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Abstract—Branch-and-bound is a systematic enumerative
method for combinatorial optimization, where the performance
highly relies on the variable selection strategy. State-of-the-
art handcrafted heuristic strategies suffer from relatively slow
inference time for each selection, while the current machine
learning methods require a significant amount of labeled data.
We propose a new approach for solving the data labeling and
inference latency issues in combinatorial optimization based
on the use of the reinforcement learning (RL) paradigm. We
use imitation learning to bootstrap an RL agent and then use
Proximal Policy Optimization (PPO) to further explore global
optimal actions. Then, a value network is used to run Monte-
Carlo tree search (MCTS) to enhance the policy network. We
evaluate the performance of our method on four different
categories of combinatorial optimization problems and show that
our approach performs strongly compared to the state-of-the-art
machine learning and heuristics based methods.

I. INTRODUCTION

Combinatorial optimization is a broad topic covering several
areas of computer science, operations research, and artificial
intelligence. The fundamental goal of combinatorial optimiza-
tion is to find optimal configurations from a finite discrete
set that satisfy all given conditions, which involves enormous
discrete search spaces. Examples include internet routing [1],
scheduling [2], protein structure prediction [3], combinatorial
auctions [4]. Many real-life problems can also be formalized as
combinatorial optimization problems, including the travelling
salesman [5], the vertex colouring [6], and the vehicle routing
problems [7], [8]. As combinatorial optimization includes
various NP-hard problems, there is a significant demand for
efficient combinatorial optimization algorithms.

Several exact combinatorial optimization algorithms have
been proposed to provide theoretical guarantees on finding
optimal solutions or determining the non-existence of a solution.
The core idea is to prune the candidate solution set by
confidently introducing new conditions. Branch-and-bound
(B&B) [9] is an example of an exact method to solve the
combinatorial problem, which recursively divides the candidate
solution set into disjoint subsets and rules out subsets that
cannot have any candidate solutions satisfying all conditions.
It has shown a reliable performance in the domain of mixed-
integer linear programs (MILPs) to which many combinatorial
problems can be reduced [10]. Several commercial optimization
solvers (e.g. CPLEX, Gurobi) use a B&B algorithm to solve
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MILP instances. However, two decisions must be made at
each iteration of B&B: node selection and variable selection,
which determine the next solution set to be partitioned, and
the variable to be used as the partition rule, respectively.
Most state-of-the-art optimizers use heuristics hard-coded by
domain experts to improve the performance [11]. However,
such heuristics are hard to develop and require adjustment for
different problems [12].

In recent years, an increasing number of studies have been
focusing on training machine learning (ML) algorithms to solve
MILP problems. The idea is that some procedural parts of the
solvers may be replaced by ML models that are trained with
historical data. However, most ML models are trained through
supervised learning, which requires the mapping between
training inputs and outputs. Since the optimal labels are
typically not accessible, supervised learning is not capable
for most MILP problems [13]. In contrast, reinforcement
learning (RL) algorithms show a potential benefit to the B&B
decision-making, thanks to the fact that the B&B decision-
making process can be modelled as a Markov decision process
(MDP) [12], [14]. This offers an opportunity to use statistical
learning for decision-making.

In this work, we provide an RL-based approach to learn
a variable selection strategy, which is the core of the B&B
method. Our agent is trained to maximize the improvement
of dual bound integral with respect to time in the B&B
method. We adopt the design of Proximal Policy Optimization
(PPO) [15], combining the idea of imitation learning to improve
the sample efficiency and advance imitated policy. We imitate
the Full Strong Branching (FSB) [16] variable selection rule
to discourage the exploration of unpromising directions. We
also introduce a Monte Carlo Tree Search (MCTS) like
approach [17] to encourage exploration during the training
phase and reinforce the action selection strategy.

