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Abstract—Recent advances in digital imaging have meant that
every smartphone has a video camera that can record high-
quality video for free and without restrictions. In addition, rapidly
developing Internet technology has contributed significantly to the
widespread distribution of digital video via web-based multimedia
systems and mobile applications such as YouTube, Facebook,
Twitter, WhatsApp, etc. However, as the recording and distribution
of digital video has become affordable nowadays, security issues
have become threatening and have spread worldwide. One of the
security issues is the identification of source cameras on videos.
Generally, two common categories of methods are used in this area,
namely Photo Response Non-Uniformity (PRNU) and Machine
Learning approaches. To exploit the power of both approaches,
this work adds a new PRNU-based layer to a convolutional neural
network (CNN) called PRNU-Net. To explore the new layer, the
main structure of the CNN is based on the MISLnet, which has
been used in several studies to identify the source camera. The
experimental results show that the PRNU-Net is more successful
than the MISLnet and that the PRNU extracted by the layer from
low features, namely edges or textures, is more useful than high
and mid-level features, namely parts and objects, in classifying
source camera models. On average, the network improves the
results in a new database by about 4%.

I. INTRODUCTION

In the last two decades, the cell phone technology has evolved
significantly due to its economic advantages, functionality
and accessibility [1]. The ability to create digital audiovisual
content without constraints such as time, objects, or locations
are clear advantages of the technology [2]. For forensic
investigations and crime prosecutions, smartphone devices
provide some important information in crucial ways [1], [3].
In areas such as medicine, law, and surveillance systems,
where images and videos are examined for authenticity, these
types of investigations have potential significance. Lossy video
compression complicates the forensic analysis of videos much
more than the analysis of images, since the current traces can
be erased or significantly damaged by high compression rates,
making it impossible or difficult to recover the entire processing
data. While numerous forensic methods have been developed
based on digital images [4], [S], [6], [7], [8l, [9], the forensic
analysis of videos has been less explored. It should be noted
that methods based on images cannot also be applied directly
to videos [10], [11]], [12]. This is due to some challenges
such as compression, stabilization, scaling, and cropping, as

well as the differences between frame types that can occur
when producing a video. By analyzing the video produced by
digital cameras, video identification algorithms can identify and
distinguish camera types. During the last few years, forensic
specialists have been particularly interested in this topic. In
general, images and videos can be identified in two ways: by
extracting a unique fingerprint from the images or videos, or by
examining the metadata associated with the images or videos
(the DNA of the video). Lopez et al. [13] demonstrated that
the internal elements and metadata of video can be used for
source video identification. Since metadata can be removed
from an image or video, identifying video or images based on
fingerprint is a reliable method. Moreover, two concepts are
considered for identifying camera: individual source camera
identification (ISCI) and source camera model identification
(SCMI). ISCT distinguishes cameras from both the same and
different camera models, while SCMI is a subset of ISCI that
distinguishes a particular camera model from others, but cannot
distinguish a particular camera model from the same camera
models. In this paper, we focus on the SCMI scenario.

Two common methods used in the field, namely Photo
Response Non Uniformity (PRNU) [14], [[15]], [L6], [17], [[18]
and Machine Learning approaches. PRNU, which is understood
to be the unique fingerprint of the camera, is often referred
to as residual noise or sensor pattern noise (SPN). PRNU
is generated when the CCD (Charge Coupled Device) or
CMOS (Complementary Metal Oxide Semiconductor) sensors
process the input signal (light) and convert it into a digital
signal. The output of the methods can be considered low-
level features. In deep learning methods, which are a popular
category of machine learning, this training step should be
performed to extract the fingerprint of the video captured
by the camera. The main challenges for these methods are
the separation of content from noise. The challenge can be
solved by introducing methods and algorithms to address
the problem by, for example, adding new layers and loss
functions. The architecture introduced by the Multimedia
and Information Security Lab (MISL) [[19] is one of the
architectures. The MISLnet network is based on a so-called
constrained convolutional layer. A Constrained Convolutional
layer is added at the beginning of a CNN that is to perform



forensic tasks as shown in Figure 1 (a). As a result of the layer,
low-level features are extracted to suppress the image content.
To design the layer, the convolutional layer filters are enforced
by the following constraints:

{ wi(0,0) = —1
Yoo iy (mim) =1
where j = {1,2,3}. Moreover, w,g) denotes the jth kernel
of the kth filter in the first layer of the network. Despite
promising results of the method [20], [21], because the degree
of sensitivity in the field, an improvement in the field is always
essential.

