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Abstract—This work addresses scaling up the sketch clas-
sification task into a large number of categories. Collecting
sketches for training is a slow and tedious process that has so
far precluded any attempts to large-scale sketch recognition. We
overcome the lack of training sketch data by exploiting labeled
collections of natural images that are easier to obtain. To bridge
the domain gap we present a novel augmentation technique that
is tailored to the task of learning sketch recognition from a
training set of natural images. Randomization is introduced in the
parameters of edge detection and edge selection. Natural images
are translated to a pseudo-novel domain called ‘‘randomized
Binary Thin Edges” (rBTE), which is used as a training domain
instead of natural images. The ability to scale up is demonstrated
by training CNN-based sketch recognition of more than 2.5
times larger number of categories than used previously. For
this purpose, a dataset of natural images from 874 categories
is constructed by combining a number of popular computer
vision datasets. The categories are selected to be suitable for
sketch recognition. To estimate the performance, a subset of 393
categories with sketches is also collected.

I. INTRODUCTION

Free-hand drawings, or sketches, have been a long-lasting
means of human communication and expression. Nowadays,
the prevalence of digital devices equipped with touch-screens
has given free-hand sketches additional roles in a number
of educational, business or leisure activities. As a result,
computer vision research related to sketches has flourished
in a variety of tasks including synthesis [1l], perceptual
grouping [2l], sketch-based image retrieval [3]], [4], [S], and
sketch recognition [6]], [[7], [8]. In this paper, we focus on
the task of sketch recognition, i.e. how to classify sketches
into specific categories. In particular, we target a realistic
application scenario, where the number of classes is as large
as possible. Prior work commonly keeps the number of classes
relatively low. The reason for that is simple - lack of training
data. Since annotation effort for sketch recognition includes
sketch drawing, this activity becomes prohibitively expensive.
For example, the Skerchy dataset [9]] required 3,921 hours of
sketching for 125 categories. In order to obtain a seven times
larger dataset, one would need over 13 human-years of sketch
drawing (40 hours a week, 52 weeks a year). Therefore, the
task of large-scale sketch recognition requires methods much
less demanding on the training data.

To allow scalability in the number of classes, we propose a
method that trains a deep network classifier without requiring a
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Fig. 1. The goal of this work is to recognize sketches at test time (bottom row)
without using any sketches at training time. Labeled natural images (top row)
are transformed to rBTEs with different level of details (the two middle rows
are two instances of rBTE per natural image, thickened for visualization)
to bridge the domain gap. Combined with geometric augmentations, the
transformed dataset is used to train a deep network for sketch recognition.
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single sketch during the training. Instead, only natural images
with their labels are used to train the classifier. The method
exploits the fact that human-drawn sketches often represent
the 2D shape of depicted objects or of their parts. The sketch
domain is approximated by detected 2D shapes of objects in
natural images. In the following, terms natural images, RGB
images, or simply images are used interchangeably.

A novel edge augmentation technique is used to map natural
images to a pseudo-novel domain called randomized Binary
Thin Edges (rBTE). This augmentation procedure randomly
selects an edge detector and an edge selection strategy in
order to generate a sketch-like output with different level of
details (see Figure [T)) and is combined with random geometric
augmentations.

Sketch recognition is a standard and well defined task
and, at the same time, collections of annotated images are
available. It is possible to cast sketch recognition as a single-
source domain generalization with natural images as the source
domain. However, we show that a specific approach exploiting
the specifics of natural images and sketches brings a relative
recognition-rate improvement of more than 20% over unneces-
sarily generic single-source domain generalization approaches.

The proposed approach is a general augmentation scheme
that can include any modern image-to-edge or image-to-sketch



method. In this work we demonstrate its potential by using
edge detectors [10]], [L1], [12]] trained on an extremely limited
amount of non-sketch data, i.e. 200 natural images. Methods
such as [13]], [14] are trained on sketches, and methods such
as [15] require more data. rBTEs form a rich training set
allowing to train, without a single sketch, a CNN-based sketch
classifier, which is the main contribution of this work.

Sketch synthesis is a popular task [16], [17], [L8], [[19], [20]
in which sketches are generated from images. However, it is
not applicable to the setup that this work explores since these
approaches cannot work without training sketches.

To evaluate the proposed approach we introduce Im4Sketch,
a dataset for large-scale sketch recognition without sketches
for training. It consists of 1,007,878 natural images labeled
into 874 classes used to train the sketch classifier. Testing
is performed on 80,582 sketches coming from 393 classes
that are a subset of the training classes. The dataset is a
composition of existing popular image and sketch datasets,
namely ImageNet [21], DomainNet (DN) [22], Sketchy [9],
PACS [23]], and TU-Berlin [24]. The classes are selected,
so that classification by shape is meaningful. For example,
ImageNet categories “Indian elephant” and “African elephant”
are merged into category “Elephant”. The dataset is described
in detail in Section [V]

To the best of our knowledge, this is the first work that
delivers sketch recognition of the order of over 800 categories.
The dataset with the second largest number of classes for
sketch recognition is DomainNet [22]] with 345 classes, i.e.
more than 2.5 times smaller.

