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Abstract—Foot ulcer is a common complication of diabetes
mellitus and, associated with substantial morbidity and mortality,
remains a major risk factor for lower leg amputations. Extracting
accurate morphological features from foot wounds is crucial for
appropriate treatment. Although visual inspection by a medical
professional is the common approach for diagnosis, this is
subjective and error-prone, and computer-aided approaches thus
provide an interesting alternative. Deep learning-based methods,
and in particular convolutional neural networks (CNNs), have
shown excellent performance for various tasks in medical image
analysis including medical image segmentation.

In this paper, we propose an ensemble approach based on
two encoder-decoder-based CNN models, namely LinkNet and
U-Net, to perform foot ulcer segmentation. To deal with a
limited number of available training samples, we use pre-trained
weights (EfficientNetB1 for the LinkNet model and Efficient-
NetB2 for the U-Net model) and perform further pre-training
using the Medetec dataset while also applying a number of
morphological-based and colour-based augmentation techniques.
To boost the segmentation performance, we incorporate five-fold
cross-validation, test time augmentation and result fusion.

Applied on the publicly available chronic wound dataset and
the MICCAI 2021 Foot Ulcer Segmentation (FUSeg) Challenge,
our method achieves state-of-the-art performance with data-
based Dice scores of 92.07% and 88.80%, respectively, and is
the top ranked method in the FUSeg challenge leaderboard. The
Dockerised guidelines, inference codes and saved trained models
are publicly available at https://github.com/masih4/Foot Ulcer
Segmentation.

Index Terms—Foot ulcer, medical image analysis, image seg-
mentation, machine learning, deep learning, ensemble.

I. INTRODUCTION

Diabetes mellitus is one of the most common chronic
diseases with an increasing rate of prevalence over the past
decades [1]. It can cause several complications for the patient
such as cardiovascular disease, retinopathy and neuropathy [2].
A serious medical condition associated with diabetes mellitus
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IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

are skin ulcers on the foot, which can lead to amputation [3].
Up to 3% of patients with diabetes mellitus have an active foot
ulcer, while lifetime risk of developing a foot ulcer is up to
25%. Different treatments may be applied based on the ulcer
type and its morphological appearance [4].

For appropriate treatment, lesion characteristics such as
length, width, area, and volume need to be measured. More-
over, the wound area is a useful predictor of the final outcome
and allows to monitor the healing process and thus to evaluate
the effect of treatment [5]. Visual inspection and measurement
of foot ulcers by a medical expert is the common approach
to investigate these morphological features. However, this
is subjective and error-prone [6]. A promising alternative
is to acquire images of the area and apply computer-aided
methods to segment the ulcer. Following automated wound
segmentation, the morphological features such as lesion width
or area can then be easily extracted from the segmentation
masks using morphological operations.

In the literature, a number of computerised methods have
been proposed to perform foot ulcer segmentation. These
include approaches ranging from classical computer vision
techniques to state-of-the-art machine learning and deep learn-
ing models. Clustering, edge detection, adaptive threshold-
ing, and region growing are examples of conventional image
analysis approaches for wound segmentation [7], [8], while,
based on hand-crafted features, classifiers such as multi-layer
perceptrons and support vector machine can also be trained
for foot ulcer segmentation [7], [9]. Similar to other medical
image segmentation tasks, deep learning and convolutional
neural network (CNN)-based approaches have been shown to
outperform other approaches for foot ulcer segmentation [10].
CNN-based architectures employed for this task include fully
convolutional neural networks (FCNs), U-Net, and Mask R-
CNN [10], [11], [12].

In this paper, inspired by our former work on other medical
image segmentation tasks [13], [14], we propose and develop
a model based on two well-established encoder-decoder-based
CNNs, namely U-Net and LinkNet, to segment wounds in
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Fig. 1. Workflow of the proposed method.

clinical foot images. We use pre-trained CNNs, 5-fold cross-
validation, test time augmentation (TTA), and result fusion to
boost the segmentation performance. We evaluate our method
on the publicly available chronic wound dataset [10] and the
MICCAI 2021 Foot Ulcer Segmentation (FUSeg) Challenge
dataset and achieve state-of-the-art segmentation performance
for both cases while achieving first rank for the latter1.

II. METHOD

The generic workflow of our proposed method, for both
training and testing phases, is shown in Fig. 1.