To add the benefits of PRNU approaches to CNNs, this
paper presents a new PRNU-based layer that can improve the
results of Deep Learning architectures in this application. The
PRNU-based layer, which can be inserted into CNNs, adds an
advantageous attribute to CNNs thus taking into account the
fingerprint information extracted from frames in the network.
The layer can pass the extracted fingerprint (low-level features)
from each layer to the next layers. This means that the features
can be extracted by layers with high, mid or low features.
An overview of the structures is given in Figure 1 (b). In
the structure, the new layer can be placed at any point in the
network and retrieved several times like a convolutional layer.
The goal of evaluating the new layer at different locations in
the network is to make the effects of the PRNU extracted from
the high, mid, and low-level features during learning clearer.
Forward propagation and backpropagation are based on the
PRNU method and the derivatives of the loss with respect to
the input data of the layer, respectively. Two scenarios were
performed in relation to the location and number of repetitions
of the layer. To evaluate the approaches, the frames need be
extracted. Generally, the frames consists of intra-coded picture
(I-frame), predictive coded picture (P-frame), and bi-predictive
coded picture (B-frames) showing promising results with I-
frames [12], [22]. In our work, I-frames are extracted from
Qatar University Forensic Video Database (QUFVD) which
was created as part of this investigation. The database includes
6000 videos from 20 modern smartphone representing five
brands, each brand has two models, and each model has two
identical smartphone devices. The experiments show that the
new layer can improve the results of the CNNs without it
(MISL [19]). It is worth noting that, like all deep learning
methods used to identify source cameras, this study deals with
videos at the frame level instead of considering the video in a
feature space representation.

The paper is organized as follows. Section II gives a review of
available deep learning methods for source camera verification
from videos is presented. Our new approach is then presented in
Section III. Section IV describes our database used to identify
source cameras from videos. Section V discusses the evaluation
of the proposed while the last section concludes this work.

II. LITERATURE REVIEW

Source camera identification from videos can be classified
into two categories: PRNU and Deep Learning methods. Since

)]

we focus on Deep Learning in this paper, we address these
methods in this section.

In [23], a CNN based sensor pattern noise (SPN) method
was presented, called SPN-CNN. The authors implemented
the architecture based on the idea that CNN has the ability
to extract signals characterised by noise from a set of images
[24]]. Therefore, the network was to obtain a noise pattern.
The method was tested on the VISION database [25] and
experimental results have shown that the results outperform
those of the wavelet denoiser. Also, the authors showed that,
when I-frames were considered to feed into CNN, the results
were further improved.

References [20] and [21] proposed a deep learning method
(MISLnet architecture) for source camera identification using
video frames to train the network. They extended a version of a
constrained convolutional layer introduced in [19] as mentioned
in Section I. Moreover, a majority vote was considered to make
the decision in video level using frames fed into the network.
The constrained convolutional layer was added as the first layer
that used three kernel with size 5. This layer is constructed
in such a way that there are relationships between adjacent
pixels that are independent of the content of the scene. The
methods was tested on VISION database [25]. The experiments
showed that the layer can improve results compared with deep
learning architectures without the layer. The key difference
between the two methods relates to the size of images and
type of color modes. [20] and [21] used RGB and gray scale
modes, respectively. Patches used in former is 480 while latter
fed patched with 256.