II. RELATED WORK

In this section, we review the prior work on three tasks that
are relevant to the focus of this work, namely sketch recogni-
tion, sketch-based image retrieval, and domain generalization.

a) Sketch recognition: The crowd-sourced free-hand
sketch dataset by Eitz et al. [24] is the first large-scale
dataset on the domain of sketches. Early approaches [235],
[24] focus on adapting hand-crafted features and encodings,
such as SIFT [26], its variants, Fisher vectors [27], and SVM
classifiers to solve the task. The application of deep network
classifiers was stimulated by the enormous effort invested in
annotating sketches. The Sketch-a-Net [28|] approach demon-
strates recognition performance surpassing human recognition
ability. This is achieved with a tailored architecture and a
labeled training set of sketches whose size is in the order
of 108. In the recent work of Qi et al. [29], the combination
of deep and hand-crafted features exhibits very good results.
Some approaches [30], [31] exploit the additional information
of stroke order, when available in the input, to further improve
the recognition accuracy. We assume that this information is
not available and deal with the more general problem.

The scarcity of training data in the domain of sketches
is handled by some approaches by combining sketches and
natural images during the training. Hua et al. [6] attempt
to automatically learn the shared latent structures that exist
between sketch images and natural images. Zhang et al. [32]]

transfer the knowledge of a network learned on natural images
to a sketch network. In both these methods the training set
consists of both natural images and sketches. Even though
these approaches are valuable in a few-shot setup, where only
a few labeled sketches per category are available, the setup
with no sketches has not been well studied before with a focus
on the sketch domain. An exception is the recent work of
Lamb et al. [33] where the SketchTransfer task is presented.
Even though their work explores the setup of no available
sketches too, promising results are achieved only when unla-
beled sketches are available during the training. The authors
conclude that the low resolution images of the benchmark is
a limitation. Therefore, in our work we use benchmarks with
higher resolution images that are more realistic.

b) Sketch-based image retrieval: Classical approaches
use edge detection on natural images to bridge the domain gap
and then handle both domains with hand-crafted descriptors
or matching [34]], [3l], [35], [36], [37]]. Deep learning methods
mainly follow a different path. A two branch architecture is
used [38], [39], [40], with a different branch per domain,
where the expectation is to bridge the domain gap based on
large amounts of training data with cross-domain labeling [9].
If learning is involved, the most realistic setup is the zero-shot
sketch-based image retrieval [41]; which is a challenging task,
that is related to, but different from, ours. Radenovic er al. [4]]
avoid cross-modal annotation by relying on training labels of
natual images and using edge detection to bridge the domain
gap. Their work focuses on learning shape similarity and does
not attempt to directly generalize to category level recognition.

¢) Domain generalization: The most common approach
for domain generalization is invariant feature learning, based
on the theoretical results of Ben-David et al. [42]. Repre-
sentative approaches include kernel-based invariant feature
learning by minimizing domain dissimilarity[43]], multi-task
autoencoders that transform the original image to other related
domains, domain classifiers as adversaries to match the source
domain distributions in the feature space [44]], [45]], and cross-
domain non-contrastive learning as regularization [46]].

Some methods specialize for single-source domain gen-
eralization. Examples include hard example generation in
virtual target domains [47], style transfer using auxiliary
datasets [48]], and adversarial domain augmentation [49].
Narayanan et al. [50] argue that the shock graph of the contour
map of an image is a complete representation of its shape
content and use a Graph Neural Network as their model.
Wang et al. [31] propose a style-complement module to create
synthetic images from distributions that are complementary to
the source domain.

Data augmentation techniques are commonly used for do-
main generalization. Zhou et al. [52] synthesize data from
pseudo-novel domains under semantic consistency by using a
data generator. Mancini et al. [33]] use mixup [54] to combine
different source domains. Carlucci et al. [S5]] train a model to
solve jigsaw puzzles in a self-supervised manner in addition to
the standard classification loss to improve the generalization
ability of the model.
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Fig. 2. Overview of the training pipeline. Natural images are transformed into rBTEs, which are used with class labels to train a network classifier with
cross-entropy loss. The obtained network is used to classify free-hand sketches into the object categories.

IIT. TASK FORMULATION

In this section, we define the task and relate it to existing
computer vision tasks. We follow the notation of transfer
learning [56] and domain adaptation [57]] literature.

A domain D is an ordered pair D = (X, P(X)) composed
of a space of input examples A and a marginal probability
distribution P(X), where X is a random variable valued in
X. A task T = (Y, P(Y]X)) is defined by a label space )
and the conditional probability distribution P(Y|X), where Y’
is a random variable with values in ).

In the problem, two domains are considered: the rarget
domain D! = (X, P(X?)) of sketches and the source domain
Df = (X%, P(X?®)) of natural images, with tasks 7¢ =
(Y, P(YH X)) and T° = (Y%, P(Y*|X*®)) respectively. The
goal is to learn a predictor f : Xt — Y* for the target domain
without having access to any examples from that domain.

