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Abstract—Semantic image interpretation can vastly benefit
from approaches that combine sub-symbolic distributed rep-
resentation learning with the capability to reason at a higher
level of abstraction. Logic Tensor Networks (LTNs) are a class
of neuro-symbolic systems based on a differentiable, first-order
logic grounded into a deep neural network. LTNs replace the
classical concept of training set with a knowledge base of fuzzy
logical axioms. By defining a set of differentiable operators to
approximate the role of connectives, predicates, functions and
quantifiers, a loss function is automatically specified so that LTNs
can learn to satisfy the knowledge base. We focus here on the
subsumption or isOfClass predicate, which is fundamental
to encode most semantic image interpretation tasks. Unlike
conventional LTNs, which rely on a separate predicate for each
class (e.g., dog, cat), each with its own set of learnable weights,
we propose a common isOfClass predicate, whose level of
truth is a function of the distance between an object embedding
and the corresponding class prototype. The PROTOtypical Logic
Tensor Networks (PROTO-LTN) extend the current formulation
by grounding abstract concepts as parametrized class proto-
types in a high-dimensional embedding space, while reducing
the number of parameters required to ground the knowledge
base. We show how this architecture can be effectively trained
in the few and zero-shot learning scenarios. Experiments on
Generalized Zero Shot Learning benchmarks validate the pro-
posed implementation as a competitive alternative to traditional
embedding-based approaches. The proposed formulation opens
up new opportunities in zero shot learning settings, as the LTN
formalism allows to integrate background knowledge in the form
of logical axioms to compensate for the lack of labelled examples.
PROTO-LTN was implemented in Tensorflow and is available at
https://github.com/FrancescoManigrass/PROTO-LTN.git

I. INTRODUCTION

Despite their impressive performance when trained on large-
scale, supervised datasets, deep neural networks have still
difficulties generalizing to unseen categories. On the contrary,
humans can leverage logical reasoning to make guesses about
new circumstances, and are able to infer knowledge from
few to zero examples. Recent efforts towards Neural-Symbolic
(NeSy) integration [1], [2] allow to assimilate symbolic rep-
resentation and reasoning into deep architectures: this entails
that background knowledge, in the form of logical axioms,
can be exploited during training, opening up new scenarios for
settings in which labelled examples are scarce or noisy [3], [4].
Specifically, we focus here on Logic Tensor Networks (LTNs)
[5], a NeSy architecture that replaces the classical concept of
a training set with a Knowledge Base K of logical axioms,
ultimately interpreted in a fuzzy way, and formulates the
learning objective as maximizing the satisfiability of K. While

this framework has been applied to multi-label classification
problems [5], [6] and object detection [4], its application
to few- and zero-shot image classification has not yet been
investigated.

In this work, we explore this task from a NeSy perspective,
and propose to integrate ideas and concepts from the few-
shot learning (FSL) and zero-shot learning (ZSL) domains,
namely the Prototypical Networks (PNs) [7] framework, within
the LTN formulation. PNs define class prototypes in a high-
dimensional embedding space, so that incoming examples are
assigned to the class of their nearest prototype according
to some distance measure. In the LTN framework, this is
achieved by representing the isOfClass relationship as a
function of the distance between a class prototype and an
object instance, thus obtaining the Prototypical Logic Tensor
Network (PROTO-LTN) architecture. As the embedding space
is the focus of the learning procedure, such prototypes may
be also defined for classes that are not seen at training time.

The present study thus formulates a theoretical framework
that achieves competitive results with respect to standard
embedding-based ZSL architectures such as DEM [8], yet
offering higher degrees of flexibility. Although our analysis
shows that their basic settings the two formulations are equiv-
alent, PROTO-LTNs have greater potential in both standard
and transductive ZSL. They are able to integrate in the training
process prior knowledge and logical constraints from an exter-
nal knowledge base, including information related to unseen
classes [9]. Hence, a NeSy formulation allows to constraint
the embedding space via symbolic priors.

