of our model.
Transformers are initialized with pre-trained weights from the
BERT and RoBERTa models. To obtain the embedding of
documents required for clustering, we add a mean pooling
layer to the Transformers model and use it as an encoder. Mean
pooling layer calculates the average of the Transformer output
vectors. As a result, the encoder receives a token sequence of
a predefined length as input and outputs a 768-dimensional
vector.

B. Contrastive Self-supervised Learning

We use a contrastive self-supervised learning approach to
learn latent representations of documents without labels to
ultimately cluster them.

During the training process, within each mini-batch, the
distance between embeddings of the positive pair is made
close to each other, and the distance between embeddings
of the negative pair is made farther from each other. Among
all document pairs that can be combined in each mini-batch,
all pairs that are not positive pairs become negative pairs.
Therefore, the same number of positive pairs as the batch size
and (batch size * 2 - 2) negative pairs are created for each
mini-batch. Then, the token sequences of all documents in the
mini-batch are fed to the encoder to obtain output vectors,
and the contrastive loss is calculated based on the previously
obtained positive and negative pair configurations. The model
parameters are updated through the loss calculated in each
mini-batch.

In a general contrastive self-supervised method, positive
pairs are created through augmentation. In Computer Vision,

there are various augmentation options such as rotation, flip-
ping, and color jittering, and by combining them, numerous
label-preserving augmented versions of one sample can be
obtained. However, In NLP, simple augmentation tricks have
little effect in contrastive learning. In order to make meaning-
ful changes to the original sample, it is necessary to use a word
dictionary or a trained model such as WordNet Augmenter,
Contextual Augmenter, or back translation. However, the effect
is limited because the content and sentence structure of the
original document and the augmentation result are very similar.

We propose methods suitable for use in contrastive self-
supervised learning to replace or improve these existing aug-
mentation methods. The first method is to completely replace
text data augmentation. Based on the TF-IDF feature of docu-
ments, the pair with the highest cosine similarity is sampled to
create a positive pair. Our main approach, the second method,
called Shuffle & Divide, simply shuffles the order of the
sentences in the documents and splits the document in half
to get a positive pair by splitting one document into two.

C. Positive Sampling with TF-IDF

The first method to solve the limitations of text augmenta-
tion is to completely replace augmentation itself with positive
sampling using TF-IDF. Even if augmentation is not used, a
contrastive learning method can be applied if a positive pair
can be created from the dataset.

Instead of text augmentation, we propose a method to
perform contrastive learning by making two similar samples
as a positive pair. TF-IDF is a method of assigning weights
to each word by using the number of documents in which
a specific word appears and the number of times in which a
specific word appears in a specific document. It is a traditional
method often used to compare similarities between documents.

We will create a TF-IDF vector for all documents in the
dataset and define it as set {Dn}. For all Dn, find Dm(m 6= n)
with the highest cosine similarity and assume Dm and Dn as
a positive pair. Since the positive pair created in this way has
a high probability of belonging to the same category but is
completely different from each other, it can solve the problem
that the result of text augmentation is very weak.

D. Shuffle & Divide

Positive sampling by TF-IDF completely replaces text aug-
mentation, enabling contrastive self-supervised learning even
when augmentation is impossible or insufficient. However,
there is a fundamental and potential limitation that positive
pairs may actually be of different classes. In fact, when top-1
cosine similarity positive sampling is performed based on the
TF-IDF vector of documents in the 20NG dataset, the case
where the labels of the positive pair match is about 85%.

We propose the Shuffle & Divide algorithm as an alternative
to this problem. Figure 2 is an example of applying Shuffle &
Divide to document d. The sentence order of d is shuffled and
then divided in half to make d′ and d′′. Since they belong to
the same category, they can be used as a positive pair. Shuffle
& Divide is a very simple and intuitive method, but it showed



Fig. 2: Shuffle and Divide process for sample document Dn. Suppose we have a document Dn with m sentences from s1 to
sm. First, tokenize Dn in sentence units. Then, randomly shuffle the sentence tokens and combine them again to make dn. In
this case, the meaning or category of the document is not significantly damaged. Next, dn is divided in half to make d′n and
d′′n. If the number of sentences is sufficient, the meaning or category of document d′n and document d′′n will also coincide.