A. Datasets

We use the following publicly available datasets:
• Medetec dataset [15]: consists of 152 clinical images,

with corresponding segmentation masks, of several types
of open foot wounds. The images are zero-padded and
have a fixed size of 224 × 224 pixels [10]. We use this
dataset only for pre-training of the employed segmenta-
tion models.

• Chronic wound dataset [10]: contains 1010 clinical
images from 889 patients, with the corresponding seg-
mentation masks of all images also available. To obtain
a fixed size for all images, a YOLOV3 object detection
model [16] is used to localise and crop the wounds inside
the images. For non-square images, zero-padding is used
to yield a fixed size of 512 × 512 pixels for the entire
dataset. Of the 1010 images, 810 images are used for
training and the remaining 200 kept aside for testing as
suggested in [10].

• FUSeg dataset [17]: this dataset is an extended version
of the chronic wound dataset and is the dataset used as
the training and testing sets of the MICCAI 2021 Foot
Ulcer Segmentation Challenge. It contains 1210 images
where 1010 images (identical to the chronic wound
dataset) are provided for training and 200 images are used

1Challenge leaderboard (accessed on 2022-05-18): https://uwm-bigdata.
github.io/wound-segmentation/

for evaluation. The ground truth segmentation masks of
the 200 test images are kept private by the challenge
organisers and are used only for evaluation purposes.
Similar to the chronic wound dataset, all images have
a fixed size of 512 × 512 pixels. Further details about
this dataset can be found on the challenge platform2 and
in [17].

Fig. 2 shows some example images from the datasets.

B. CNN models

In our approach, we employ two CNN models, namely U-
Net [18] and LinkNet [19]. Although other encoder-decoder-
based CNNs such as U-Net++ [20] or attention U-Net [21] can
also be used, the chosen CNN models have shown excellent
segmentation performance for a variety of medical image
segmentation tasks while being computability less expen-
sive [13], [14], [22]. For both models, we use pre-trained
CNNs in the decoder part of the model, for LinkNet a pre-
trained EfficientNetB1 [23], and for U-Net a pre-trained Ef-
ficientNetB2 [23]. EfficientNet-based models are state-of-the-
art classification models employed in various medical image
classification tasks such as skin lesion classification or diabetic
retinopathy detection [24], [25]. We therefore employ them
as the backbone of our encoder-decoder-based segmentation
models. In particular, we use two variants of the EfficientNet
model, B1 and B2, since one is originally designed for smaller
images (and hence more suitable for smaller lesions), while
the other is designed for slightly larger images (and hence
more suitable for larger lesions) [23].

C. Training

As shown in Fig. 1, we use the Medetec dataset as a task-
specific dataset for further pre-training. During training, we
use random scaling (scale limit 0.1 with 0.3 probability),
random 90-degree rotations (with 0.5 probability), vertical and
horizontal flipping (with 0.5 probability), as well as brightness

2https://fusc.grand-challenge.org/
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Fig. 2. Image samples from the Medetec dataset (left) and the chronic wound dataset/FuSeg dataset (right).

and contrast shifts (limit of 0.15 with 0.4 probability) as
augmentation techniques. We use the full-size images and train
each model for 80 epochs with a learning rate (LR) scheduler
that reduces the LR by 90% after every 25 epochs, and an
initial LR of 0.001. We use a batch size of 4 and employ the
Adam optimiser [26]. As loss function, we use a combination
of Dice loss and focal loss (with equal weights). For each
dataset, five-fold cross-validation is exploited, and the best
models based on segmentation scores on the validation sets
are saved to be used in the inference phase.

D. Ensemble

To boost segmentation performance, we use three distinct
ensembling strategies, namely five-fold cross-validation, test
time augmentation and result fusion.

As illustrated in Fig. 3, instead of using the entire training
set to train a single model, we divide the training data into
5 partitions and train one sub-model for each cross-validation
split (i.e., for each of the sub-models, we use 4 partitions
for training and the hold-out partition for validation). In the
inference phase, we pass a test image to all 5 sub-models and
take the average over the obtained results. We perform five-
fold cross-validation for both U-Net and Link-Net models, and
hence in total, 10 trained sub-models are generated.

