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Abstract—The reliability assessment of a machine learning
model’s prediction is an important quantity for the deployment
in safety critical applications. Not only can it be used to detect
novel sceneries, either as out-of-distribution or anomaly sample,
but it also helps to determine deficiencies in the training data
distribution. A lot of promising research directions have either
proposed traditional methods like Gaussian processes or extended
deep learning based approaches, for example, by interpreting
them from a Bayesian point of view. In this work we propose
a novel approach for uncertainty estimation based on autoen-
coder models: The recursive application of a previously trained
autoencoder model can be interpreted as a dynamical system
storing training examples as attractors. While input images close
to known samples will converge to the same or similar attractor,
input samples containing unknown features are unstable and
converge to different training samples by potentially removing
or changing characteristic features. The use of dropout during
training and inference leads to a family of similar dynamical
systems, each one being robust on samples close to the training
distribution but unstable on new features. Either the model
reliably removes these features or the resulting instability can
be exploited to detect problematic input samples. We evaluate
our approach on several dataset combinations as well as on an
industrial application for occupant classification in the vehicle
interior for which we additionally release a new synthetic dataset.

I. INTRODUCTION

Assessing the reliability of machine learning models’ pre-
dictions is an important challenge for the deployment and
applicability of statistical methods. This additional information
allows the possibility to detect novel and exotic sceneries
during the lifetime of a deployed model on which the model’s
predictions trustability can be determined. This knowledge
also gives hints whether the collected training data needs to
be extended or modified, e.g. in the case of active learning
and continuous learning [2]]. Recent activities investigated the
possibility for estimating the uncertainty in the case of deep
learning based methods [3]-[6]. Monte Carlo (MC) dropout,
i.e. using dropout during training and enabling the latter during
inference for multiple runs, has been shown to produce good
uncertainty quantification on several tasks while limiting
the additional overheat during training and inference.

It has been shown that recursive applications of autoen-
coders, which are trained under the standard training regime,
can be viewed as a dynamical system [8]. In mathematics
[9]l, the analysis of fixed points, attractors and their basins
of attraction are important tools to analyze and understand
dynamical systems and their behavior. This iterative process
can be viewed as associative memory to retrieve perturbed
training samples, but the models need to be trained long
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(b) Reconstructions of a same OOD sample from Do+ (SVHN)

Fig. 1. Multiple recursive reconstructions (from left to right) of identical
samples (first column) from D;,, and Dyt by our novel model. Notice the
evolution in the reconstructions over each iterative step for the OOD sample.

enough to ensure that the training samples become attractors.
To the best of our knowledge, the recursive application of
autoencoders and their attractors have not been investigated in
view of generalization and uncertainty estimation.

Our contribution consists of the extension of the recursive
application of autoencoder models, thus dynamical systems
and attractors, in view of generalization capacities. We com-
bine this strategy with MC dropout and we exploit charac-
teristics of both design choices to determine whether new
input samples are close or far from the training distribution
by analyzing the behavior of multiple inferences, as shown
in Fig. [T} the test sample is converging to a similar attractor,
while the out-of-distribution (OOD) sample converges to dif-
ferent attractors of different classes. We show that uncertainty
estimation is improved compared to vanilla MC dropout and
deep ensemble models across three metrics and in view of
the entropy distribution. Our ablation study shows that the
recursive application is key to the success of our approach.
Our analysis is performed on several commonly used OOD
dataset combinations as well as on an industrial application.
We consider occupant classification in the vehicle interior and
highlight some additional challenges. To this end we release a
synthetic dataset for uncertainty estimation which will extend
the existing SVIRO dataset for occupant classification.