The proposed framework has also potential advantages over
traditional LTNs, even outside of the FSL and ZSL settings,
since classes are represented as parametrized prototypes rather
than a discrete label space [5], [4]. First, representing higher-
level concepts as distributed vectorized representations allows
to naturally exploit the notion of distance for highlighting
relationships between symbols, with semantically related sym-
bols having similar representations [10]. Second, prototypes
allow to ground abstract concepts in a vectorized form that
can be more easily manipulated: as an example, it would be
easier to define a suitable grounding for predicates that directly
operate on the abstract classes, as well as their instances.
Third, prototypes are more interpretable than simple labels,
as their incorporation into the embedding space can be easily
visualized by employing dimensionality reduction methods,
such as t-SNE [11].
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The rest of the paper is organized as follows. In Section
II, we place the present work in the context of the related
literature, and provide a background on LTNs. In Section III,
we describe a simple theoretical scheme to assimilate PNs
into a LTN for classification purposes (PROTO-LTN), both in
the FSL and ZSL scenarios. Then, in Sections IV and V, we
examine the behavior of the model in the Generalized Zero-
Shot-Learning (GZSL) task on common benchmark datasets.
Finally, in Section VI, we discuss conclusions and future
works.

II. RELATED WORK

A. Neural-symbolic AI in Semantic Image Interpretation

Research on how to combine connectionist and symbolic
approaches has flourished in the past few years [5], [12],
with several applications in semantic image interpretation
and visual query answering [5], [4], [13], [3], [14], [15],
[16]. Among the plethora of compositional patterns that have
been proposed [17], [12], the present work follows two main
principles: knowledge representation (in the form of first order
logic) is embedded into a neural network, which in turn
allows to constrain the search space by leveraging explicit
(and human-interpretable) domain knowledge as a symbolic
prior. This latter property is extremely useful in ZSL, in which
some external source of information is exploited to offer an
abstract description of the classes in lieu of providing training
examples. On the other hand, compared to approaches based
on Inductive Logic Programming (such as [14]), in which
perception and reasoning are performed by separate modules,
LTNs provide tighter integration between the two subsystems.

B. Logic Tensor Networks

LTNs have proven effective in higher-level image inter-
pretation tasks, such as object detection and scene graph
construction [13], [5]. Donadello et al. applied them for scene
relationship detection in a zero shot setting, showing how prior
knowledge can compensate for the lack of supervision [3].

In the LTN framework, the term grounding denotes the
interpretation of a First Order Language into a subset of the
Rn domain [5]. It defines a collection of terms (objects) and
formulas described in a Knowledge base K. For instance, to
express the friendship between two terms defined as Alice and
Bob, we can use the predicate friend_of:

φ1 = friend_of(Alice,Bob) ∧ friend_of(Bob,Alice)

At the same time, we can specify formulas defining general
properties, such as the symmetric nature of the friendship
relationship within a specific domain:

φ2 = ∀x, y (friend_of(x, y)⇒ friend_of(y, x))

Adopting Real Logic, both formulas and terms are grounded
(interpreted) into a scalar value in the [0,1] interval. Specifying
the grounding function G, which maps terms and formulas into
such real-valued features, generates a complete definition of a
theory. Given a set of terms, aggregate formulas can be defined

by approximating unary, binary or quantifiers connectives in
fuzzy logic using suitable differential operators.

In semantic image interpretation tasks, terms (objects) are
typically grounded by features computed by a pre-trained
convolutional neural network; it is also possible to jointly
train the convolutional backbone and the LTNs in an end-to-
end fashion [4]. Predicates symbols p ∈ P are grounded by
a function G (D(p))→ [0, 1]. A typical predicate in semantic
image interpretation is the isOfClass one, which represents
the probability that a given object belongs to class c.

In conventional LTNs [5], [13], [4], predicates are typically
defined as the generalization of the neural tensor network:

G (P) (v) = σ
(
uT
P tanh

(
vTW

[1:k]
P v + VPv + bp

))
(1)

where σ is the sigmoid function, W [1 : k] ∈ Rk×mn×mn,
Vp ∈ Rk×mn, up ∈ Rk, and bp ∈ R are learnable tensors
of parameters. For multi-class problems, the sigmoid function
could be substituted by a softmax layer to enforce mutual
exclusivity [5].

This grounding requires to add an additional predicate for
each class (e.g., isDog, isPerson, etc.), which is embedded
into a tensor network with separate weights. Additionally,
since class symbols are not grounded, predicates can only
be defined for object instances, which rapidly leads to very
large knowledge bases when background logical axioms need
to be imposed. On the contrary, our proposed grounding does
not require additional model parameters, or in any case limits
them to a small set which is shared among all isOfClass
predicates. Furthermore, it encodes abstract classes as para-
metric objects that live in the same embedding space as their
instances, and can be used to establish relationships with other
objects (e.g., macro-category relationships). This formulation
thus supports more efficient and compact representations.