Fig. 3: The process of training the model using the Shuffle
& Divide method. Positive pairs are prepared as many as
the number of batch sizes, and negative pairs are prepared
by subtracting one positive sample from twice the batch size.
In the figure, the negative pair relationship is expressed only
for v1 and v2, which are the output vectors of d1 and d2,
for visibility. The parameters of the encoder are updated by
calculating the contrastive loss in each mini-batch.

a very powerful effect in the experimental process described
in Experiments.

Figure 3 shows the Shuffle & Divide process. In the
representation learning process, only documents consisting of
4 or more sentences are used as training data. Let Dn be
one of the documents sampled from each mini-batch. When
Dn is a document composed of m sentences from s1 to sm,
dn is created by randomly shuffled sentence order in Dn.
By dividing dn in half, documents d′n and d′′n composed of
n/2 sentences are created, and a positive pair (d′n, d′′n) can be
obtained per sample document Dn.

In other words, we can get as many positive pairs as the
batch size in the mini-batch. Also, since the sentence order of
the document is randomly shuffled at every epoch and then
divided, the augmentation effect of positive pairs is amplified
in the contrastive concept.

IV. EXPERIMENTS

To verify that our proposed method works, we have per-
formed clustering on text datasets. Because the output vector
from feeding the tokens sequences of documents to the en-
coder is clustered as is, the performance of the encoder can
be observed intuitively. Additionally, for a specific dataset,
we compared whether the encoder fine-tuned with our method
was better initialized than the “bert-base-uncased” pre-trained
weight of BERT. We prove the effectiveness of our method
by adding a classification head to each of the two encoders,
performing fine-tuning with the supervised method, and com-
paring them.

A. Datasets

Datasets Size Classes Length

20NG 18.612 20 245
Reuters 7,316 10 141
BBC 2,225 5 26
BBCSport 737 5 345

TABLE I: Datasets summary.

We use 20 Newsgroups (20NG) [29], Reuters-21578
(Reuters) [30], BBC and BBCSport datasets for our ex-
periments. To compare with SS-SB-MT [9], which is the
current state-of-the-art for unsupervised text classification,
20NG and Reuters are preprocessed according to the method
of [31], same as SS-SB-MT. Preprocessing the 20NG dataset
is summarized as follows. The header and footer of each
document were removed, and the URL and email address
were also removed. And documents with fewer than 10 words



were removed. For the Reuters dataset, multi-labeled data was
removed, and after removing documents with empty bodies,
duplicate data were also removed. And, only the top 10
categories of documents were extracted.

In case of Reuters, the class imbalance is more severe
than 20NG, so the randomness in performance measurement
tended to be large. The BBC and BBCSport datasets have
not been widely used in previous deep learning studies due
to the small number of data, but only the Shuffle and Divide
method has been tested experimentally. Table I summarizes
the information of each dataset used in the experiment.

B. Clustering

In the process of grouping documents expressed as high-
dimensional vectors, the definition of distance metric between
documents is very important. It is known that cosine distance is
more suitable for clustering of high-dimensional vectors than
euclidian distance. We used Spherical k-means, an algorithm
that is fast and uses cosine distance as a metric, to cluster the
768-dimensional document vectors output from the encoder.

We compared our method with several traditional methods
and recent deep learning methods that achieved state-of-the-
art. The performance and settings of the models are well
summarized in [32].

We used Accuracy (ACC), an indicator used in most previ-
ous studies, to measure and compare clustering performance.
Using the Hungarian algorithm [33], it is possible to efficiently
calculate the maximum accuracy value among all true label
and cluster mappings. We also measured AMI for comparison
with previous studies, and measured and referenced the sil-
houette score at every epoch to pick the best model without a
label. formula 1 shows how we calculated ACC.