II. RELATED WORKS

Attractors: There are several types of models achieving
associative memory, e.g. discrete and continuous Hopfield
Networks [[11]]-[13]] and Predictive Coding [14]]. The former
needs an energy function to be defined, while the latter is bio-
logically inspired. However, we focus on associative memory
achieved by the recursive application of autoencoder models
[8], previously trained with gradient descent, due to their
elegant simplicity and analogy to dynamical systems, which
has been investigated extensively in mathematics and physics
[O]. While a few works investigate properties of this model
design [8], [[15], [16], only one [17] considers attractors for
classification and uncertainty estimation. However, the latter
adopts this only for speech recognition with respect to noise
robustness and combines it with a hidden Markov model. We,
on the contrary, apply this methodology to computer vision
and assess the robustness against novel classes and unseen
samples from either new datasets or the test distribution.
Uncertainty estimation: A lot of research [18]] is focusing
on estimating the uncertainty of a model’s prediction regard-
ing OOD or anomaly detection, both of which are tightly
related. However, only a few works consider the use of
autoencoder models for assessing uncertainty: Autoencoders
can be combined with normalizing flow [19], refactor ideas
from compressed sensing [20]] or use properties of Variational
Autoencoders [21]], [22]. More commonly, autoencoders are
used for non image based datasets [23]-[25]. Other deep
learning approaches are based on evidential learning [6]], [26],
Bayesian methods [27], Variational Bayes [28|] or on Hamil-
tonian Monte-Carlo [29]. Also non deep-learning approaches
have shown significant success, but are less scalable, as for
example Gaussian Processes [30] or approaches based on sup-
port vector machines [31]. Since our approach borrows ideas
from MC dropout [7], we limit our comparison against the
latter and the commonly used deep learning golden standard
of using an ensemble of trained models [32f], [33]].

III. METHOD

We start by introducing both approaches, dynamical systems
based on autoencoders and their attractors and uncertainty
estimation by MC dropout. Next we introduce our method,
which we call Monte-Carlo Attractor Autoencoder (MCA-
AE), combining both of the aforementioned design choices.

A. Preliminaries - Attractors

A good overview on the basic analysis of autoencoders,
associative memory and attractors is provided in [8]. Let f
be an autoencoder trained under the standard training regime,
i.e. minimizing the reconstruction loss £ between input x
and target f(z), ie. L = r(f(z)—x), where r(-) is a
reconstruction loss of choice. Consider an input sample z,
an index set Z = {1,2,...,N} for some N > 1 and the
sequence { f*(2) byez, where fX(z) = (fo fo---o f) (x) (k
times) denotes k& compositions of f applied to . A point x is a
fixed point =* of f if f(x) = x, where we allow the equality
to be weakened, i.e. f(z) = = + ¢ = x for some small e,

because the reconstruction will never be perfect. The sequence
{f*(x)}rer then converges to x*. A fixed point z* is an
attractor of f if there exists an open neighborhood O around
x* such that for all z € O the sequence { f*()}rez converges
to x* if k — co. The set of all such points is called the basin
of attraction of z* for f. Even disturbed training samples
converge to the initial training sample [8]. We show that this
property can be used to generalize to test samples, when they
are close enough to the training distribution. If the latter is
violated, the sample might not be stable in its convergence,
which will be exploited by our next design choice.

B. Preliminaries - MC Dropout

The use of dropout during training and inferences, called
Monte Carlo (MC) dropout, has been introduced [7]] to model
uncertainty in neural networks without sacrificing complexity
or test accuracy for several machine learning tasks. For stan-
dard classification or regression models, an individual binary
mask is sampled for each layer (except the last layer) for
each new training and test sample. Consequently, neurons
are dropped randomly such that during inference we sample
a function f from a family, or distribution of functions F,
i.e. f € F. Uncertainty and reliability can then be assessed
by performing multiple runs for the same input sample z,
ie. retrieve {f;(x)}jes for J = {1,2,---,M} for some
M > 1. The models predictive distribution for an input
sample x can then be assessed by computing p = f(z) =
= M j—1 softmax(f;(z)). Uncertainty can be summarized by
computing the normahzed entrgpy [34] of the probability
vector p, i.e. H(p) = log o1 Pelog(pe), where C'is the
number of classes. We use tgle latter in all our experiments to
compute the uncertainty of the prediction and decide based
on its value whether a sample is rejected or accepted for
prediction or whether the sample is in- or out-of-distribution.