Mayer et al. [26] used CNN proposed in [19] like the two
previous studies to extract features and a similarity network
to verify the source camera. The similarity network maps two
input deep feature vectors to a 2D similarity vector. To achive
this, the authors follow a design of the similarity network
developed in [27]]. To obtain a decision in video level, a fusion
approach based on mean of the inactivated output layer from
the similarity network was presented. This method was tested
on SOCRatES dataset [28]. The experiments showed that the
method improve traditional methods such as [29].

The structure of the CNN for the three studies is shown in
Figure 1 (a). As shown in the figure, a constrained convolutional
layer is added to a simple CNN.

III. PRNU-NET

Figure 1 (b) shows the structure of the network used in the
study. As can be seen in the figure, only the constrained layer
proposed by [19] (MISLnet architecture) is removed from our
structure and the rest of our structure is the same as MISLnet.
A new PRNU-based layer has been designed to replace the
constrained convolutional layer and can be placed elsewhere
in the network. The layer can extract PRNU from raw images
(input layer) and feature maps of each convolutional layer.

To design our new layer, forward propagation and backward
propagation are considered, which are explained in the follow-
ing two subsections. Since PRNU is extracted from grayscale
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Overview of (a) The CNN (MISLnet) presented in [19] with a constrained layer in the first layer of the network and (b) PRNU network structure with

a layer based on PRNU (the dotted rectangle shows that different locations of the layer can be considered).

images, it should be noticed that the frames used as input are
in grayscale mode.
A. Forward propagation

Let B = {X ((lj)), Y/ } » be the training set with /N samples.
I shows the position of the layer as shown in Figure 1 (b). For
each input of the layer, we consider X((l) = {x1,22, ..., 24},
where d is the dimension of the input of the layer. For the
network shown in Figure 1 (b), for [ = {1,2,3,4,5}, d can
be d = {1,96, 64, 64,128}, respectively. d guarantees that the
PRNU can be extracted from raw images (input layer) and
feature maps of the convolutional layers which are the input
of the layer. For example, for a member of X @ ), that is, x;
with d = 96 denotes the first dimension of the input with 96
dimensions at the second position (after the first convolutional
layer as shown in Figure 1 (b)) eligible for the layer. To obtain
PRNU for the input, we have as [29]:

z;, =0+ 0K +0 2

Where O refers to the original input multimedia file, K
represents the PRNU factor and © is a random noise factor. To
estimate K, noise residual W of the input should be obtained
using denoising filter F':

Wi =x; — F(x;) 3)

Estimation of K is obtained by the following maximum
likelihood estimator:

. Wi

b(wi)?
Where K; is output of the layer for input z;.
The process of feature extraction by the PRNU layer is
illustrated in Figure 2 at three different layer positions for one
sample. The original image, the output of the first convolutional
layer and the last convolutional layer are selected to obtain
PRNU. A patch with a size of 350 x 350 is considered as
input for the original image. To create feature maps in the
convolutional layers, one of the convolutional kernels is used.
As mentioned above, a denoising filter F' is used to extract
the pattern noise. Wavelet-based filters can be considered to
have better performance than approaches such as Wiener and
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Fig. 2. Sample of PRNU layer results based on three positions. The first row
shows (a) the original image, (b) the output of the first convolutional layer,
and (c) the output of the last convolutional layer. The second row shows the
PRNU extraction corresponding to each output (the displayed outputs of two
convolutional layers are based on scaled colors and also the sizes have been
adjusted to the original size).

median filters. Areas around the edges are usually misinter-
preted by the latter two. For details on how this denoising filter
works, see [4].

B. BackPropagation

Backpropagation of the PRNU layer requires input and
output of the forward function of the layer. To include a
user-defined layer in a network, the forward function of
the layer must accept the output of the previous layer and
forward propagate arrays of the size expected by the next layer.
Similarly, if the backward function is specified, it must accept
inputs of the same size as the corresponding output of the
forward function and backward propagate derivatives of the
same size. The derivative of the loss with respect to the input
data (X) is:

L 9L 9f(X)
X~ 9f(X) 0X

where % is the gradient propagated from the next layer.
Since in backpropagation scheme, we can use both input and
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output of forward propagation to derive the derivative of the
activation. Let us consider K as:

K=FoX (6)

where E shows a matrix that perform the operation to obtain
PRNU like (4), and © is the element-wise product of the two
matrix. Then, if we have f(X) = K, the derivation is:
of(X)
———~ =F 7
X (7
Since we have both K and X from the backpropagation
operation, we can easily obtain E. Algorithms 1 enumerates the

learning schemes for forward propagation and backpropagation.