ACC = max
n

∑n
i=1 1{li = (ci)}

n
(1)

C. Representation learning

With the two methods we proposed, the model learns
a representation for each dataset without using any labels
at all. First, the encoder’s transformers are initialized with
“bert-base-uncased” pre-trained weights. Contrastive loss is
calculated from positive and negative pairs sampled in each
mini-batch and the parameters of the model are updated. As
the contrastive loss, the nt-xent loss introduced in SimCLR is
used. For representation learning, the learning rate of 3e-5 was
used in the AdamW optimizer. The larger the batch size, the
more diverse the negative views for positive pairs. Therefore,
320, the maximum usable size, was used as the batch size.
The range of the total training epoch was determined for each
dataset and method, and the model with the highest silhouette
score within the range was used as the final model.

a) TF-IDF positive sampling: The first method, TF-IDF
positive sampling, calculates the cosine similarity between the
TF-IDF vectors of all documents included in the dataset, and
composes the most similar samples as positive pairs. When
a positive pair is configured in this way, the probability that
the pair belongs to the same category is calculated, 85 % for

20NG and 89.23 % for Reuters. In order to change the positive
sample according to the progress of the training epoch, after
each epoch, the cosine similarity of each of the TF-IDF vectors
and the model output vectors was weighted summed to obtain
similarity, and then positive sampling was performed again.
formula 2 shows the similarity calculation method according
to the progress of the learning epoch.

In the tokenize phase, 256 was used as the maximum token
length for 20NG and Reuters, and 128 was used for BBC
and BBCSport. Since the number of positive pairs is half
compared to the Shuffle & Divide method, and even that has
no augmentation effect, only 2 to 4 epochs were fine-tuned as
recommended by the BERT authors. And at every epoch, all
the documents of the dataset were fed to the fine-tuned model,
and the output vector was clustered to measure the silhouette
score, and finally the model with the highest score was kept.

As a result, as shown in Table II, it was possible to
obtain 65.92 % accuracy and 63.45 % AMI high performance
for the 20NG dataset, surpassing the existing state-of-the-art.
However, this method has limitations in that the categories
of positive pairs can be different from each other and that
the quantitative effect of augmentation cannot be obtained
significantly. Therefore, it showed relatively low performance
on small datasets such as Reuters.

S = αepoch−1sim(vtfidf )

+ (1− αepoch−1)sim(vmodel)
(2)

b) Shuffle & Divide: The authors of BERT recommend
training only 2-4 epochs during supervised fine-tuning of
the BERT model for downstream tasks. However, we trained
our model for (dataset size / batchsize) epochs so that we
can maximize the negative views that have been diversified
through contrastive learning and maximize the instance level
augmentation effect of positive and negative pairs obtained
through shuffle & divide.

For shuffle & divide processing, only documents consisting
of 4 or more sentences were used as training data. As in the
TF-IDF positive sampling method, the best model was picked
by measuring the silhouette score. Since the Shuffle&Divide
method divides the document in half, we set the max sequence
length to half that of the test phase in the training phase. The
max sequence length for each dataset and phase is shown in
the table III.

As a result, we were able to achieve higher performance
than TF-IDF positive sampling for all datasets. For the 20NG
and Reuters dataset, ACC improvement was about 20 %p and
about 15 %p compared to the existing state-of-the-art, respec-
tively. In the case of clustering on the BBC and BBCSport
datasets, it showed satisfactory performance of more than 95 %
based on Accuracy.

c) Classification with supervised fine-tuning: We addi-
tionally attach a classification head to the encoder obtained
by training with the Shuffle & Divide method, and then try
classification by the supervised fine-tuning method for 20NG
dataset. Three experiments were conducted to check whether



20NG Reuters BBC BBCSport

Models ACC AMI SS ACC AMI SS ACC AMI SS ACC AMI SS

Document Embedding models
TFIDF 33.70 41.70 - 35.00 45.60 - - 37.60 - - 79.90 -
LSI 32.30 39.80 42.00 40.00 - - 45.40 - - 84.00 -
LDA 37.20 28.80 54.90 50.30 - - 15.10 - - 61.60 -
D2C - 49.30 - 53.40 - - 75.90 - - 81.20 -
G-BAT 41.30 - - - - - - - - - - -
SS-SB-MT 47.40 53.00 - 56.30 58.40 - - - - - - -