C. MCA-AE

Our introduced method is a combination of both previously
detailed model designs. Instead of training the autoencoder
model under a standard training regime as done by related
works thus far, we train the model using dropout and enabling
dropout during inference as well. This causes an interesting
model feature: if we repeat the recursive application of the
trained autoencoder several times for the same input sample
x, then each iteration uses a different function f from the same
distributions of functions F. Hence, we obtain different, but
similar, dynamical systems for inference which should behave
similarly for training and test samples, but not consistently
for novel feature variations in the input. Each iteration can
hence converge to a different attractor, potentially of different
classes. The latter is useful to detect inconsistencies and hence
uncertainty: if the model converges to attractors of the same
class we can assume a trustful prediction, if it converges to
attractors of different classes the convergence is unreliable.
MCA-AE: Let x be an input sample and F be the family of
functions consisting of autoencoders learned by using dropout
during training and enabling it during inference as well. We



repeat the recursion M times, sampling each time a new
f;j for each recursion J = {1,2,---, M}. This results in a
predictive distribution { fjk(x)} jes, where k is the number of
compositions performed for each recursion. As a reminder,
for a fixed f; the dropout mask is the same for each recursive
step k. The latter implies that the dropout mask needs to be
implemented manually such that it can be fixed for multiple
inferences. Since we are adopting this strategy for autoen-
coders, we refrain from using dropout in the latent space.
Classification of the resulting iteratively reconstructed sample
is performed in the latent space of the kth iteration. For the
latter we use a MLP classifier with a single hidden layer of the
same size as the latent dimension. To summarize this heuristic:

1: Train autoencoder model using dropout to get F

2: Enable dropout for inference

3: Define the number of recursions N

4: Train classifier g(-) in latent space after N recursions
5: Define the number of inferences per sample M

6: Define uncertainty threshold U

7: for each input sample = do

8: forl«+ 1to M do

9 for k< 1to N do

10: if £ =1 then

11: Sample a new dropout mask and keep it fixed

12: This gets you f; € F, where f;(z) = d;(ej(z))
13: end if

14: z = ej(z) {encoding}

15: z = d;j(z) {decoding}

16: end for

17: y; = g(z) {probability distribution of classification}

18:  end for
M
190 p(y) = 37 Simq Wi

200 H(py)) = — oy Lo Pe(y) log(pe(y))
21:  if H(p(y)) < U then

22: y = argmax(y;)

23:  else

24: Reject sample

25:  end if

26: end for

For training samples to become attractors it is necessary
to train the autoencoders for a large number of epochs, i.e.
we used 25000. A lot of hyperparameters are defined for
the inference process instead of the training process. The
number of recursions and the number of different runs is
independent from the training. The classifier can be chosen
after the autoencoder training. The uncertainty threshold needs
to be adapted according to the use case and it is a tradeoff
between the required sensitivity and precision.

IV. EXPERIMENTS

We evaluate our method on two scenarios: First, we want
to assess the predictive uncertainty where the model should
provide a high uncertainty in case it wrongly classifies a
sample. This is made more difficult in the case of the vehicle
interior: unseen objects should be classified as empty seats,

TABLE I
OVERVIEW OF THE NUMBER OF CLASSES AND SAMPLES FOR OOD OR
UNCERTAINTY ESTIMATION FOR THE DIFFERENT DATASETS USED.