The input spaces of both the domains, target and source
respectively, are images (RGB, fixed size), thus X° = Xt.
The same categories are to be recognized in the two do-
mains, i.e. the label spaces are also identical J* = Jt.
However, the marginal distributions are significantly different,
ie. P(X®) # P(X?"). In this work, we advocate for bridging
the domain gap by constructing a transformation 7' : X — X
so that P(T(X*®)) ~ P(X?). With such a transformation, an
approximation of P(Y*|X") in the form of P(Y*|T'(X*)) can
be learned with labeled examples from the source domain
of natural images. In this work, we focus on designing
the transformation based on prior knowledge about the two
domains, see Section [[V]

a) Relation to domain adaptation: In the domain adap-
tation task, similarly to our problem, V¢ = V* and P(X*®) #
P(X*). The main difference is that in domain adaptation, some
examples from the target domain are available, either labeled
or unlabeled for supervised or unsupervised domain adaptation
respectively. For example, in unsupervised domain adaption
from natural images to sketches, a labeled dataset of natural
images is available, together with unlabeled sketch examples.
The goal is to obtain a predictor for sketches.

b) Relation to domain generalization: The task of do-
main generalization is the closest one to our task. The essential
difference is that most domain generalization methods are
either unusable or they under-perform in the single-source
task. Also domain generalization targets to perform well
in every possible target domain. The domain label of each
example is used by most approaches as additional supervision.
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Fig. 3. Image and sketch examples from the Im4Sketch dataset. Class bear
contains the original ImageNet classes “American Black Bear” and “Ice Bear”
whose shape is indistinguishable. Sketches are collected from original datasets
with different level of detail as in the case of class “dog”; original datasets
are shown at the bottom.

It holds that P(X?) # P(X?) and Vi = YVt forj=1...d,
where d is the number of source domains. A sketch recognition
example is the case where labeled datasets exist for the domain
of natural images, artworks, and cartoons. The goal is to obtain
a predictor for free-hand sketches. In contrast to our setup,
the multiple domains allow for learning a domain invariant
predictor, while in our task, exploiting prior knowledge is the
only way to proceed.

c) Relation to attributed-based zero-shot learning: Zero-
shot learning in visual applications is the following. The input
spaces are the same X° = X', but the marginal distributions
are different P(X®) # P(X?"). The label spaces are disjoint
YN Yt = (), and, therefore, the tasks are different too, i.e.
T* # T*. The similarity to our task is that there are no input
examples of the target domain during the learning. There is
additional information, though, in the form of attributes. Each
class, from both domains, is described by an attribute vec-
tor, whose dimensions correspond to high-level semantically
meaningful properties [58]]. This information is used to transfer
knowledge from one domain to the other.

IV. METHOD

In this section, we describe the proposed method, the details
of the construction of the rBTE domain, as well as the
implementation details of the training.



A. Deep network classifier

Predictor f : X* — ! is a deep convolutional neural
network that takes as input a sketch and predicts the class.
It is possible to obtain the predictor by minimizing empirical
risk 570 0(f(xi),y), with (zi,9;) € X' x V', when
sketches are available during training. Instead, in this work, the
predictor is obtained by minimizing L 37" | 0(f(T (), ys),
with (z;,y;) € X® x V°.

B. Edge Augmentation

A natural image x is transformed to T'(x), called rBTE,
through a sequence of randomized transformations that are
described in the following.

a) Edge detection: is performed to map the input image
to an edge-map with values in [0, 1]. Various edge detectors
are used to extract the edges: The Structures Edges (SE) [10],
the Holistically-Nested Edge Detectio [11], and the Bi-
Directional Cascade Network [12]. While SE uses random-
forest classifier, the other two are DNN based. Using multiple
detectors, the size of available training examples is expanded,
in this case by a factor of 3.

All three edge detectors are originally trained with clean
edge-maps obtained from ground truth segmentation masks, in
particular the BSDS500 [59] segmentation dataset containing
only 500 images, 200 of which are for training. The dataset
consists of natural images, and the ground truth masks are
obtained by manual labeling. This is an additional labeled
dataset, not including free-hand sketches of objects, that is
indirectly used in our work to improve sketch recognition.
Even though not considered in this work, one could possible
make better use of this dataset even during learning predictor
f to obtain further improvements.

b) Geometric augmentations: Edge-maps are geometri-
cally transformed with a set of commonly used geometric
augmentations for CNNs: Zero-padding to obtain square edge-
maps, re-sample to 256x256, rotation by angle uniformly
sampled in [—5, 5] degrees, crop with relative size uniformly
sampled in [0.8,1.0] and aspect ratio in [3,3] resized to
224 %224, and finally horizontal flip with a probability of 0.5.