Sentence Embedding models
GloVe 21.70 21.00 - 38.50 37.10 - - - - - - -
BERT 41.90 40.50 - 47.10 42.60 - - - - - - -
SBERT 44.10 45.10 - 51.40 52.40 - - - - - - -

Ours
TPS† 66.04 63.72 58.55 41.93 42.82 42.96 - - - - - -
SaD‡ 68.34 66.65 61.53 58.17 51.82 51.53 95.46 86.41 47.58 98.51 94.77 52.29

TABLE II: Clustering performance of our two methods in comparison to various baseline models. ACC represents accuracy
and AMI represents adjusted mutual information. SS is a silhouette score, and within the specified training epochs range, we
picked the encoder weight at the time of the highest SS. Among the performance indicators of various methods, ACC is the
experimental result reported in [32] and AMI is reported in [31]. A - sign indicates that it has not been measured or specified
in previous studies. (TPS† is TFIDF positive sampling, and SaD‡ Shuffle & Divide.)

Phase 20NG Re] BBC BBCS∗

TPS†
train 256 256 - -

test 256 256 - -

SaD‡
train 128 128 64 64

test 256 256 128 128

TABLE III: Maximum length of the encoder’s input token
sequence used in each dataset and phase. (Re] is Reuters,
BBCS∗ BBCSport.)

Base encoder SaD Accuracy (%)

bert-base-uncased FALSE 83.54
bert-base-uncased TRUE 85.40
SaD encoder TRUE 87.88

TABLE IV: Base encoders for initializing.

the BERT weight fine-tuned by the Shuffle & Divider method
is a good initialization point and whether Shuffle & Divide is
effective in the supervised fine-tuning learning process.

For the first time, an encoder initialized as “bert-base-
uncased” was fine-tuned in a supervised manner without
augmentation. In the second method, supervised fine-tuning
was performed by adding only Shuffle & Divider augmentation
to the first method. In the last method, the training data was
augmented by the Shuffle & Divide method while supervised
fine-tuning the encoder fine-tuned by the Shuffle & Divider
method.

As a result, the encoder fine-tuned by the Shuffle & Divide

method showed higher performance after supervised fine-
tuning for classification than the encoder initialized to “bert-
based-uncased.” In addition, when using Shuffle & Divide
augmentation for supervised fine-tuning for classification, the
performance was further improved. Detailed performance is
listed in Table IV.

V. CONCLUSION

In this paper, we have described a powerful means to
document clustering that can lead to state-of-the-art accuracy
performances for unsupervised text classification. There is no
decisive way to augment natural language text to learn NLP
models in a contrastive self-supervised manner. We propose a
method that runs on a simple augmentation algorithm called
Shuffle and Divide (SaD), which provides a facility to enhance
a Transformer encoder for document embedding. By coupling
contrastive learning with clustering, the final document em-
beddings result in document clusters that are as discriminative
as the text classifier fine-tuned on labeled examples. As we
have enhanced the encoder consisting of the Transformer and
mean pooling layers with our method, clustering with the
latent representation of the documents has verified the effec-
tiveness in text classification tasks. Experiments show that our
model achieves better performance than many unsupervised
approaches including the state-of-the-art results by SS-SB-
MT on the 20 Newsgroups and Reuters datasets. We have
achieved a high performance with more than 95% accuracy
for unsupervised classification on the BBC and BBCSport
datasets. In addition, our SaD can overcome the limitations of
text augmentation in a very simple way, and we are expecting
SaD to be applicable to various tasks of learning document
embedding as well as contrastive learning.



REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in NAACL,
2019.

[3] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite bert for self-supervised learning of language representa-
tions,” arXiv preprint arXiv:1909.11942, 2019.

[4] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[5] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, M. Proesmans, and
L. Van Gool, “Scan: Learning to classify images without labels,” in
European Conference on Computer Vision. Springer, 2020, pp. 268–
285.

[6] S. Park, S. Han, S. Kim, D. Kim, S. Park, S. Hong, and M. Cha,
“Improving unsupervised image clustering with robust learning,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 12 278–12 287.