Dataset Classes  D;y, and Doyt Uncertainty
MNIST 10 2500 10000
Fashion 10 2500 26032
SVHN 10 2500 10000
GTSRB 10 2006 3208
CIFARI10 10 2500 -
Omniglot 660 2636 -
LSUN 10 2500 -
Places365 365 2555 -
SVIRO-U Adults (A) 7 1337 2617
SVIRO-U Seats (S) 8 - 490
SVIRO-U Objects (O) 8 - 1622
SVIRO-U A,S 26 - 896
SVIRO-U A,0 7 - 1421
SVIRO-U A,S,0 30 - 1676
SVIRO Tesla 21 - 2000

i.e. the model should only identify known classes and neglect
everything else. Our results will show that this is a challenging
task. Second, the model should differentiate between in- and
out-of-distribution (OOD) samples. In the case of training on
MNIST and evaluating on Fashion-MNIST, the model cannot
perform a correct prediction and it should detect the OOD as
such. This is also the case when images from a new vehicle
interior are provided as input to the model. All training and
evaluation scripts can be found in our implementation (link).

A. Evaluation metrics

According to standard evaluation criterions adopted in re-
lated works, we evaluate our models using the Area Under the
Receiver Operating Characteristic curve (AUROC), Area Un-
der the Precision-Recall curve (AUPR) and the false positive
rate at 95% true positive rate (FPR95%). For OOD evaluation
we use approximately 50% of the samples from the test set
Dy, and 50% from the test set from D,,;. For further details
and interpretations of the metrics we refer to [35]—[39].

B. Datasets

We use several commonly used computer vision datasets for
training and use the corresponding test data as in-distribution
sets D;,: MNIST [40]], Fashion-MNIST [41]], SVHN [42]
and GTSRB [43] (which we reduce to use 10 classes only).
For out-of-distribution D,,; we use a subset of all D;,, not
coming from the training distribution and the test datasets from
Omniglot [44], CIFARI10 [45]], LSUN [46] (for which we use
the train split) and Places365 [47]. We use approximately the
same number of samples from D;,, and D,,,; by sampling each
class uniformly. An overview is provided in Table [I|

In addition to these commonly used datasets, we release
an extension for SVIRO [10] called SVIRO-Uncertainty. For
each of the 3 seat positions in the vehicle interior rear bench
the model should classify which object is occupying it, with
empty being one possible choice. We created two training
datasets for the Sharan vehicle, one using adult passengers
only (4384 sceneries and 8 classes) and one using adults,


https://github.com/SteveCruz/icpr2022-autoencoder-attractors

Fig. 2. Examples from the SVIRO-Uncertainty dataset. First row are training
samples of adults only. Second row are test samples of unseen adults, but also
child-seats and everyday objects which should be classified as empty.

child seats and infant seats (3515 samples and 64 classes - not
used for training in this work). We created fine-grained test
sets to asses the reliability on several difficulty levels: 1) only
unseen adults, 2) only unseen child and infant seats, 3) unseen
adults and unseen child and infant seats, 4) unknown random
everyday objects (e.g. dog, plants, bags, washing machine,
instruments, tv, skateboard, paintings, ...), 5) unseen adults
and unknown everyday objects and 6) unseen adults, unseen
child and infant seats and unknown everyday objects. The
dataset can been downloaded (link). Besides the uncertainty
estimation within the same vehicle interior, one can use images
from unseen vehicle interiors from SVIRO to further test the
models reliability on the same task, but in novel environments,
i.e. vehicle interiors. Example images are provided in Fig. [2]

C. Training and evaluation details

We compare our method against MC dropout and an ensem-
ble of models using the same architecture as the autoencoder
encoder part, but with an additional classification head. We
trained our MCA-AE models for 25000 epochs, but fewer
epochs might produce good results as well. We did not perform
an ablation study with respect to the number of epochs needed.
Further, we did not check whether the training samples are
truly fixed point and attractors because of the computational
overhead: This could be done by computing the largest eigen-
value of the Jacobian matrix for each training sample and
checking whether its greater than 1. The autoencoder model
was trained as a denoiser [48|] (blur, random noise, brightness
and contrast augmentation were used) to facilitate and robus-
tify the recursive autoencoder application. Consequently, to
have a fair benchmark, MC dropout and ensemble models used
the same augmented images during training. The latter were
trained for 1000 epochs. All methods used Adam, a learning
rate of 1e~* and a batch size of 64. For training on MNIST
and Fashion-MNIST we used a latent space of 10, while for
all others we used a latent space of 64. We used SSIM [49]] for
computing the reconstruction loss. We used 250 samples per
class for training and treat all datasets as grayscale images. All
images were centre cropped and resized to 64 pixels. We used
a dropout rate of 0.33 for all methods. Model and training
details can be found in the implementation.