¢) Thinning - NMS: Edge thinning is performed by non-
maximum suppression that finds the locations with the sharpest
change of the edge strength. All values that are not larger than
the neighboring values along the positive and negative gradient
directions are suppressed. This is a standard process which is
also part of the well known Canny detector [60] and commonly
used as post-processing for the SE detector.

d) Hysteresis thresholding: Hysteresis thresholding,
which is another common step of the Canny [60] detector, that
transforms the input to a binary images using two thresholds
(low and high). Pixels whose value is above (below) the high
(low) threshold are (are not) considered edges, while pixels
with values between the two thresholds are considered as edges
only if they belong to a connected-component containing an
edge pixel. Setting a fixed threshold that operates well for

1A reimplementation is used https://github.com/sniklaus/pytorch-hed

the large range of images and objects considered in this
work is not possible. Instead, a threshold ¢ is estimated by
standard approaches that perform binarization of grayscale
images, and set the low and high thresholds to 0.5¢ and 1.5¢,
respectively. The thresholding approach is randomly chosen
from a candidate pool comprising methods of Otsu [61],
Yen [62]], Li [63], Isodata [64], and the mean approach [65].
e) Large connected-components: In the last stage, pixels
belonging to small (less than 10 pixels) connected components,
estimated with 8-neighbor connectivity, are discarded.

C. Testing

The relative size of sketches with respect to the image
dimensions varies from dataset to dataset. In order to tackle
this we perform inference in the following two ways. single-
scale testing, which is the testing of each sketch in its original
relative size and multi-scale testing. In multi-scale testing the
sketch is cropped to its bounding box, padded to have aspect
ratio 1:1 and then resized to be 90%, 65% and 45% of the
224x224 network input size. The prediction of the three resized
sketches are then ensembled by averaging before the softmax
function.

D. Overview

A visual overview of the pipeline is shown in Figure [2|
The proposed approach uses the sequence of transformations
on natural images during the learning stage, and trains a
deep convolutional neural network with rBTEs. Randomness
is involved in the selection of the edge-map, in the geometric
augmentation, and in the selection of the threshold estimation
method. Each time an image participates in a batch, only one
of the edge-maps and one of the threshold estimation methods
is used, chosen with equal probability. A set of thorough
ablations is presented in the experimental section by discarding
parts of the overall pipeline. During inference, a sketch is fed
to the exact same network, after simply performing thinning.

E. Implementation details

a) Training details: ResNet-101 [66] is used as the
backbone network for our ablation study on Sketchy and
for the core Im4Sketch experiments. The parameters of the
network are initialized with the standard weights from training
on ImageNet, i.e. training with rBTEs starts with the network
trained on ImageNet with RGB images. Adam optimizer is
used with batch size equal to 64 for training on rBTEs. The
range test [67] is used to identify the initial learning rate. This
process starts with a high learning rate and keeps decreasing
it every 50 updates. The initial learning rate is picked in the
range of the steepest ascending accuracy on the training set.
This method indicates a learning rate of 10~* for all of our
experiments. The learning rate is decayed by a factor of 10
every 10 epochs for a total of 30 epochs.

b) Comparison with domain generalization methods:
For a fair comparison with the existing domain generalization
methods we train a ResNet-18 [66] with SGD optimizer with
momentum 0.9, batch size 64 and learning rate 0.004. We train
for 30 epochs without a scheduler.
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Dataset Im4Sketch [ ImageNet DomainNet Sketchy PACS TU-Berlin Original Datasets Im4Sketch
ImageNet 690 N 162 99 4 141 Dataset Train Val Test Classes [ Train  Val  Test
DomainNet 345 162 - 98 7 197 IN 1,281,167 50,000 100,000 1,000 |885,946 34,500 0
Sketchy 125 99 98 5 99 DN Real 120,906 0 52,041 345 61,039 26,303 0
PACS 7 4 7 5 - 7 DN Qdr 120,750 O 51,750 345 0 0 51,750
TU-Berlin 223 141 197 99 7 - Sketchy Im 11,250 0 1,250 125 72 18 0
TABLE I Sketchy Sk 68,418 0 7,063 125 0 0 7,063
EACH ROW REPRESENTS THE ORIGINAL DATASET AS A COMPONENT OF PACS Sk 3,929 7 0 0 3,929
IM4SKETCH. THE IM4SKETCH COLUMN SHOWS THE NUMBER OF FINAL TUB 20,000 250 0 0 17,840
CLASSES THAT EXIST IN EACH DATASET. THE REST OF THE COLUMNS Total 947,057 60,821 80,582
SHOW THE NUMBER OF COMMON FINAL CLASSES, AFTER OUR MERGING, TABLE 11

BETWEEN THE DIFFERENT DATASETS. IMAGENET IS WITH OUR MERGED
VERSION. TU-BERLIN IS WITHOUT THE DELETED CLASSES.

V. THE IM4SKETCH DATASET

We present a large-scale dataset with shape-oriented
set of classes for image-to-sketch generalization called
“Im4Sketch’f] It consists of a collection of natural images
from 874 categories for training and validation, and sketches
from 393 categories (a subset of natural image categories) for
testing.

The images and sketches are collected from existing popular
computer vision datasets. The categories are selected having
shape similarity in mind, so that object with same shape belong
to the same category.