As shown in former work on various image segmenta-
tion/classification tasks [27], [28], test time augmentation
(TTA) can boost the overall performance. We therefore employ

Fig. 3. Five-fold cross-validation training scheme. The entire training data
is divided into 5 partitions. For each sub-model, 4 partitions are used for
training, while the hold-out partition is used for validation. The generated
sub-models are then used in the inference phase during ensembling.

TTA in the inference phase to yield improved segmentation.
For this, we use 0, 90, 180, and 270-degree rotations as well
as horizontal flipping.

Last not least, since we train two distinct models – a
LinkNet with an EfficientNetB1 backbone and a U-Net with
an EfficientNetB2 backbone – we fuse their results in the
inference phase. Various methods such as voting, bagging,
or averaging exist for results fusion. We use straight-forward
averaging to fuse the prediction probability masks from the
two models. Averaging has been shown to yield comparable
fusion performance to other more sophisticated ensembling
methods for various medical image analysis tasks [22], [27].

E. Post-processing

To form the final segmentation masks for a test image, we
first binarise the fused prediction probability vectors using
a 0.5 threshold. We further apply two post-processing steps,
namely filling holes and removing very small detected objects,
with the identical settings as described in [10].

F. Evaluation

To evaluate the segmentation performance of our proposed
method and also to compare the results to other state-of-the-art
models, we use precision (Equ. 1), recall (Equ. 2), and data-
based Dice score (Equ. 3) as suggested in [10]. For the chronic
wound dataset, we also report the data-based intersection over
union (IoU) (Equ. 4) score and the image-based Dice score
(Equ. 5) for our proposed method. For the FUSeg challenge,
we report the data-based Dice score, precision and recall as
these scores were provided by the challenge organisers (the
data-based Dice score was used as the main evaluation index
in the challenge) [17].

Based on the standard definitions of true positives (TP ),
false positives (FP ), false negatives (FN ), and with N the
total number of test images, precision is defined as

Precison =

∑N
i=1 TPi∑N

i=1 TPi +
∑N

i=1 FPi

, (1)



TABLE I
SEGMENTATION RESULTS ON THE CHRONIC WOUND DATA SET OBTAINED BY METHODS REPORTED IN [10] (TOP) IN COMPARISON TO OUR APPROACH

(BOTTOM).

image-based
Dice [%] precision [%] recall [%] data-based

IoU [%]
data-based
Dice [%]

VGG16 n/a 83.91 78.35 n/a 81.03
SegNet n/a 83.66 86.49 n/a 85.05
U-Net n/a 89.04 91.29 n/a 90.15
Mask-RCNN n/a 94.30 86.40 n/a 90.20
MobileNetV2 n/a 90.86 89.76 n/a 90.30
MobileNetV2 + CCL n/a 91.01 89.97 n/a 90.47
LinkNet-EffB1 83.93 92.88 91.33 85.35 92.09
U-Net-EffB2 84.09 92.23 91.57 85.01 91.90
Ensemble 84.42 92.68 91.80 85.51 92.07

TABLE II
RESULTS OF ABLATION STUDY TO SHOW THE EFFECTIVENESS OF FIVE-FOLD CROSS-VALIDATION (CV) AND TEST TIME AUGMENTATION (TTA) ON THE

SEGMENTATION SCORES. THE BEST RESULT FOR EACH EVALUATION MEASURE FOR EACH OF THE MODELS IS BOLDED.

CV TTA image-based
Dice [%] precision [%] recall [%] data-based

IoU [%]
data-based
Dice [%]

LinkNet-EffB1 7 7 82.98 91.92 90.39 83.37 91.15
LinkNet-EffB1 7 3 82.98 92.38 90.83 84.50 91.60
LinkNet-EffB1 3 3 83.93 92.88 91.33 85.35 92.09
U-Net-EffB2 7 7 83.07 91.73 89.98 83.23 90.84
U-Net-EffB2 7 3 83.31 92.74 90.33 84.37 91.52
U-Net-EffB2 3 3 84.09 92.23 91.57 85.01 91.90

recall as

Recall =

∑N
i=1 TPi∑N

i=1 TPi +
∑N

i=1 FNi

, (2)

the data-based Dice score as

Dicedata =

∑N
i=1 2TPi∑N

i=1 2TPi +
∑N

i=1 FPi +
∑N

i=1 FNi

, (3)

the data-based IoU as

IoUdata =

∑N
i=1 TPi∑N

i=1 TPi +
∑N

i=1 FPi +
∑N

i=1 FNi

, (4)

and the image-based Dice score as

Diceimage =
1

N

N∑
i=1

2TPi

2TPi + FPi + FNi
. (5)