The best satisfability problem, which is the optimization
problem underlying LTNs, consists in determining the values
of Θ∗ that maximize the truth values of the conjunction of all
formulas φ ∈ K:

Θ∗ = argmaxΘĜθ

 ∧
φ∈K

φ

− λ||Θ||22 (2)

where λ||Θ||22 is a convenient regularization term.

C. Zero-shot learning

In zero-shot learning, a learner must be able to recognize ob-
jects from test classes, not seen during training, by leveraging
some sort of description, most commonly a vector of semantic
attributes [18]. In this paper, we target the Generalized zero-
shot learning (GZSL) scenario, in which both seen and unseen
classes appear at test time [18]. State-of-the-art techniques for
ZSL classification typically fall within two categories [18],
[8]: embedding-based and generative-based.

Embedding-based models [8], [19], [20], [21] compare
semantic characteristics (e.g., attributes) and visual character-
istics (usually taken from a pre-trained convolutional neural
network) by (learning a) mapping to a common embedding



space. Mapping the semantic space to the more compact visual
feature space, rather than the opposite, alleviates the so-called
hubness problem and facilitates separation between classes [8].
Standard embedding-based models are completely agnostic to
any information about the test set: neither examples (even
unlabelled), nor class attributes are assumed to be available
at training time. Although based on a NeSy formulation,
the proposed PROTO-LTN approach can be regarded as an
embedding-based technique, as semantic concepts and visual
features are mapped onto a common embedding space.

Embedding-based models tend to be naturally biased to-
wards seen classes. To alleviate this problem, generative
models were proposed with the purpose of learning a condi-
tioned probability distribution for each class, and thus generate
artificial examples of unseen classes [22], [23], [24]. A con-
ventional classifier is trained by utilizing both the true and the
generated examples. Although impressive results, especially
in a GZSL context, can be achieved by taking advantage of
this machinery, reduced flexibility with respect to embedding
methods is entailed, as unseen classes need to be defined, so
that a number of corresponding examples can be artificially
synthesized. PROTO-LTNs are thus best compared with other
embedding-based models, although nothing prevents them
from being trained on, or combined with, generative methods.

III. PROTOTYPICAL LOGIC TENSOR NETWORKS

First, we introduce the basic notations related to prototypical
networks in the FSL (Section III-A) and ZSL (Section III-B)
settings [7]. Then, in Sections III-C and III-D, we build
on these concepts and show how the PROTO-LTN training
cycle is constructed by substituting the original model with
a grounded K, and the original loss with a best satisfiability
problem.

A. Prototypical Networks: the FSL setting
A N -way-K-shot FSL scenario is supposed, in which a

classifier is asked to discriminate the right class among N
choices, while having the chance to observe K examples per
class [25], [26], [27]. More specifically, the labelled examples
are referred to as the support examples, whereas the unlabeled
ones as the query examples.

The underlying assumption that it exists an embedding
space in which elements of different classes are well-scattered,
and that it can be mathematically translated into an embedding
function fθ whose parameter θ must be inferred, acting as a
mapping

fθ : RD → RM . (3)

In Eq. 3, D and M are, respectively, the dimensions of the
input space and of the embedding space. Thus, for an example
x, fθ(x) is the corresponding embedding.

In FSL, a prototype for class n is obtained as the mean
embedding of the K support examples of class n at train time:

pn =
1

K

∑
(xS̃ ,yS̃)∈S̃

s.t. yS̃=n

fθ(x
S̃). (4)

Class prototypes thus need to live in the embedding space, as
they embody average features shared by elements of the class
they represent. At training time, θ is optimized so that the
distance between each prototype and the elements of its class is
minimized, while the distance between different prototypes is
maximized. Finally, classification at testing time is performed
by assigning each query sample to its nearest prototype.

At testing time, a support set is at disposal of NS labeled
examples S = {(xS1 , yS1 ), ..., (xSNS , y

S
NS

)}, where each xSi ∈
RD is the feature vector of an example, and ySi ∈ C ⊂ N is
the corresponding label. Assuming a N -way-K-shot scenario,
exactly K support examples are available for each of the N
classes. A query set Q = {xQ1 , ..., x

Q
NQ
} of NQ unlabeled

examples is thus supplied, and the task is to correctly assort
the examples into their classes. The elements from the query
set Q belong to the same domain as those from the support
set S.