For MCA-AE and MC dropout we used 20 inferences and
we used an ensemble of 10 models to assess uncertainty and
the OOD estimation. We repeated each training for 10 runs

for MCA-AE and MC Dropout and for 100 runs to get the
ensembles of models. We used 2 recursions for MCA-AE, but
this value depends on the dataset used and it is subject to a
hyperparameter search. In our case, the models converged fast
for test and slow for OOD samples, see Fig. El Hence, more
iterations did not provide an improvement.

D. Uncertainty estimation and out-of-distribution detection

We report the summary of our results for uncertainty and
OOD detection in Table |[I} An interesting observation is the
result that our approach performs significantly better when
the visual complexity is increased (GTSRB, SVIRO), while
the performance of MC Dropout and ensemble of models
decreases on those setups. On the other side, on visually
much simpler datasets (MNIST, Fashion-MNIST, SVHN) the
performance of MC dropout and ensemble of models performs
best. Thus, our method seems to be more beneficial for higher
visual complexity, but this behavior should be investigated
in detail in future work. Another interesting observation is
that our approach provides better OOD estimations for the
unseen Tesla vehicle from SVIRO. It can be observed that the
different SVIRO-Uncertainty splits are much more challenging
and undergo a large performance gap for all methods.

We computed the histograms of the entropies for each D;,,
and D,,; and report the results in Fig. E| when trained on GT-
SRB. The results show that the entropy distribution between
D,,, and several D, are best separated by our approach. The
distributions of the different D,,; are more similar then for the
other models. To quantify this, we computed the sum of the
Wasserstein distances between D;,, and all D,,; (TD, larger
is better, as we want them to be different) separately and the
sum of the distances between D,,; CIFAR10 and all other
D, (OD, smaller is better, as we want them to be similar).
We then computed the mean and standard deviation across
10 runs. The results are reported in Table and show that
our method best separates uncertainty between D;,, and D,y;.
Further, all D,,; are most similar between each other.

E. Ablation study

We want to highlight that the performance of our method
is improved due to the recursive application of the previously
trained autoencoder. To this end we provide additional results
where we compare the performance if no recursion is applied.
We repeat the evaluation from the previous section and report
the performance in Table[[V] By comparing the results against
Table [} it becomes apparent that the recursive application
significantly improves uncertainty and OOD estimation.

In Fig |§| we report the reconstructions after 1, 2, 3 and 4
iterative steps. We repeat this for models trained on different
D;,, and show that D,,; reconstructions converge over time
(and much slower) to training samples. We hence believe that
considering the trajectory of the latent space representation
over several steps can be an additional indicator whether an
input sample is in- or out-of-distribution. It becomes also
visible that the reconstruction converges robustly to similar
classes for D;,, samples, but to different classes for D,,;.


https://sviro.kl.dfki.de/sviro-uncertainty-download/

TABLE 11
COMPARISON (IN PERCENTAGE) OF OUR METHOD AGAINST MC DROPOUT AND AN ENSEMBLE OF MODELS. WE REPEATED THE EXPERIMENTS FOR 10
RUNS AND REPORT THE MEAN VALUES TOGETHER WITH THEIR STANDARD DEVIATION. IF D;,, = Doyt, THEN WE REPORT THE RESULT ON THE TEST
SET OF D;,, ONLY. ARROWS INDICATE WHETHER LARGER 1 OR SMALLER | IS BETTER. BEST RESULTS ARE HIGHLIGHTED IN GREY. THE LAST BLOCK IS
A COMPARISON ON THE FINE-GRAINED SPLITS ON THE NEWLY RELEASED SVIRO-UNCERTAINTY. ALL BUT ADULTS SHOULD BE CLASSIFIED AS EMPTY.