Algorithm 1 Training PRNU-Net with forward propagation
and backpropagation
(Forward propagation)

NN
Input: Training data B = {X ff))7 YJ}
j=1

. . IN
Output: PRNU estimated K = {K;J )}
j=1

for j=1 to N
for i=1to d
Compute Noise residual estimated W;J ) using (3)
Compute PRNU K7 using (4)
end for
end for
Return: K
(Backpropagation)
. R oL
Input: K, X, and 5705
Output: 2%
Compute matrix of the PRNU operation: £ = K © X
(@ is the element-wise division)
Compute % uasiLng ()

Return: 2% = E

X — 9f(X)

IV. DATABASES

Most of the databases used for source video identification
provide recordings captured with video cameras, and only two
databases offer recordings with smartphones, namely Daxing
and QUFVD [30]. Therefore, exploring the methods based
on smartphone databases, which are developed with a rapid
growth, can show whether the existing methods are useful
on the new databases. Comparing the results of Daxing and
QUFVD with older databases such as VISION will also show
that the new smartphone-based databases are more challenging
and thus improvement is inevitably needed. Although the
Daxing database can be considered an important database in
this field, as explored in [30], QUFVD is better suited to be used
in Deep Learning methods. In fact, in Daxing database, source
camera identification techniques based on machine learning
may face a problem of unbalanced data since the number of
training videos is small and differs across the devices. To make
a fair comparison, the QUFVD database has been used. This
includes five popular smartphone brands with two models per
brand with two devices for each model, 6000 original videos,

and 76,531 I-frames. Table I summarizes QUFVD with its
features and Figure 3 shows samples of the database. The
database is publicly available El

Fig. 3. Sample frames from captured videos of the database

V. EVALUATION

PRNU-Net is evaluated using the SCMI scenario (a 10-class
problem) with different settings. We divide the experiments into
different scenarios showing the influence of some conditions
on the results, which related to the position and repetition of
the layer during training. Our proposed network is compared
with MISLnet architecture [19]] that has been used in several
recent studies [20], [26]], [21]]. To show the impact of separating
content from noise, MISLnet is considered with and without
the constrained layer. Our implementation of the architecture
is based more on [20], which was considered for identifying
the source camera. The Stochastic gradient descent (SGD) is
considered to train the model. The batch size is set to 100
and the parameters for momentum and decay of the stochastic
gradient descent are set to 0.95 and 0.0005, respectively. The
CNN is trained for 10 epochs in each experiment. The ratio
of the database for the experiments uses 80% of these videos
for training while the remaining 20% are considered as testing.
Also, 20% of the training data is considered as validation data.
As mentioned earlier, I-frames of the videos are extracted to
evaluate the performances using the database. For each video
and in each experimental setup, we selected all I-frames related
to the videos in the training, testing, and validation tasks. A total
of 76,531 I-frames were extracted. To identify a video based
on its I-frames, all I-frames in the test set are considered. The
scores obtained by the CNN based on the highest probability
show which I-frames belong to which classes. At the video
level, a majority vote then decides all the frames that belong to
a video. It should be noted that all patches (about 90,000) for
each class are used for training and the best results for both
methods are based on patches with a size of 350 350. A 64-bit
operating system (Ubuntu 18) with a CPU E5-2650 v4 @ 2.20
GHz, 128.0 GB RAM, and four NVIDIA GTX TITAN X. were
used in order to run our experiments. Tables II lists the results
of the frame and video levels in terms of accuracy (%) for the
SCMI scenario for each smartphone model based on PRNU-
Net and MISLnet with and without constrained layer. With

Uhttps://www.dropbox.com/sh
/nb543na9qqOwlaz/AA Ac5N8ecjawk2KIVF8ktkrya?dl=0



TABLE I
THE DEVICES OF OUR DATABASE WITH THEIR CHARACTERISTICS.