At training time, it could be impossible to know which
classes will the testing scenario yield. In other words, a support
set S is not accessible in advance. To cope with that, a training
set T = {(xT1 , yT1 ), ..., (xTNT , y

T
NT

)} is chosen that reflects the
best prior information possessed about the testing scenario,
with labels yTi ∈ CT ⊂ N and |CT |= NT classes which can
coincide or outnumber them (NT ≥ N ). In other words, it is
possible that C ∩ CT 6= ∅, but it cannot be said in advance.
Then, fake support and query sets S̃ ⊂ T and Q̃ ⊂ T are
extracted to mimic the testing scenario and instruct the model
to learn accordingly.

B. Prototypical networks: the ZSL setting

In ZSL, one does not dispose of labelled examples for
all classes. Instead, it is assumed that N abstract vectors
denoted as {a(1), a(2), ..., a(N)}, with a(n) ∈ RA, encode the
characteristics of all N classes.

As in FSL, at training time one takes advantage of a set T =
{(xT1 , yT1 ), ..., (xTNT , y

T
NT

)} of labelled examples from classes
yTi ∈ CT ⊂ N, where it is preferably |CT |= NT ≥ N = |C|.
The training cycle remains unchanged in the ZSL case, but
class prototypes are defined differently:
• the embedding for a query example xQ is still obtained

as fθ(xQ), where fθ : RD → RM ;
• the prototype for class n ∈ C is extracted as pn =
gθ(a

(n)) via a separate embedding function gθ : RA →
RM , which maps the semantic attribute space to the
common embedding space.

C. PROTO-LTN: the FSL scenario

The overall architecture of PROTO-LTN, when tailored to
the ZSL scenario, is illustrated in Fig. 1. The input image
embeddings are extracted from a convolutional neural network,
while attribute vectors are mapped into the embedding domain
through an embedding function. In this section, details about
the definition of the grounding of the constant, variables,
functions and predicates are given. Then, the Knowledge Base
K which encodes our learning problem is defined.
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Fig. 1. Proto-LTN architecture for ZSL classification. The architecture is composed of a convolutional features extractor and an attribute encoder. The two
branches allow to map semantic and visual features in a common embedding space. The isOfClass predicate aims to minimize the distance between
instances (solid line circles) and class prototypes (dashed line circles) based on affirmative and negative formulas embedded in the knowledge base K. At
train time, the loss function maximizes the satisfiability (truth value) of all formulas in K.

1) Groundings terms: Within a single training episode, a
batch of training samples is selected in the form of fake
support S̃ and query Q̃ sets. Groundings for variables and
their domain D (not learnable) can be defined as

G(q) = 〈xQ̃1 , ..., x
Q̃
NQ̃
〉 , (5)

G(ql) = 〈yQ̃1 , ..., y
Q̃
NQ̃
〉 , (6)

G(qe) = G(getEmbedding(q)) (7)

= 〈fθ(xQ̃1 ), ..., fθ(x
Q̃
NQ̃

)〉 , (8)

G(s) = 〈xS̃1 , ..., xS̃NS 〉 , (9)

G(sl) = 〈yS̃1 , ..., yS̃NS 〉 , (10)
G(p), G(pl) = G(getPrototypes(s, sl)) (11)

= Πθ(G(s, sl)) (12)

= Πθ(〈(xS̃1 , yS̃1 ), ..., (xS̃NS , y
S̃
NS

)〉), (13)

where q are the query examples (D(q) = features), ql
are the corresponding labels (D(ql) = labels), and qe are
their embeddings (D(qe) = embeddings). Conversely, s are
the examples in the support set (D(s) = features) and
sl their labels. Finally, p and pl are the prototypes and their
labels, respectively, with D(p) = embeddings and D(pl) =
labels.

2) Grounding functions and predicates: PROTO-
LTNs are based on two functions (getEmbedding
and getPrototypes) and the isOfClass predicate.
getEmbedding is a conventional LTN function which

maps image features into the embedding space, hence
Din(getEmbedding) = features to
Dout(getEmbedding) = embeddings.