We evaluate our RL agent with four kinds of widely adopted
combinatorial optimization problems. The experiments show
that our approach can outperform state-of-the-art methods under
multiple metrics. In summary, our contribution is threefold:
• We implement and evaluate an RL-based agent training

framework for B&B variable selection problem and
achieve comparable performance with the state-of-the-art
GCNN approach using supervised learning.

• To facilitate the decision quality, we propose a new MDP
formulation that is more suitable for the B&B method.
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• We use imitation learning to accelerate the training
process of our PPO agent and propose an MCTS policy
optimization method to refine the learned policy.

II. RELATED WORK

B&B [9] is one of the most general approaches for global
optimization in nonconvex and combinatorial problems, which
combines partial enumeration strategy with relaxation tech-
niques. B&B maintains a provable upper and lower (primal and
dual) bound on the optimal objective value and, hence, provides
more reliable results than heuristic approaches. However, the
B&B method can be slow depending on the selection of
branching rules, which may grow the computational cost
exponentially with the size of the problem [18].

Several attempts have been made to derive good branching
strategies. Current branching strategies can be categorized
into hand-designed approaches that make selections based on
heuristic scoring functions; and statistical approaches that use
machine learning models to approximate the scoring functions.
Most modern MILP solvers use hand-designed branching
strategies, including most infeasible branching [19], pseudocost
branching (PC) [20], strong branching (SB) [21], [16], reliabil-
ity branching (RB) [19], and more. Strong branching provides
the local optimal solution with the highest computational
cost by experimenting with all possible outcomes. Pseudo-
cost branching keeps a history of the success of performed
branchings to evaluate the quality of candidate variables, which
provides a less accurate but computationally cheaper solution.
Reliability branching integrates both strong and pseudocost
branching to balance the selection quality and time.

Given the fact that strong branching decisions provide a
minimum number of explored nodes among all other hand-
designed branching strategies but have a high computational
cost, several studies have come up with the idea of approx-
imating and speeding up strong branching strategies using
statistical approaches. In [22], a regressor is learned to predict
estimated strong branching scores using offline data collected
from similar instances. Similarly, a learning-to-rank algorithm
that estimates the rank of variables can also provide reliable
result [23], [24], which is more reliable than mimicking the
score function. However, these statistical approaches suffer
from extensive feature engineering.

One common approach to reducing the feature engineering
effort is to use the graph convolutional neural network (GCNN).
Reference [25] first proposed a GCNN model to solve combi-
natorial optimization problems, and reference [12] extended the
structure to the context of B&B variable selection, which is the
closest line of work to ours. In [12], authors show the GCNN
can provide accurate estimation of strong branching with the
shortest solving time in most of the considered instances.

However, most recent statistical approaches for variable
selection in B&B use supervised learning techniques, which
require a mapping between training inputs and expected labels.
The quality of the model highly depends on the quality of
training labels. As mentioned earlier, recent studies use strong
branching scores or selections as training labels, which provides

the local optimal solution, but is not guaranteed to be the
global optimal solution. In general, we do not have access to
optimal labels for most combinatorial optimization problems,
and thus the supervised learning paradigm is not suitable in
most cases [13]. Another approach is to learn through the
interactions with an uncertain environment and provide some
reward feedbacks to a learning algorithm. This is also known as
the reinforcement learning (RL) paradigm. The RL algorithm
makes a sequence of decisions and learns the decision-making
policy through trial and error to maximize the long-term reward.
Previous studies have shown that the combinatorial optimization
problem can be solved using RL algorithms, such as the
travelling salesman problem [13], [26], [27], maximum cut
problem [28], [29], [30], and more. This study proposes a deep
reinforcement learning framework to learn the global optimal
variable selection strategy. We adopt the structure of GCNN
as the design of our policy and value network.

III. BACKGROUND

In this section, we describe the fundamental concepts related
to the paper, and provide formal definitions to various terms.