[7] B. Kim, J. Choo, Y.-D. Kwon, S. Joe, S. Min, and Y. Gwon, “Self-
match: Combining contrastive self-supervision and consistency for semi-
supervised learning,” arXiv preprint arXiv:2101.06480, 2021.

[8] R. Wang, X. Hu, D. Zhou, Y. He, Y. Xiong, C. Ye, and H. Xu, “Neural
topic modeling with bidirectional adversarial training,” in Proceedings
of the 58th Annual Meeting of the Association for Computational
Linguistics, 2020, pp. 340–350.

[9] B. Chiu, S. K. Sahu, D. Thomas, N. Sengupta, and M. Mahdy, “Au-
toencoding keyword correlation graph for document clustering,” in ACL,
2020.

[10] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual repre-
sentation learning by context prediction,” in IEEE/CVF International
Conference on Computer Vision (ICCV), 2015.

[11] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in
European Conference on Computer Vision (ECCV), 2016.

[12] M. Noroozi and P. Favaro, “Unsupervised learning of visual representa-
tions by solving jigsaw puzzles,” in European Conference on Computer
Vision (ECCV). Springer, 2016.

[13] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation
learning by predicting image rotations,” in International Conference on
Learning Representations (ICLR), 2018.

[14] M. Tschannen, J. Djolonga, P. K. Rubenstein, S. Gelly, and M. Lucic,
“On mutual information maximization for representation learning,” in
International Conference on Learning Representations (ICLR), 2020.

[15] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[16] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman,
A. Trischler, and Y. Bengio, “Learning deep representations by mutual
information estimation and maximization,” in International Conference
on Learning Representations (ICLR), 2019.

[17] P. Bachman, R. D. Hjelm, and W. Buchwalter, “Learning representations
by maximizing mutual information across views,” in Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[18] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for
unsupervised visual representation learning,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[19] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[20] A. M. Dai and Q. V. Le, “Semi-supervised sequence learning,” in NIPS,
2015.

[21] J. Wei and K. Zou, “Eda: Easy data augmentation techniques for boost-
ing performance on text classification tasks,” in Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 2019, pp. 6382–6388.

[22] S. Edunov, M. Ott, M. Auli, and D. Grangier, “Understanding back-
translation at scale,” in EMNLP, 2018.

[23] V. Kumar, A. Choudhary, and E. Cho, “Data augmentation using pre-
trained transformer models,” in Proceedings of the 2nd Workshop on
Life-long Learning for Spoken Language Systems, 2020, pp. 18–26.

[24] C. Sammut and G. I. Webb, Eds., TF–IDF. Springer US, 2010, pp.
986–987.

[25] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala,
“Latent semantic indexing: A probabilistic analysis,” in Proceedings
of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, ser. PODS ’98. New York, NY, USA:
Association for Computing Machinery, 1998, p. 159–168. [Online].
Available: https://doi.org/10.1145/275487.275505

[26] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, p. 993–1022, 2003.

[27] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), 2018, pp. 2227–2237.

[28] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 2019, pp. 3982–3992.

[29] K. Lang, “Newsweeder: Learning to filter netnews,” in ICML, 1995.
[30] D. Lewis, Y. Yang, T. Rose, and F. Li, “Rcv1: A new benchmark

collection for text categorization research,” J. Mach. Learn. Res., vol. 5,
pp. 361–397, 2004.

[31] J. Ye, Y. Li, Z. Wu, J. Z. Wang, W. Li, and J. Li, “Determining gains
acquired from word embedding quantitatively using discrete distribution
clustering,” in ACL, 2017.

[32] P. Xie and E. Xing, “Integrating document clustering and topic model-
ing,” ArXiv, vol. abs/1309.6874, 2013.

[33] H. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

https://doi.org/10.1145/275487.275505

	I Introduction
	II Related Work
	II-A Self-supervised learning
	II-B Text augmentation
	II-C Document clustering

	III Method
	III-A Model Architecture
	III-B Contrastive Self-supervised Learning
	III-C Positive Sampling with TF-IDF
	III-D Shuffle & Divide

	IV Experiments
	IV-A Datasets
	IV-B Clustering
	IV-C Representation learning

	V Conclusion
	References