The getPrototypes function, with
Din(getPrototypes) = features× labels and
Dout(getPrototypes) = embeddings × labels,
returns labelled prototypes given a support set of labelled
examples. Each prototype is in fact a function of all support
points belonging to the same class, as defined in Eq. 4. It
is defined as a generalized LTN function, which accepts as

input multiple instantiations of variables (and hence multiple
domains). A more formal definition is given in Appendix A.

Groundings for both functions are defined as:

G(getEmbedding) = fθ, (14)
G(getPrototypes) = Πθ, (15)

where fθ : RD → RM defines the embedding function,
whereas

Πθ :

∞⋃
l=1

"lm=1RD × N→
∞⋃
l=1

"lm=1RM × N (16)

accepts as input a list of NS labelled support examples, i.e.,
an element of (RD × N)NS , and returns a list of labelled
prototypes for all the Ñ classes seen in the support set, or
an element of (RM × N)Ñ . Additional details are given in
Appendix A.

The isOfClass predicate for class n ∈ C is grounded as:

G(isOfClass) = e−αd(·,·)2 , (17)

where α is a hyperparameter and d is a measure of distance.
G(isOfClass) : RM × RM → [0, 1]; G(isOfClass)takes
the value of 1 when the distance from the class prototype
d(·, ·) is 0. In our formulation the Euclidean distance squared
is adopted, as in DEM [8]. Alternatively, parametric similarity
functions could be used:

G′′(isOfClass) = σθ(Concatenate[·, ·]). (18)

where σθ could be a MLP with output sigmoid activation. This
formulation is closer to that of Relation Networks [19].

3) Knowledge Base: K represents our knowledge about the
formulated problem and is updated at each training episode
based on the current fake support set. K = {φaff, φneg}
contains two aggregations of formulas which specify that each
query item is a positive example for its class, and a negative
one for all the others:

(19)φaff = ∀Diag(qe, ql)(∀Diag(p, pl)

: ql = pl(isOfClass(qe, p))),



(20)φneg = ∀Diag(qe, ql) (∀Diag(p, pl)

: ql 6= pl (¬isOfClass(qe, p))).

We have exploited both Diagonal Quantification and Guarded
Quantifiers, whose formal definition can be found in [5].

PROTO-LTN is trained by maximizing the satisfiability

Lep = 1−

 ∧
φ∈K

φ

 = −G(φaff)− wn G(φneg), (21)

where the weight wn reflects the expectation that negations
play a less discriminative role than affirmation in classification.
In our experiments, we set wn = 0 and consider only φaff,
leaving exploration of this hyper-parameter to future work.

By introducing an aggregation function [5], [11], we obtain

(22)Lep =

(
− log(G(φaff))

1
pagg ) + wn(1− G(φn))

1
pagg

)pagg

where G(φaff) is implemented through the generalized prod-
uct p-mean operator and G(φneg) with the generalized mean
operator ApM :

ApPR(τ1, ..., τn) =

( n∏
i=1

τi

) 1
p∀
,ApM (τ1, ..., τn) =

(
1

n

n∑
i=1

τpi

) 1
p∀
.

It should be noticed that the choice of pagg does not need
to coincide with that of p∀ for quantification, and both hyper-
parameters need to be tuned experimentally.

When optimizing a positive quantity, a common practice
consists in optimizing its logarithm: the product between
similarities takes a more desirable form when ApPR is used
as the aggregation operator for ∀. Unfortunately, one does not
obtain an equally appealing expression for φneg.

If a squared Euclidean distance is used as similarity measure
and the negation weight wn is set to 0, one obtains the same
formulation of the loss function of DEM [8], up to a scaling
constant:

Lep = − log

(
e

− α
p∀ (

∑
n∈C̃

∑
(xQ̃,yQ̃)∈Q̃

s.t. yQ̃ 6=n

d(fθ(xQ̃),pn)2))
=

α

p∀

(∑
n∈C̃

∑
(xQ̃,yQ̃)∈Q̃

s.t. yQ̃ 6=n

d(fθ(x
Q̃), pn)2

)
. (23)

D. PROTO-LTN: the GZSL scenario

The GZSL setting is analogous to the FSL setting, with
the main difference lying in how prototypes are defined and
calculated. No generalized LTN functions are needed for the
GZSL case. Computations for a training epoch are reported in
Algorithm 1.