A. Mixed integer linear program (MILP)

A MILP is a mathematical optimization problem that has a
set of linear constraints, a linear objective function, and several
decision variables that are continuous or integral with the form:

argmin
x

cTx, s.t. Ax ≤ b, l ≤ x ≤ u,

xi ∈ Z where i ∈ I, |I| ≤ n,

where c is the objective coefficient matrix, x is the variable
vector, A ∈ Rm×n denotes the constraint coefficient matrix,
b ∈ Rm represents the constraint constant term vector, l ∈
(R ∪ {−∞})n and u ∈ (R ∪ {∞})n indicate the lower and
upper variable bound vectors, respectively. Here n, m, and
I respectively denote the number of variables, number of
constraints, and index set of integer variables where |I| ≤ n.
If a variable has no lower or upper bound, then we set the
associated l and u to infinite values respectively. A candidate
solution is any assignment of x that satisfy the variable bounds.
A feasible solution is a candidate solution that satisfies all
constraints in the MILP instance, and an optimal solution is a
feasible solution that minimize the objective function.

A MILP can be relaxed to a linear program (LP) by ignoring
the integer constraints in the MILP; this is also called LP
relaxation. LP is convex and therefore can be solved efficiently
using various algorithms, such as the simplex algorithm. Since
removing the integer constraints expands the feasible set, the
optimal solution for LP is then used as the lower bound for
the corresponding MILP, namely the dual bound.

B. Branch-and-bound (B&B) algorithm

The B&B algorithm constructs a search tree recursively.
Each node in the search tree is a MILP. The B&B algorithm
can be described as follows. The original MILP is treated as
the root node in the search tree. The algorithm then recursively
picks a node from the search tree by a given node selection



rule, picks a variable to decompose the selected node, and
adds two children to the selected node that are produced by
the decomposition. The dual bound of these two children are
then being used to update the dual bound of the root node, and
the algorithm selects the next node to expand. To decompose
a MILP on variable xi, we first find the optimal solution x∗

to the LP relaxation. Then, if x∗i does not meet the integrality
constraint, we can decompose the MILP into two sub-problems
with additional constraints xi ≤ bx∗i c and xi ≥ dx∗i e. The
variable xi is called the branching variable, and all variables
that can be selected are called branching candidates.

1) Strong branching (SB): SB is one of the most powerful
state-of-the-art variable selection rules. The idea of SB is to test
which branching candidate can provides the best improvement
measured in children nodes. This method is a greedy method
that selects the locally best variable to branch on, which usually
works well in terms of the number of nodes visited to solve the
problem. However, it requires to branch on every branching
candidates to calculate the score, which is computationally
expensive. Moreover, this greedy approach cannot guarantee
to provide the global optimal selection.

C. Markov decision process (MDP) formulation

We can formulate the sequential decision making of variable
selection as a MDP. Each node in the search tree can be
encoded as a state. The agent exerts a branching variable from
all branching candidates to decompose the current node. This
action causes a transition to a child node. Through interactions
with the MDP, the algorithm learns an optimal policy π, that
is a sequence of control actions starting from the root node.

1) State: The state st at node t, can be represented as:

st = {(X,E,C)t, Jt},

where the first tuple is the bipartite graph representation
(X,E,C)t of the current node MILP, as done in [12], and
index set Jt is the index set of branching candidates. Two sets
of nodes in the bipartite graph correspond to the n variable
to be optimized and m constraints to meet. The edge ei,j is
added if the variable xi has a non-zero coefficient Ai,j in the
constraint cj , where de features form the constraints constant
term. E ∈ Rm×n×de represents the sparse edge feature matrix.
X ∈ Rn×dx is a feature matrix for all variable nodes, including
the features extracted from the objective function and variable
constraints. Similarly, C ∈ Rm×dc represents the feature matrix
for all constraint nodes, where each constraint is encoded into
dc features. Figure 1 illustrates the bipartite representation of
a general MILP instance. We calculate the optimal solution
of the current node’s LP relaxation and mark variables with
integer constraints and having a non-integer solution as the
branching variable to get Jt.