MCA-AE (Ours) MC Dropout Ensemble of 10 models
Din = Dout AUROC + AUPR t FPR95% | AUROC+t AUPR1T FPR95% | AUROC 1T AUPR1 FPR95% |
MNIST
—MNIST 799+16 949+05 742+48 90.1£06 99.6+0.1 28.0+24 858+14 99.0+0.1 41.5+3.0
—CIFARI0 88.2+23 874422 441483 91.2+1.3 922+1.1 398+51 91.5+1.1 924+0.9 34.0+4.7
—Fashion 745+32 727+33 723+44 90.0£16 91.1+13 405+59 89.5+1.1 90.6£09 37.0£3.2
—Omniglot 64.4+50 704+£57 994407 93.4+£28 942425 354+12.2 95.5+£1.0 96.0+0.8 22.0+6.0
—SVHN 922+20 91.3+£1.5 2824124 942+1.7 949+14 305+94 949+09 954+0.7 224+5.1
Fashion
—Fashion 81.0+1.0 944+03 80.2+24 825+04 964+0.1 644+43 81.7+0.7 964+£0.1 64.7+£22
—CIFARI10 939+18 95.8+1.1 47.0+20.0 88.7£1.9 89.6+1.8 457+58 91.6+0.9 92.1+0.8 343+3.1
—MNIST 87.8+4.0 88.2+34 487+156 85.4+1.8 86.7+1.5 53.5+51 90.2+0.5 90.6+0.5 35.7+24
—Omniglot 86.8+3.8 91.2+25 87.3+9.7 93.6£20 941+1.8 326+10.1 97.9+04 98.14+0.3 9.3+23
—SVHN 93.7£20 95.6+1.3 489+17.1 90.8+£1.0 91.7+0.9 40.7+3.6 94.8+0.5 95.14+0.4 23.0+2.6
SVHN
—SVHN 776+£08 80.8+£1.0 79.5+2.1 84.0+£06 93.1+04 69.3+24 83.7+05 929+03 68.7£2.0
—CIFARI10 7r5+12 804+£11 836+3.0 749+£09 780+£08 85.8+18 T7.6+£0.7 80.5+0.6 83.3+14
—GTSRB 75.4+22 80.5+£19 80.7+54 74.0+£1.1 80.1£+£1.0 84.9+29 753+£0.7 81.24+0.7 84.0+3.0
—LSUN 7844+09 81.5+08 82.7+48 77.0+£0.7 79.8+0.7 81.9+21 79.2+0.7 81.9£0.7 80.1£1.9
—Places365 785+0.8 81.0£0.7 826437 77.1£06 79.44+06 809+25 79.2+£0.5 81.54+04 795+1.9
GTSRB
—GTSRB 85.1+09 95.6+£05 69.3+£33 89.3£24 988+0.3 509+6.0 84.6+1.7 974+£03 62.1£3.2
—CIFAR10 914+06 903+08 42.0+33 81.2+09 81.44+09 695+3.7 763+05 77.7+£05 83.4+1.3
—LSUN 93.0£0.7 922+0.7 36.5+t44 834+08 833+07 653+39 77.7+08 787£06 81.3£1.6
—Places365 92.3+0.7 91.3+0.7 388+34 828+0.7 824+06 651+36 77.5+06 782+£06 80.6=£1.7
—SVHN 91.3+£0.7 90.7+£0.8 445+3.7 856=+15 855+15 60751 794+06 80.3+0.5 80.1+1.7
SVIRO-U
—CIFARI10 954+06 933+£1.0 269+34 746+£35 73.6+20 604+72 77715 T75.0+1.1 57.1+3.2
—GTSRB 95.84+1.0 949+1.1 25.1+£6.9 69.9+27 742+12 688+47 747+25 762+15 63.8+1.3
—LSUN 948+ 05 92.7£0.7 31.5+27 67.6+£20 70.1+£1.0 723+42 720£1.1 71.6+0.6 64.4+23
—Places365 954+05 93.3+£07 273+£28 732+£26 725+13 635+6.8 T774+1.0 745£0.7 57.0£25
—SVHN 924+16 88.6+23 40.1+7.6 81.0+34 77.8+24 495489 81.0+1.3 77.3+£1.1 51.6+4.1