Since only one semantic vector a(n) is given for each class
n, there is a 1-to-1 correspondence between elements of the
support set and prototypes. The latter are embodied by the
semantic embedding function gθ : RA → RD obtaining as the

Algorithm 1 PROTO-LTN - GZSL Training procedure
function TRAIN

Input ← q Training Images
Input ← ql Training label
Input ← a Semantic attribute set
Input ← al Semantic attribute label
for i in NTrainingSteps do

qei ← getEmbedding(q)
ai,ali ← getAttributes(a)
pi, pli ← getPrototypes(ai, ali)
φaff = ∀Diag(qei , qli)(∀Diag(pi, pli) :

qli = pli(isOfClass(qei , pi)
φn = ∀Diag(qi, qli) (∀Diag(pi, pli) :

qli 6= pli (¬isOfClass(qei , pi)))(
( log((G(φaff))

1
pagg ))) + wn(1− G(φn))

1
pagg

)pagg

computeGradient(Lep)
updateGradient

end for
end function
function TEST

Input ← q Test Images
Input ← a Semantic attribute set
qe ← getEmbedding(q)
a,al ← getAttributes(a)
p, pl ← getPrototypes(a,al)
for i in len(qe) do

for j in len(p) do
predictioni ← isOfClass(qei , pj)

end for
end for

end function

feature space the common embedding space. We just define
getPrototypes as a conventional LTN function, whose
grounding is G(getPrototypes) = gθ. Conversely, nothing
changes for the query map getEmbedding.

IV. EXPERIMENTAL SETTINGS

Experiments were conducted in both ZSL and GZSL set-
tings on the Awa2 (Animals with Attributes) [18], CUB
[28], aPY (Attribute Pascal and Yahoo)[29] and SUN (Scene
Understanding) [30] benchmarks. For all datasets, image en-
codings, attributes and splits were collected from the original
benchmark [18].

The entire architecture is composed of two different blocks:
the image visual encoder and the semantic encoder. The
embedding function fθ is composed by a ResNet101 [33]
embedding model, pretrained on ImageNet [34] and kept
frozen, which converts an image I into a vector x ∈ RM ,
where M = 2048. This setting is maintained in all experiments
with all datasets.

Semantic vectors are encoded in the embedding space via
a function gθ, which consists of two fully connected layers
(FC) with ReLU activation function, initialized by a truncated
normal distribution function. We set the hyper-parameter ag-
gregations to pagg = 1 and p∀ = 2, also taking into account
preliminary experiments on Awa2 [18].

The framework was implemented in Tensorflow based on
the LTN package [5], [35]. Experiments were conducted on



TABLE I
FOR PROTO-LTN, WE SHOW MEAN ± STANDARD DEVIATION AND MAXIMUM (IN PARENTHESIS) PERFORMANCE. TOP1ZSL (T1),

TOP1GZSL UNSEEN (U), TOP1GZSL SEEN (S) AND HGZSL (H) ARE ALWAYS OBTAINED ON THE PROPOSED SPLIT (PS ) OF AWA2, CUB, APY AND SUN
CLASSES, AS DESCRIBED IN [18]. † ASSUMES A TRANSDUCTIVE ZSL SETTING. BEST PERFORMANCES ARE REPORTED IN BOLD.

Method Awa2 CUB APY SUN
T1 U S H T1 U S H T1 U S H T1 U S H

SYNC (2016) [31] 46.6 10.0 90.5 18.0 55.6 11.5 70.9 19.8 - - - - 56.3 7.9 43.3 13.4
Relation Net (2017)[19] 64.2 30.0 93.4 45.3 55.6 38.1 61.1 47 - - - - - - - -
PrEN† (2019) [32] 74.1 32.4 88.6 47.4 66.4 35.2 55.8 43.1 - - - - 62.9 35.4 27.2 30.8
VSE (2019) [20] 84.4 45.6 88.7 60.2 71.9 39.5 68.9 50.2 65.4 43.6 78.7 56.2 - - - -
DEM (2017) [8] 67.1 30.5 86.4 45.1 51.7 19.6 57.9 29.2 35.0 11.1 75.1 19.4 61.9 20.5 34.3 25.6
PROTO-LTN 67.6 32.0 83.7 46.2 48.8 20.8 54.3 30.0 35.0 17.1 66.2 27.21 60.4 20.4 36.8 26.2