2) Action and transition: The action at node t, denoted
by at, determines the branching variable from the branching
candidates: at ∈ Jt. After an action is performed, the search
tree will add two children nodes to the current node and then
prunes the search tree if needed, as described in Section III-B.
All children share the same p(st+1|st, at) in this study.

Fig. 1: Bipartite graph representation (X,E,C) of a MILP.

3) Reward: The reward function is designed to encourage
the agent increase the dual bound quickly with as less branching
operations as possible. Because we do not control the selection
of state, and the global dual bound is highly related to the
search tree constructed based on the selection of branching
node at each step, using the improvement of global dual bound
is not valid as the selected branching node might not be able
to improve the global dual bound by any action. Therefore, we
calculate the reward based on the improvement of the local
dual bound:

r(st, at) = min{cTxbt′c∗LP , c
Txdt′e

∗
LP
} − cTxt

∗
LP ,

where xt
∗
LP is the dual bound of the current node st, xbt′c∗LP

and xdt′e
∗
LP

are respectively the dual bound of children nodes
after adding constraint xat ≤ bx∗atc and xat ≥ dx∗ate to st.

IV. METHODOLOGY

In this section, we discuss the design of the RL agent,
techniques to address the cold-start problem, the training
algorithm, and how to exploit the knowledge of a trained
RL agent to select branching variables from a given set of
branching candidates. Figure 2 shows an overview of our
approach, which entails (1) designing the RL agent; (2) using
imitation learning to pre-train the RL agent; (3) training the
RL agent with PPO; (4) finally, selecting reliable branching
variables for test environments using RL agent based on the
search result of Monte-Carlo tree search (MCTS); We describe
each of these tasks below.

A. Designing the RL agent

Reinforcement learning methods can find a policy that
maximizes the total reward, especially when the MDP is
identified. In this study, we use a policy gradient-based method
called proximal policy optimization (PPO) to find the optimal
policy π using the actor-critic framework. PPO has shown a
strong performance in nearly all reinforcement learning tasks,
thanks to the clipping method that limits the update of the
behaviour policy within a trust region.

To evaluate the step size of the policy gradient method, PPO
keeps tracking two policies, current policy πθ and old policy
πθold . Each policy contains two networks: a policy network
that estimates the action distribution of a given state and a
value network that estimates the state value. The state value
V (st) in this study is defined as follow:

V (st) =
∑
a

p(a|st)
(
r(st, a) + γ

V (bs′tc) + V (ds′te)
2

)
,



Fig. 2: The flow-diagram of the proposed approach.

where γ is a discount factor with value of 0.99 to encourage
immediate reward, and states bs′tc and ds′te are two children
after branching on state st with variable xa. This is the different
from the next state we obtained through the interaction with
the environment. That is being said, state st and st+1 might
not have an edge in the search tree, because the node selection
rule pick the next state from all leaf nodes in the search tree.
In the calculation of the state value, the next state must be the
child of the current state, to therefore correctly represent the
state value in the search tree. If st is a leaf node in the search
tree, then the state value V (st) is set to 0.

Because the state consists of a bipartite graph, we use
graph convolutional neural network (GCNN) as our policy and
value network. Previous studies also proved that GCNNs can
effectively capture structural characteristics of combinatorial
optimization problems. We adopt the similar GCNN design
from [12], which use two successive passes to perform a single
graph convolution. These passes are

c′p ← fc

cp, (p,q)∈E∑
q

gc (embx(xq), ep,q, embc(cp))

 ,

x′q ← fx

xq, (p,q)∈E∑
p

gc
(
embx(xq), ep,q, c

′
p

) ,

for all p ∈ C, q ∈ X . Next, the value of x′ is sent to a 2-layer
perceptron. For the policy network, we apply masked softmax
activation to estimate the action distribution. For the value
network, we compute masked sum to predict the state value.