The natural-image part of the dataset is based on the
ILSVRC2012 version of ImageNet (IN) [21]. The original
ImageNet categories are first merged according to the shape
criteria. Object categories for objects whose shape, e.g. how
a human would draw the object, is the same are merged. For
this step, semantic similarity of categories, obtained through
WordNet [68] and category names, is used to obtain candidate
categories for merging. Based on visual inspection of these
candidates, the decision to merge the original ImageNet classes
is made by a human. For instance, “Indian Elephant” and
”African Elephant”, or "Laptop” and “Notebook™ are merged.
An extreme case of merging is the new class “dog” that is a
union of 121 original ImageNet classes of dog breeds.

In the second step, classes from datasets containing sketches
are used. In particular, DomainNet (DN) [22], Sketchy [9],
PACS [23], and TU-Berlin [24]. Note that merging is not
necessary for classes in these datasets, because the shape
criteria are guaranteed since they are designed for sketches.
In this step, a correspondence between the merged ImageNet
categories and categories of the other datasets is found. As
in the merging step, semantic similarity is used to guide the
correspondence search. A summary of the common classes per
dataset pairs is shown in Table [l Sketch categories that are
not present in the merged ImageNet are added to the overall
category set, while training natural images of those categories
are collected from either DomainNet or Sketchy. In the end,
ImageNet is used for 690 classes, DomainNet for 183 classes,
and Sketchy for 1 class, respectively. An example of merging
and mapping is shown in Figure [3]

Training images of Im4Sketch come from training sets of
ImageNet and DomainNet(rel), and from 80% of training set
of Sketchy. The validation set is obtained from the validation

2Im4Sketch is publicly available on |http://cmp.felk.cvut.cz/imdsketch/

NUMBER OF NATURAL IMAGES AND SKETCHES FOR THE ORIGINAL
DATASETS AND FOR THE IM4SKETCH DATASET PARTITIONED INTO TRAIN,
VALIDATION AND TEST SUBSETS.

set of ImageNet, the test set of DomainNet(rel) and 20% of
the training set of Sketchy. To avoid large imbalance when
collecting images from ImageNet we keep at most 1350
images per class, chosen uniformly from all corresponding
original ImageNet classes.

Almost all sketch categories from the four datasets are
covered in Im4Sketch. We exclude 27 classes of the TU-Berlin
dataset in order to either avoid class conflicts, e.g.”flying bird”
and ’standing bird”, or because we are unable to map them to
any existing category with natural images in another dataset,
e.g.”sponge bob”. All sketches assigned to any of the final set
of categories are used to form the Im4Sketch test set, with an
exception for Sketchy and DomainNet where we keep only
the sketches from the test set; see more details in Table

VI. EXPERIMENTS

In this section, experimental settings, datasets, and results
are presente Firstly, we perform an extensive set of ablations
by training and testing on Sketchy dataset. Then, we train and
test the proposed approach on PACS dataset to compare with
prior domain generalization results. Lastly, we perform large-
scale training and testing on the newly introduced Im4Sketch
dataset. Recognition performance on Sketchy and Im4Sketch
is evaluated by mean prediction accuracy, first estimated
per class and then averaged for the whole dataset. For the
comparison with the existing domain generalization methods,
mean accuracy is used in order to be consistent with the
literature.

A. Ablation study on Sketchy

Sketchy dataset [9]] is originally created for the purpose of
fine-grained sketch-based image retrieval, while we define a
new evaluation protocol for our task. It consists of 125 object
categories with natural images. Sketches of objects are drawn
with these images as reference. The training part consists of
11,250 images and the corresponding 68,418 sketches, while
the testing part consists of 1,250 images and the corresponding
7,063 sketches. Since there is no designated validation set, we
randomly split the training part keeping 80% for training and
20% for validation. This policy is followed both for images
and sketches.

3The code and the proposed evaluation protocols are publicly available on
https://github.com/NikosEfth/im2rbte
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ID 0 1 2 3 4rBTE S5rBTE 6 7

Geometric Yes No Yes Yes Yes Yes Yes Yes Method Photo — Sketch
Edge detector HED HED  HED  All All HED  HED RGB 326 £24
NMS N/A Yes Yes Yes Yes Yes No Yes SelfReg [40]] 337 £ 26
Thresholder Fixed Fixed All All All No No L2D [51] 58.5 £ 3.9
Pretrained RGB/IN RGB/IN RGB/IN RGB/IN RGB/IN BTE/I4S RGB/IN RGB/IN SagNet [69] 40.7

Single scale  11.4 £3.539.1 £0.847.0 £0.347.9 £0.649.7 £0.557.2 £0.559 £29402 £06  BTE (Ours) _ 70.6 £ 2.2
Multi scale 11.6 £3.942.4 +1.549.8 £0.6 50.9 £0.4 52.3 +0.5 59.6 0.8 8.0 +2.2 41.1 £0.8 TABLE IV

TABLE III

SKETCHY: ABLATION STUDY FOR TRAINING ON NATURAL IMAGES AND TESTING ON SKETCHES.