—Adults (A) 87.8+1.3 99.1+£0.3 629+39 952+£1.7 999+£01 89+31 91.1+£19 99.84+0.1 288+8.8
—Seats (S) 54.0+75 89+£42 8884108 17.5+13.1 04=£0.2 95751 281£68 26+1.6 98.0£2.5
—Objects (O) = 68.9+3.1 83.7+24 841455 64.7+32 853£33 85.3+46 574+£23 80.6+14 86.5+3.3

—A,S 588 +26 486+64 932+11 363+£23 165+28 974+14 395+1.7 236£18 969+1.1
—A,0 788+15 93.0£05 76.1+34 70.1+£1.6 935£09 774+28 71.1£0.7 923+06 T77.8+24
—A,S,0 622+20 56.4+£47 887431 421+£27 186=£27 964+09 458=+19 33.0%+1.7 955+£0.9

—Tesla (OOD)  88.6+2.0 974+£0.5 58.0+£6.1 521+£29 90.9+0.5 94.1+3.7 28.6+28.6 45.8£45.8 44.4+44.4
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(a) Djy: Fashion-MNIST (b) D;y: MNIST (¢) Din: SVHN (d) D;pn: GTSRB (e) Djyn: SVIRO-U

Fig. 3. Multiple recursive reconstructions (from left to right) of identical samples (first column) from D;,, and Doyt by our novel MCA-AE model. Notice
the evolution in the reconstruction results over each iterative step for the OOD samples. D;,, converge more robustly compared to Doyy¢ reconstructions.
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Fig. 4. Comparison of entropy histograms between D,,, (GTSRB, filled blue bars) and several Do+ (not filled and coloured according to the dataset used)
for different models. MCA-AE provides the best separation between D;,, and D,,:. Notice the non-linear scale on the y-axis to improve visualization.

TABLE III
WE COMPUTED THE SUM OF THE WASSERSTEIN DISTANCES BETWEEN
Djpn AND ALL Dyyt (TD 1) SEPARATELY AND THE SUM OF THE
DISTANCES BETWEEN D+ CIFAR10 AND ALL OTHER Doyt (OD )
OVER 10 RUNS. WE REPORT MEAN AND STANDARD DEVIATION.

MCA-AE (Ours)  MC Dropout Ensemble
oD | 0.049 £ 0.007  0.080 £0.016  0.050 £ 0.007
™D 1 1.551 £0.044 0.854 £0.028 0.686 +0.017
TABLE IV

OOD AND UNCERTAINTY ESTIMATION WHEN NO RECURSION IS APPLIED.
IN MOST CASES THE RESULTS ARE WORSE COMPARED TO 2 RECURSIONS -
SEE TABLE@ IN CASE THEY ARE BETTER, WE MARK THEM GREY.