B. Imitating the Strong Branching (SB)

Theoretically, the RL agent can find the optimal policy π
from scratch after training for enough episodes. However, as the
search tree is huge, with a branching factor usually over 1,000,
training an RL agent from scratch becomes time-consuming and
therefore impractical. To avoid the initial aimless exploration
of the RL agent, we use the imitation learning approach to
pretrain the RL agent policy and value network, paving the
way for learning sophisticated policy. We select SB as our
expert policy to generate offline training data, including the
state, corresponding SB score for each branching candidate, as
well as the reward. Then we reconstruct the state value V (st)

from the offline data and pretrain the policy and value network
by minimizing the following loss:

Lpolicy(θ) = − 1

N

∑
s,a∈D

logπθ(a|s)

Lvalue(θ) =
1

N

∑
s∈D

(Vθ(s)− V (s))2

C. Training the RL agent

Once the RL agent is pretrained using offline data, it is
necessary to learn an advanced policy by interacting with the
environment directly. To update the policy parameter θ with
some trajectories generated through the interaction with the
environment, we first save the parameters θ into θold, and then
calculate the loss as follows:

At = V (st)− Vθ(st), r =
πθ(at|st)
πθold(at|st)

,

Lpolicyt (θ) = Et [min (rAt, clip(r, 1− ε, 1 + ε)At)] ,

Lt(θ) = Et

[
Lpolicyt (θ)− c1A2

t − c2
∑
a

πθ(a|st)logπθ(a|st)

]
,

where V (st) is the state value calculated from the experiences,
Vθ(st) is the value network estimated state value for st, and
ε, c1, c2 are hyperparameters of the model. In this study, we
use ε = 0.1, c1 = 0.5, c2 = 0.01.

D. Enhancing policy with Monte-Carlo Tree Search (MCTS)

After we obtain the stable policy π∗θ and V ∗θ , it is essential
to make reliable selections for a given state st. One common
and straightforward approach is to take action with the highest
estimated action probability, argmaxaπ

∗
θ(a|st). However, this

result could be biased when the policy is not optimized or has
a significant variance. Since we have a tree-like search space,
it is possible to adopt the idea of MCTS to update the policy
π∗θ further. In MCTS, we generate multiple trajectories starting
from the current node. Then, we expand trajectories by taking
action based on some probability distribution until a certain
number of steps or the final state is reached. Finally, we pick
the best action based on these trajectories. This is similar to the
SB, except MCTS does not explore all branching candidates.

To run MCTS efficiently, we incorporate the knowledge
learned by our RL agent. In the action selection step for MCTS,



we use a modified version of upper confidence bound (UCB),
which selects the action that maximizes the following equation:

argmax
a∈A(s)

(s, a) + cπ∗θ(a|s)

√
log(1 +

∑
aN(s, a))

N(s, a) + 1
.

Here, the Q(s, a) represents the action value based on the
trajectories done previously, and N(s, a) keeps tracking the
number of times a has been selected on state s. We introduce
trained policy π∗θ to encourage the algorithm to search for
promising directions. To minimize the size of the search tree,
we further limit the branching candidates on each state s to
A(s), which only contains the top k actions based on the π∗θ(s).
In this study, we use k = 10.

Also, to reduce the simulation time, we do not perform the
branching operation when we run MCTS. Instead, we directly
modify the constraint feature matrix and edge feature matrix to
simulate the next state s′ based on the action, with half chance
to reach the left child and half chance to reach the right child.
We then set the reward of all actions to 0 and use the value
network V ∗θ trained by the RL agent to calculate the value of
V ∗θ (s

′), and use it to calculate the Q(s, a). We initialize the
action value and the visit count as follow:

Q(s, a) = γV ∗θ (s
′
t), N(s, a) = 1.

The Q(s, a) and N(s, a) are then updated when the agent
reaches the leaf of the search tree or the maximum number of
steps is reached. We apply the following update rule for each
state {st, · · · , s0}:

Q(sτ , aτ )← Q(sτ , aτ ) +
−Q(sτ , aτ ) +

∑t
t′=τ γ

t−τV ∗θ (s
′
t)

N(sτ , aτ ) + 1
.