We choose the Sketchy benchmark to perform an ablation
study for computational reasons. Each ablation includes a
30 epoch training procedure followed by the evaluation; the
reported numbers are averaged over five randomized runs. The
results of the study are summarized in Table|[II} Training using
single edge-maps, and fixed threshold, without geometric aug-
mentation results in poor performance (ID=1), while simply
adding geometric augmentations provides a noticeable boost
(ID=2). In these two ablations the threshold is fixed and set
equal to the average threshold estimated by the Otsu method
on the whole dataset. Then, using all the threshold estimation
methods per image increases performance (ID=3). Using all
edge-maps (ID=4) provide further boost. This variant consti-
tutes the main approach of this work. However, instead of
initializing with the result of training on ImageNet with RGB
images, we also perform an experiment where the initialization
is the result of training with rBTEs on Im4Sketch (described
at the end of this section). This kind of large-scale pre-training
is shown very essential (ID=5) and increases performance by
7.5% with single scale and 7.3 in multi scale testing. Two
additional ablations show that edge-map binarization is needed
(ID=7 versus ID=3), and that without the NMS-based thinning
the performance is very low (ID=6). The baseline approach of
training on RGB images of the Sketchy dataset and then testing
on sketches (ID=0) performs very poorly. This comparison
demonstrates the large benefit of rBTEs for the Sketchy dataset
which includes detailed and well drawn sketches.

We additionally use the Canny edge detector employed
with geometric augmentations, Otsu’s method to adaptively
set Canny’s thresholds [70], and Gaussian smoothing with
o randomly chosen in [1,5]. It achieves 44.9% and 47.9%
accuracy in single and multi-scale testing, which is 2.1% and
1.9% lower than HED ablation with no adaptive threshold
(ID=2).

B. Single-source domain generalization comparison on PACS

Table [[V|summarises the performance of our approach com-
pared to the current state-of-the-art in domain generalization

RGB (single) rBTE (single) rBTE (multi)
argmax over all  subset  all subset all  subset
Im4Sketch 5.3 5.3 11.3 12.7 124 14.0

DomainNet 3.9 39 5.2 6.9 6.6 8.5

Sketchy 39 124 260 426 26.8 430

TUB 12.0 139 258 315 27.8 339

PACS 11.6 422 247 62.7 23.8 648
TABLE V

RESULTS FOR TRAINING ON IM4SKETCH. TESTING IS PERFORMED ON
THE TEST SET OF IM4SKETCH OR ITS SUBSETS THAT COME FROM THE
DIFFERENT ORIGINAL DATASETS.

PACS: IMAGE-TO-SKETCH
GENERALIZATION.

and to the baseline trained directly on RGB natural images.
SelfReg [46] performs poorly as expected; it is intended for
multi-source domain generalization. For L2D [31] which is
designed specifically for the single-source task, we run the pro-
vided code and ensure that optimal learning rate according to
validation performance on the source task is used; the reported
score is reproduced. The reported numbers are averaged over
twenty randomized runs. Our approach outperforms all other
generic domain generalization methods by a large margin.

C. Training on Im4Sketch and testing on all

The proposed approach for learning without sketches is to
train on the corresponding image training part of Im4Sketch by
transforming them into rBTEs. In this way, both the backbone
network and the soft-max classifier are trained only with
rBTEs. This is performed either to obtain a sketch classifier for
874 categories, or as pre-training to obtain a better backbone
network, tailored for shape-based representation (see ID=5 on
Table [TII).

There are 874 training classes in Im4Sketch, while only 393
classes have sketches for testing, since drawing all the classes
is impractical at best. Besides results at single and mutli-scale,
two evaluating scenarios are reported. First, “argmax over-all”,
is the testing over all 874 possible classes. This should be seen
as an estimate of the overall performance, as the test-classes
are unknown during training. The other scenario, “argmax
over-subset” is the testing over the classes that appears in the
sketch test set. This corresponds to an unrealistic situation,
when posterior probability of classes not in the test set is
known to be zero. We only report these results to provide
some intuition. The results of our Im4Sketch trained model are
summarized in Table [V|to allow future comparisons. Training
on rBTEs performs significantly better than training on RGB
images on all setups.

VII. CONCLUSIONS

In this work, we are the first to train a large-scale sketch
classifier that is able to recognize up to 874 categories. Due
to the absence of such a large training dataset, the learning is
performed without any sketches. Instead, we proposed a novel
edge augmentation technique to translate natural images to a
pseudo-novel domain and use it to train a network classifier.
This tailored image-to-sketch method is noticeably better than
generic single-source domain generalization approaches.



(1]
(2]
(3]
[4]
(51
(6]
(71

(8]

(91

[10]
[11]
[12]

[13]

[14]
[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
(28]

[29]

REFERENCES

D. Ha and D. Eck, “A neural representation of sketch drawings,” in
ICLR, 2018.

L. Yang, J. Zhuang, H. Fu, K. Zhou, and Y. Zheng, “Sketchgcn: Semantic
sketch segmentation with graph convolutional networks,” in arXiv, 2020.
T. Bui and J. Collomosse, “Scalable sketch-based image retrieval using
color gradient features,” in ICCV, 2015.