±1.1 ±1.3 ±0.3 ±1.3 ±1.2 ±2.6 ±1.1 ±3.0 ±3.1 ±2.0 ±5.1 ±2.9 ±2.5 ±1.0 ±4.4 ±1.9
(70.8) (34.8) (84.3) (49.1) (50.3) (23.4) (55.7) (33.0) (38.6) (19.4) (70.7) (30.0) (62.1) (22.15) (39.9) (28.0)

a workstation equipped with an Intel® Core™ i7-10700K
CPU and a RTX2080 TI GPU. All networks were trained for
30 epochs with Adam optimizer and batch size 64. Hyper-
parameters (learning rate, α and regularization term λ) were
optimized separately for each dataset. Details are reported in
Appendix B. Standard performance metrics for GZSL were
used as defined in [18]. Mean and standard deviation were
calculated by repeating each experiment three times.

V. RESULTS

PROTO-LTN results are reported in Table I, along with
those for comparable embedding-based methods. Fig. 2 illus-
trates the embedding space with highlighted class prototypes.

As expected based on our analytical analysis, experimental
performance is competitive with respect to most embedding-
based techniques, in particular DEM [8] and Relation Net
[19], which rely on similar assumptions and the same input
as the current PROTO-LTN implementation. As shown in
Section III-C, under certain conditions the PROTO-LTN loss
is equivalent to that of DEM, up to a scaling constant, albeit
with different regularization terms. We outperform DEM on
unseen classes for all experimental benchmarks: this entails
that the proposed formulation is a strong basis for a novel,
NeSy approach to the GZSL task.

Our method is outperformed by VSE, which relies on a
different strategy to compute visual feature embeddings. A
semantic loss allows to align the embedding space with part-
feature concepts provided by a semantic oracle. Since the latter
relies on an external knowledge base, it contains concepts
beyond the available semantic vector {a(1), a(2), ..., a(N)}.
This is especially advantageous in benchmarks like aPY,
in which attributes are noisy and not visually informative
[20]. This is a limitation of our current experiments, but
not intrinsic to PROTO-LTNs. Indeed, K can be extended to
include part-of relationships between concepts, and previous
works have shown how these relationships can be leveraged
to impose symbolic priors during learning, e.g., in object
detection [4], [13]. However, the LTN formalism needs to be
further extended to align part-based concepts with their visual
groundings in an unsupervised fashion.
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Fig. 2. t-SNE visualization of class prototypes for the Awa2 dataset.

VI. CONCLUSIONS AND FUTURE WORKS

We introduced PROTO-LTN, a novel Neuro-Symbolic ar-
chitecture which extends the classical formulation of LTN
borrowing from embeddings-based techniques. Following the
strategy of PNs, we entirely focus on learning embedding
functions (such as fθ and gθ), implying that class prototypes
are obtained ex-post, based on a support set. These methods
are robust to noise, an essential property in FSL, and provide a
scheme to embed both examples (images) and class prototypes
in the same metric space. This is a key property in the context
of LTNs, because it enables different levels of abstraction: one
can either state something about a particular example, or about
an entire class, as prototypes can be viewed as parametrized
labels for classes. We have shown the viability of our approach
in GZSL and leave to future work the extension to other
settings (e,g., few-shot or semi-supervised learning).

While our experimental results are encouraging, we argue
that the strength of our formulation lies in its generality, and
the full potential of PROTO-LTN is yet to be realized. Future
work can aim at two complementary directions. First, alter-
native formulations of the isOfClass relationship could be
explored, by changing the distance metric and/or the prototype
encoding. Mapping class prototypes back to the input space,



as done for instance in [36], could improve explainability.
Second, the knowledge K could be extended to leverage

prior information, e.g., from external knowledge bases, to
improve generalization to unseen classes. Experiments should
include both inductive and transductive settings: the assump-
tion that information about attributes and relationships of
unseen classes is available at training or test time (e.g.,
from WordNet) is less restrictive than assuming that actual
examples, albeit unlabelled, are available.
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APPENDIX

A. Function grounding in PROTO-LTNs

PROTO-LTNs are based on two functions (embeddingFunction = fθ and getPrototype, respectively) and the
isOfClass predicate.

The function getPrototypes, with Din(getPrototypes) = features× labels and
Dout(getPrototypes) = embeddings× labels, returns labelled prototypes given a support set of labelled examples.
In this way each prototype depends on the support set of the same class, as defined in Eq. 4. As a consequence, we propose
a novel definition for generalized LTN functions.