After all MCTS simulations are finished, we identify the action
a with the highest Q(s, a) as the best branching variable for
each state s that has been visited at least ten times and use this
to train the policy network by minimizing the cross-entropy
loss. In this study, we limit the maximum depth to 3 and run
1,000 simulations of the MCTS for each state.

V. EVALUATION

In this section, we study the efficacy of different variable
selection strategies. We adopt the average solving time, average
number of resulting B&B nodes, and average dual integral
as our evaluation metrics. All experiments are repeated five
times with different random seeds to eliminate randomness.
All numbers are the averaged value across all five runs.

A. Data sets

To test the generalizability of our framework, we evaluate
our approach on four different types of NP-hard problems.
The first problem is called set covering problem proposed
in [31]. Our instances contain 1,000 columns and 500 rows
per instance. The second problem is generated following the
arbitrary relationships procedure of [32]. This problem is also
known as the combinatorial auction problem. In our experiment,
we generate instances with 100 items for 500 bids. Our third
data set is called capacitated facility location described in [33].

We collect instances with 100 facilities and 100 customers. The
last data set we used in this study is proposed in [34], which
is called the maximum independent set problem. The affinity
is set to 4, and the graph size is set to 500 in this study.

These problems are selected based on the previous works
and the hardness of the problem itself. According to [12],
these problems are the most representative of the types of
integer programming problems encountered in practice. We
use SCIP 7.0.3 [35] as the backend solver throughout the study,
with ecole 0.7.3 [36] as the environment interface. All SCIP
parameters are kept to default in this study.

B. Baselines

In the rest of this paper, we use PPO-MCTS to refer to
our proposed reinforcement learning framework. We compare
our approach with three different variable selection baseline
strategies. The first naive baseline strategy is the pure random
strategy, in which we select the branching variable from a
set of candidate variables uniformly. We use the full strong
branching (FSB) strategy as our second baseline, which we
use the default parameter defined in SCIP in this study. We
also re-implemented the GCNN model from [12] as our third
baseline. Based on the ML4CO NeurIPS 2021 competition
result, the GCNN model yields the best performance among
all other competing methods [37], [38], [39]. The performance
of PPO agents that have no MCTS learning afterwards (PPO)
is also reported for ablation study.

C. Evaluation metrics

We evaluate the performance of each approach using three
metrics, including the average solving time for each problem
instance, the average number of B&B search tree nodes visited
before the problem is solved, and a reward score that takes
into account both the solving time and the improvement of
the dual bound. Solving time and the number of nodes visited
measure the computational cost of each algorithm. Solving time
is evaluated based on the wall clock time, including feature
extraction time, model inference time, branching time, and
more. Therefore, a shorter solving time does not guarantee to
optimize the number of nodes visited during the B&B method.
To optimize the branching variable selection strategy, we expect
to minimize the number of nodes visited during the branching
and the total solving time to select optimal branching variables
with minimum computational cost. The score is calculated by:

−TcTx∗ +
∫ T

t=0

z∗t∂t, (1)

where x∗ is the optimal solution of the MILP instance, T is
the time budget to solve the problem, and z∗t is the best dual
bound at time t. This score is to be maximized, representing a
fast improvement of the dual bound. This reward metric was
first introduced in the ML4CO NeurIPS 2021 competition [37]
and is expected to be adopted further by the community.