F. Radenovic, G. Tolias, and O. Chum, “Deep shape matching,” in
ECCV, 2018.

F. Wang, L. Kang, and Y. Li, “Sketch-based 3d shape retrieval using
convolutional neural networks,” in CVPR, 2015.

H. Zhang, S. Liu, C. Zhang, W. Ren, R. Wang, and X. Cao, “Sketchnet:
Sketch classification with web images,” in CVPR, 2016.

Q. Jia, X. Fan, M. Yu, Y. Liu, D. Wang, and L. J. Latecki, “Coupling
deep textural and shape features for sketch recognition,” in ACM
Multimedia, 2020.

F. Liu, X. Deng, Y.-K. Lai, Y.-J. Liu, C. Ma, and H. Wang, “Sketchgan:
Joint sketch completion and recognition with generative adversarial
network,” in CVPR, 2019.

P. Sangkloy, N. Burnell, C. Ham, and J. Hays, “The sketchy database:
learning to retrieve badly drawn bunnies,” ACM Transactions on Graph-
ics, vol. 35, no. 4, p. 119, 2016.

P. Dollar and C. L. Zitnick, “Structured forests for fast edge detection,”
in ICCV, 2013.

S. Xie and Z. Tu, “Holistically-nested edge detection,” IJCV, vol. 125,
no. 1-3, p. 3-18, Dec. 2017.

J. He, S. Zhang, M. Yang, Y. Shan, and T. Huang, “Bi-directional
cascade network for perceptual edge detection,” in CVPR, 2019.

A. K. Bhunia, P. N. Chowdhury, A. Sain, Y. Yang, T. Xiang, and Y.-
Z. Song, “More photos are all you need: Semi-supervised learning for
fine-grained sketch based image retrieval,” CVPR, 2021.

J. Song, K. Pang, Y.-Z. Song, T. Xiang, and T. Hospedales, “Learning
to sketch with shortcut cycle consistency,” CVPR, 2018.

J. Lim, L. Zitnick, and P. Dollér, “Sketch tokens: A learned mid-level
representation for contour and object detection,” in CVPR, 2013.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” CVPR, 2017.

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-
time style transfer and super-resolution,” in European Conference on
Computer Vision, 2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, 2014.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in 2017 IEEE
International Conference on Computer Vision (ICCV), 2017.

Y. Zhang, G. Su, Y. Qi, and J. Yang, “Unpaired image-to-sketch transla-
tion network for sketch synthesis,” in 2019 IEEE Visual Communications
and Image Processing (VCIP), 2019, pp. 1-4.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” IJCV, 2015.

X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang, “Mo-
ment matching for multi-source domain adaptation,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2019.

D. Li, Y. Yang, Y.-Z. Song, and T. Hospedales, “Deeper, broader and
artier domain generalization,” in ICCV, 2017.

M. Eitz, J. Hays, and M. Alexa, “How do humans sketch objects?” ACM
Trans. on Graphics, 2012.

R. G. Schneider and T. Tuytelaars, “Sketch classification and
classification-driven analysis using fisher vectors,” ACM TOG, vol. 33,
no. 6, pp. 1-9, 2014.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
1JCV, vol. 60, no. 2, pp. 91-110, Nov. 2004.

F. Perronnin and C. R. Dance, “Fisher kernels on visual vocabularies
for image categorization,” in CVPR, Jun. 2007.

Q. Yu, Y. Yang, Y.-Z. Song, T. Xiang, and T. M. Hospedales, “Sketch-
a-Net that beats humans,” in BMVC, 2015.

Q. Jia, X. Fan, M. Yu, Y. Liu, D. Wang, and L. J. Latecki, “Coupling
deep textural and shape features for sketch recognition,” in ACM
Multimedia, 2020.

(30]
[31]
[32]

(33]

[34]
[35]
[36]
[37]

(38]

(391
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]
[56]

[571

P. Xu, C. K. Joshi, and X. Bresson, “Multi-graph transformer for free-
hand sketch recognition,” in arXiv, 2019.

L. Li, C. Zou, Y. Zheng, Q. Su, H. Fu, and C.-L. Tai, “Sketch-r2cnn:
An attentive network for vector sketch recognition,” in arXiv, 2018.

K. Zhang, W. Luo, L. Ma, and H. Li, “Cousin network guided sketch
recognition via latent attribute warehouse,” in AAAZ 2019.

A. Lamb, S. Ozair, V. Verma, and D. Ha, “Sketchtransfer: A challenging
new task for exploring detail-invariance and the abstractions learned by
deep networks,” in WACV, 2020.

R. Hu and J. Collomosse, “A performance evaluation of gradient field
hog descriptor for sketch based image retrieval,” CVIU, 2013.

J. M. Saavedra, J. M. Barrios, and S. Orand, “Sketch based image
retrieval using learned keyshapes (LKS),” in BMVC, 2015.

S. Parui and A. Mittal, “Similarity-invariant sketch-based image retrieval
in large databases,” in ECCV, 2014.

G. Tolias and O. Chum, “Asymmetric feature maps with application to
sketch based retrieval,” in CVPR, 2017.

T. Bui, L. Ribeiro, M. Ponti, and J. Collomosse, “Generalisation and
sharing in triplet convnets for sketch based visual search,” in arXiv,
2016.