Din — Dout AUROC T AUPR 1 FPR95 % |
MNIST — MNIST 73.5+16 91.3+£0.8 82.6+£2.7
MNIST — CIFARI10 80.4+39 77.8+45 589+8.6
MNIST — Fashion 61.5+58 59.3+£54 82.7+4.2
MNIST — Omniglot 32.6 =2 10.5 44.0 £6.5 99.9 + 0.1
MNIST — SVHN 87.2+34 83.3+49 388+15.5
Fashion — Fashion 77.2+09 91.64+05 82.0+1.7
Fashion — CIFAR10 88.2+50 89.6+6.2 63.0+£15.9
Fashion — MNIST 88.2+3.3 89.3+30 557489
Fashion — Omniglot 60.9+25.4 71.3+19.5 98.5+2.8
Fashion — SVHN 87.2+6.7 88.2+88 61.0%£11.6
SVHN — SVHN 67.2+1.2 54.6+23 87.9+2.1
SVHN — CIFAR10 56.0+ 1.0 57.24+1.1 94.8 +£0.9
SVHN — GTSRB 53.6 £3.0 60.4+27 949+1.9
SVHN — LSUN 57.5+1.7 59.2+1.7 944+14
SVHN — Places365 579+13 586+14 939+1.5
GTSRB — GTSRB 85.7+1.3 959+06 67.3+£2.9
GTSRB — CIFARI10 82.2+23 81.0£25 69.9+6.5
GTSRB — LSUN 83.2+2.2 82.0+23 68.6 £ 6.1
GTSRB — Places365 82.8 +£2.1 81.3+23 68.2+5.9
GTSRB — SVHN 79.8 428 T787+3.1 T76.4+5.5
SVIRO-U — CIFARI10 73.4+28 609+33 76.4+4.7
SVIRO-U — GTSRB 70578 63.6£7.2 824+6.6
SVIRO-U — LSUN 70.8+£2.7 58.2+26 81.2+3.6
SVIRO-U — Places365 73.5+29 604+32 76.4+4.5
SVIRO-U — SVHN 799+35 66.7+£57 59.8+4.6
SVIRO-U — Adults (A) 86.7+22 98.6+0.5 66.6+8.8
SVIRO-U — Seats (S) 19.5+13.1 1.24+1.0 74.6+37.6
SVIRO-U — Objects (O) 58.6 +4.9 56.6 +6.2 88.2 + 6.2
SVIRO-U — A,S 43.44+29 11.0+£2.0 951+£23
SVIRO-U — A,0 659+18 75.1+1.6 88.5+1.4
SVIRO-U — A,S,0 484 +3.2 169+2.1 91.6 £2.4
SVIRO-U — Tesla (OOD) 54.2+10.8 86.2+4.1 94.8 +£3.7

V. DISCUSSION AND LIMITATIONS

From a mathematical point of view dynamical systems
are defined by natural phenomena or mechanical systems
one wants to investigate and understand. Hence, designing
or influencing the dynamical system of interest is usually
not a possibility. An interesting observation is that the latter
phenomenon is not the case for the recursive application of an
autoencoder which is then interpreted as a dynamical system.
Since we train the autoencoder in the first step, the resulting
dynamical behavior and its attractors can be influenced by our
previously defined autoencoder training procedure. We believe
that it is an interesting direction for future work to analyze this
interrelationship. Further, the effect of the number of epochs
needed to obtain good results should be investigated. The
basins of attraction can be studied after the autoencoder model
is trained, such that potentially this information could be used
to further improve robustness, interpretability and uncertainty
estimation. We believe that the trajectory of the latent space
representation over several iterations can give hints about the
model robustness. Finally, while we fix the dropout mask for
one recursion and each iterative step (but using a different one
for each new recursion), it would also be possible to sample
a new function f for each iterative step within a recursion.

VI. CONCLUSION

Our results on several datasets show that the recursive appli-
cation of autoencoder models, viewed as dynamical systems,
together with an MC dropout approach provides good uncer-
tainty and out-of-distributions estimations. Our model design
choices improve the performance, particularly for computer
vision datasets of higher visual complexity. Our ablation study
highlights that the success is mainly due to the recursion and
the entropy histograms underline the improved separability
compared to MC dropout and an ensemble of models.
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