TABLE I: Number of resulting B&B nodes on the test data sets
Set Covering Independent Set Combinatorial Auction Capacitated Facility Location

Random 2225.20 257.60 25543.26 2292.24
FSB 47.42 103.85 193.83 47.9

GCNN 44.07 88.66 201.82 886.66
PPO-MCTS 43.90 90.23 194.25 863.21

TABLE II: MILP instance solving time (in seconds) on the test data sets
Set Covering Independent Set Combinatorial Auction Capacitated Facility Location

Random 19.2 15.36 99.08 92.28
FSB 95.8 240.65 113.58 864.75

GCNN 3.28 6.54 4.15 80.68
PPO-MCTS 3.13 6.60 3.87 77.24

TABLE III: Evaluation score on the test data sets
Set Covering Independent Set Combinatorial Auction Capacitated Facility Location

FSB 149930 -191876 -7093620 16119158
GCNN 150654 -191123 -7077028 16159789

PPO-MCTS 150652 -191139 -7076023 16160324

TABLE IV: Performance comparison between PPO and PPO-MCTS
Nodes visit Solving time Evaluation score

PPO PPO-MCTS PPO PPO-MCTS PPO PPO-MCTS
Set Covering 57.68 43.90 3.52 3.13 150651 150652

Independent Set 88.18 90.23 8.34 6.60 -203328 -191139
Combinatorial Auction 270.97 194.25 5.28 3.87 -7077229 -7076023

Capacitated Facility Location 2202.46 863.21 139.65 77.24 16155103 16160324

D. Experiment result

Table I shows the average number of nodes visited before
solving the instances for each approach. We noticed both
GCNN and our PPO-MCTS have more nodes visited in complex
problems, namely the combinatorial auction and capacitated
facility location problems, compared to FSB. We conclude this
to the fact that the number of branching candidates in these
two problems are more significant than the other two problem
types, and therefore leads to the approximate function getting
more complex, which lowers the performance of the GCNN
model. Similarly, as the search tree branching factor grows,
RL agents become more challenging to learn the environment
thoroughly. The agent can potentially struggle in local optimal
as the maximum depth is set to three for our PPO-MCTS
agent. It is worth noting that number of nodes on its own is
not enough of a measure to judge different approaches with.
There reason is that a method may visit a larger number of
nodes, but may in fact be faster on each visit and result a better
overall reward value for convergence.

On the other hand, it is readily seen from Table II that FSB
takes a significant amount of time to select a variable for each
node in these two problems, and therefore the total solving
time for FSB is the longest compared to all other approaches
in all four problems. The GCNN and PPO-MCTS are having
similar inference time as the network designs are similar. As
the PPO-MCTS has a lower average number of visited nodes
in all but independent set problems, our method provides the
shortest solving time in all problems except the independent
set problem. However, the performance differences between
GCNN and PPO-MCTS on independent set problem in all
three metrics are negligible, which proves the effectiveness of
our proposed framework. In addition, when the problem is easy,

such as the set covering and independent set problems, both
GCNN and PPO-MCTS can find better branching variables
with fewer nodes visited than FSB. In general, PPO-MCTS
has a slightly better performance across different data sets and
metrics than GCNN, with a trade-off on the training expenses.

The average evaluation score for each approach is shown
in Table III. The GCNN and PPO-MCTS approaches keep
dominating the score in all problems, whereas the PPO-MCTS
has a higher score on challenging problems, and GCNN
performs better with easy problems.

E. Ablation study

We present an ablation study of the proposed PPO-MCTS
model to evaluate the importance of having post MCTS
retraining. Table IV demonstrates the performance of PPO
without post MCTS retraining on all metrics across all data
sets, denoted by PPO, comparing with the proposed PPO-
MCTS. It is observed that the PPO-MCTS perform better than
PPO in all cases, except the number of nodes visited in the
independent set problem. This empirical result suggests that
the post MCTS retraining offers a better performing RL agent.

VI. CONCLUSION

We proposed a reinforcement learning framework to learn the
variable selection policy for the B&B method. We formulated
a reward function that helps the agent learn optimal policies
without generating labels. We used imitation learning and
MCTS to deal with sample inadequacy challenges by initializ-
ing the policy to a relatively good policy and enhancing it with
multiple steps look-ahead. We demonstrated the performance
of the proposed framework with three baseline approaches on
four NP-hard problems and showed that the proposed method
yields a strong performance in most problems.
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