To understand why a generalized function is needed, recall that LTN variables are grounded onto the set of their instantiations.
Assume that s is a variable associated to support points, or:

G(s) = 〈xS̃1 , ..., xS̃NS 〉 .

If h is a LTN function that is compatible with variable s, or Din(f) = D(s) = RD, the grounding for h(s) is

G(h(s)) = 〈G(h)(xS̃1 ), ...,G(h)(xS̃NS )〉 .

This means that G(h) only takes as input a single element of RD. Unfortunately, a conventional LTN function such as h cannot
help us with prototypes, as their definition for a class n ∈ C̃, given in Eq. 4, is:

pn =
1

K

∑
(xS̃ ,yS̃)∈S̃

s.t. yS̃=n

fθ(x
S̃) = pn(xS̃1 , ..., x

S̃
NS ).

Every prototype is in fact a function of all support points belonging to the same class. As a consequence, we propose a novel
definition for generalized LTN functions.

Definition 1: A generalized LTN function F ∈ Fgen is a function that lets multiple instantiations of variables be fed at once
to G(F ), and returns a variable. The grounding for a generalized function F ∈ Fgen is a function with flexible domain and
range:

G(F ) :

∞⋃
l=1

"lm=1G(Din(F ))→
∞⋃
l=1

"lm=1G(Dout(F )).

If a generalized function F ∈ Fgen and a variable x ∈ X have compatible domains, or Din(F ) = D(x), the grounding for
F (x) is defined by

G(F (x)) = G(F )(G(x)).

Grounding for both functions is defined as

G(embeddingFunction) = fθ, (24)
G(getPrototypes) = Πθ, (25)

where fθ : RD → RM is the same embedding function as in the FSL setting, while

Πθ :

∞⋃
l=1

"lm=1RD × N→
∞⋃
l=1

"lm=1RM × N

We structure Πθ to be computationally easy to implement (e.g., in a computational graph), and to generalize to a setting in
which NS and Ñ are not fixed, or the N -way-K-shot scenario is not perfect. More specifically, in the following is how Πθ

works.
1) Take as input:

a) a support set S̃ = {(xS̃1 , yS̃1 ), ..., (xS̃NS , y
S̃
NS

)} ∈ (RD × N)NS of labelled examples, with xS̃i ∈ RD and yS̃i ∈ N;
b) the parameter θ or, for the sake of clarity, the embedding function fθ : RD → RM .

2) Extract the classes contained in S̃ by applying:

p(labels) = Unique(yS̃),

where the “Unique” function retrieves the unique elements of a vector. We call this variable p(labels) because it will be
associated to prototype labels. Define Ñ as the number of elements in p(labels).



3) Define a sparse “labels” matrix L ∈ {0, 1}Ñ×NS whose i, j-th entry is equal to 1 if support item i is of class p(labels)
j ,

0 otherwise.
4) Compute the prototypes tensor p ∈ RÑ×M as

p = Diag(L1NS )−1 Lfθ(x
S̃)

where

1NS = [1, 1, ..., 1]T ∈ RNS

is a vector of NS ones, and

fθ(x
S̃) = [fθ(x

S̃
1 ), fθ(x

S̃
2 ), ..., fθ(x

S̃
NS )]T ∈ RNS×M

is the piece-wise application of fθ to elements in xS̃ , whereas “diag” computes the diagonal matrix associated to a
vector. This expression does the same operation as Eq. 4, but it is more general because it allows for unbalanced
support sets. In the case of balanced support sets, which correspond to a perfect N -way-K-shot scenario, one simply
has Diag(L1NS )−1 = 1

K I , where I is the identity matrix.
5) Return p and p(labels).

B. Experimental settings details

In Table II we report for each dataset the selected learning rate, α (distance parameter) and λ (L2 regularization) which
allowed us to obtain the best performance.

TABLE II
BEST HYPERPARAMETERS USED TO TRAIN PROTO-LTN ON EACH BENCHMARK.

Dataset Lr α λ

Awa2 1× 10−4 1× 10−5 1× 10−3

CUB 1× 10−4 1× 10−4 1× 10−3

aPY 1× 10−3 1× 10−5 1× 10−5

SUN 1× 10−3 1× 10−5 1× 10−5
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