O. Seddati, S. Dupont, and S. Mahmoudi, “Quadruplet networks for
sketch-based image retrieval,” in ICMR, 2017.

Q. Yu, F. Lie, Y.-Z. Song, T. Xian, T. Hospedales, and C. C. Loy, “Sketch
me that shoe,” in CVPR, 2016.

S. Dey, P. Riba, A. Dutta, J. Llados, and Y.-Z. Song, “Doodle to search:
Practical zero-shot sketch-based image retrieval,” in CVPR, 2019.

S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, “Analysis of rep-
resentations for domain adaptation,” in Advances in Neural Information
Processing Systems. MIT Press, 2007.

K. Muandet, D. Balduzzi, and B. Scholkopf, “Domain generalization
via invariant feature representation,” in /CML, 2013.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of
neural networks,” JMLR, vol. 17, no. 1, pp. 2096-2030, 2016.

Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao, “Deep
domain generalization via conditional invariant adversarial networks,” in
Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

D. Kim, S. Park, J. Kim, and J. Lee, “Selfreg: Self-supervised contrastive
regularization for domain generalization,” 2021.

R. Volpi, H. Namkoong, O. Sener, J. Duchi, V. Murino, and S. Savarese,
“Generalizing to unseen domains via adversarial data augmentation,” in
Proceedings of the 32nd International Conference on Neural Information
Processing Systems, ser. NIPS’18, 2018, p. 5339-5349.

X. Yue, Y. Zhang, S. Zhao, A. Sangiovanni-Vincentelli, K. Keutzer, and
B. Gong, “Domain randomization and pyramid consistency: Simulation-
to-real generalization without accessing target domain data,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

F. Qiao, L. Zhao, and X. Peng, “Learning to learn single domain
generalization,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 1255612 565.

M. Narayanan, V. Rajendran, and B. Kimia, “Shape-biased domain
generalization via shock graph embeddings,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.
Z. Wang, Y. Luo, R. Qiu, Z. Huang, and M. Baktashmotlagh, “Learn-
ing to diversify for single domain generalization,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2021, pp. 834-843.

K. Zhou, Y. Yang, T. Hospedales, and T. Xiang, “Learning to generate
novel domains for domain generalization,” in 16th European Conference
on Computer Vision, ECCV 2020, 2020.

M. Mancini, Z. Akata, E. Ricci, and B. Caputo, “Towards recognizing
unseen categories in unseen domains,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2020.

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in ICML, 2018.

F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi,
“Domain generalization by solving jigsaw puzzles,” in CVPR, 2019.
K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” Journal of Big data, vol. 3, no. 1, p. 9, 2016.

G. Csurka, “Domain adaptation for visual applications: A comprehensive
survey,” in arXiv, 2017.



[58]

[591

[60]
[61]

[62]

[63]

[64]

[65]
[66]
[67]
[68]

[69]

[70]

C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based classi-
fication for zero-shot visual object categorization,” PAMI, vol. 36, no. 3,
pp. 453-465, 2013.

P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and
hierarchical image segmentation,” PAMI, vol. 33, no. 5, pp. 898-916,
May 2011.

J. Canny, “A computational approach to edge detection,” PAMI, 1986.

N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp.
62-66, 1979.

Y. Jui-Cheng, C. Fu-Juay, and C. Shyang, “A new criterion for auto-
matic multilevel thresholding,” IEEE Transactions on Image Processing,
vol. 4, no. 3, pp. 370-378, 1995.

C. H. Li and C. Lee, “Minimum cross entropy thresholding,” Pattern
Recognition, vol. 26, no. 4, pp. 617 — 625, 1993.

R. TW and C. S, “Picture thresholding using an iterative selection
method,” Transactions on Systems, Man, and Cybernetics, vol. 8, no. §,
pp. 630-632, 1978.

C. A. Glasbey, “An analysis of histogram-based thresholding algo-
rithms,” CVGIP, vol. 55, no. 6, pp. 532 — 537, 1993.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

L. N. Smith, “Cyclical learning rates for training neural networks,” in
WACYV, 2017.

C. Fellbaum, WordNet: An Electronic Lexical Database.  Bradford
Books, 1998.

H. Nam, H. Lee, J. Park, W. Yoon, and D. Yoo, “Reducing domain gap
by reducing style bias,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021.

M. Fang, G. Yue, and Q. Yu, “The study on an application of otsu method
in canny operator,” Proceedings of the 2009 International Symposium
on Information Processing, 2009.



	I Introduction
	II Related work
	III Task formulation
	IV Method
	IV-A Deep network classifier
	IV-B Edge Augmentation
	IV-C Testing
	IV-D Overview
	IV-E Implementation details

	V The Im4Sketch dataset
	VI Experiments
	VI-A Ablation study on Sketchy
	VI-B Single-source domain generalization comparison on PACS
	VI-C Training on Im4Sketch and testing on all

	VII Conclusions
	References