III. RESULTS AND DISCUSSION

We report the results for the test set of the chronic wound
dataset in Table I. There, we also compare our proposed
method with a number of deep learning-based approaches
reported in [10]. For our method, we give the results of the
LinkNet model (with EfficientNetB1 backbone) and the U-Net
model (with EfficientNetB2 backbone) on their own as well
as the results of the fused model.

As we can see, even on their own, the LinkNet and U-
Net models outperform the other state-of-the-art methods for
most evaluation indexes (all except precision). It is equally
evident that the final fusion scheme yields another small
improvement and thus excellent segmentation performance in
comparison to the other state-of-the-art models. Moreover,

comparing the U-Net results with the U-Net-EffB2 results
shows the advantage of using a pre-trained CNN in the encoder
part of the segmentation model.

To show the effectiveness of the utilised ensemble strategies,
we perform an ablation study and report the results in Table II.
As the results for each of the models show, both the use of five-

Fig. 4. Examples from the chronic wound test set with acceptable segmenta-
tion performance. Yellow lines show the manual ground truth, and blue lines
the predicted segmentation masks.



TABLE III
TOP FIVE PERFORMERS OF THE MICCAI 2021 FUSEG CHALLENGE.

team approach precision [%] recall [%] data-based
Dice [%]

Mahbod et al. this paper 91.55 86.22 88.80
Zhang et al. U-Net with HarDNet68 88.87 86.31 87.57
Galdran et al. [29] Stacked U-Nets 90.03 84.00 86.91
Hong et al. n/a n/a n/a 86.27
Qayyum et al. U-Net with ASPP n/a n/a 82.29

fold cross-validation and TTA results in better segmentation
performance.

As can be inferred from Table I, our proposed method
delivers excellent segmentation performance for most of the
images, and we show some examples with acceptable seg-
mentation scores in Fig. 4. However, for 18 of the 200 test
images, relatively poor Dice scores below 60% are obtained,
where in 10 cases the segmentation performance is very poor
with a zero Dice score. In these latter cases, there is either
no lesion in the image but a false positive area is predicted
(3 cases), or there are very small lesions in the images that
are missed by the algorithm (6 cases), while the remaining
image has an incorrect manual annotation. Some examples
with poor (Dice score between 0% and 60%) and very poor
segmentation results (Dice score of 0%) are shown in Fig. 5
and Fig. 6, respectively.

With the presented methodology, we attended the MICCAI
2021 FUSeg challenge and submitted our inference codes
and saved models in the frame of a Dockerised container.
The results from our approach and the top four participating
teams of the challenge are reported in Table III. These results

Fig. 5. Examples from the chronic wound test set with poor segmentation
performance (Dice scores below 60%). The yellow lines show the manual
ground truth in the images, and the blue lines show the predicted segmentation
masks.

Fig. 6. Examples from the chronic wound test set with a zero Dice score.
The yellow lines show the manual ground truth in the images, and the blue
lines show the predicted segmentation masks.

were directly calculated by the challenge organisers and are
available in the challenge leaderboard3. As we can observe
from Table III, our method outperforms the other approaches
and is thus top ranked in the challenge based on the data-
based Dice score. Our method also achieves the best precision
performance and a very competitive recall score compared to
the other approaches.

IV. CONCLUSIONS

Computer-aided foot ulcer segmentation can provide an
efficient and effective alternative to manual analysis and subse-
quently calculated wound area measures. In this paper, we have
proposed a powerful deep learning-based technique to segment
foot ulcers in clinical images. Our approach incorporates two
CNN segmentation networks and various ensembling strate-
gies for improved segmentation performance. Results on two
benchmark datasets demonstrate our method to yield excellent
segmentation performance and to outperform other state-of-
the-art deep learning-based algorithms, while being top-ranked
in the recent MICCAI 2021 FUSeg challenge.

3https://uwm-bigdata.github.io/wound-segmentation/. As the challenge re-
mains open for new post submissions, the ranking may change in future.
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