Brand Model Resolution Number of videos Number of I-frames Length in Secs  Operating system
Samsung Galaxy AS50 (device #1) 1080 x 1920 300 3654 11-15 Android 10.0
Samsung Galaxy A50 (device #2) 1080 x 1920 300 3782 11-15 Android 10.0
Samsung Note9 (device #1) 1080 x 1920 300 3956 11-15 Android 10.0
Samsung Note9 (device #2) 1080 x 1920 300 3962 12-15 Android 10.0
Huawei Y7 (device #1) 720 x 1280 300 3630 11-15 Android 9.0
Huawei Y7 (device #2) 720 x 1280 300 3642 11-15 Android 9.0
Huawei Y9 (device #1) 720 x 1280 300 4146 11-14 Android 9.0
Huawei Y9 (device #2) 720 x 1280 300 4011 11-15 Android 9.0
iPhone 8 Plus (device #1) 1080 x 1920 300 3991 11-15 iOS 13
iPhone 8 Plus (device #2) 1080 x 1920 300 4080 11-14 iO0S 13
iPhone XS Max (device #1) 1080 x 1920 300 3893 11-15 iOS 13
iPhone XS Max (device #2) 1080 x 1920 300 4074 11-15 iO0S 13
Nokia 5.4 (device #1) 1080 x 1920 300 3350 11-13 Android 10.0
Nokia 5.4 (device #2) 1080 x 1920 300 3531 11-14 Android 10.0
Nokia 7.1 (device #1) 1080 x 1920 300 3904 11-13 Android 10.0
Nokia 7.1 (device #2) 1080 x 1920 300 3819 11-14 Android 10.0
Xiaomi Redmi Note8 (device #1) 1080 x 1920 300 3776 11-14 Android 11.0
Xiaomi Redmi Note8 (device #2) 1080 x 1920 300 3598 11 Android 11.0
Xiaomi Redmi Note9 Pro (device #1) 1080 x 1920 300 3888 11-15 Android 11.0
Xiaomi Redmi Note9 Pro (device #2) 1080 x 1920 300 3838 11-13 Android 11.0
TABLE II
THE RESULTS OF THE FRAME AND VIDEO LEVELS IN TERMS OF ACCURACY (%) FOR THE SCMI SCENARIO FOR EACH SMARTPHONE MODEL.
Model I-frame Video
[19] (without [19] (with [19] (without [19] (with
constrained layer) constrained layer) Ours constrained layer) constrained layer) Ours

Galaxy A50 69.1 72.8 75.0 71.0 73.3 717.2

Note9 74.2 78.7 78.8 88.4 95.8 95.8

Y7 65.7 68.0 71.5 80.0 84.2 86.0

Y9 70.8 76.9 77.3 82.4 86.7 91.6

8 Plus 65.5 67.8 73.9 83.4 84.2 85.5

XS Max 71.5 76.8 79.2 64.8 68.3 74.9

54 79.8 81.8 83.1 88.7 90.8 92.7

7.1 71.8 75.5 80.6 86.5 90.0 92.2

Redmi Note8 70.5 75.8 81.9 78.2 80.8 84.2

Redmi Note9 Pro 66.1 66.4 75.0 64.4 65.8 77.3

Overall accuracy 70.5 74.0 77.6 78.8 82.0 85.7

TABLE III
IMPACT OF PLACE AND REPETITION OF THE PRNU LAYER IN THE NETWORK (1)
Place [=1 =2 [=3 1I=4 1=5 1={1,2} 1=1{1,2,3} 1=1{1,2,3,4} 1={1,2,3,4,5}
77.4 77.6 74.1 73.8 73.0 77.4 73.9 72.5 72.3

this premise, Figure 4 provides a more comprehensive picture
of camera identification performance to check the quality of
PRNU-Net compared to MISLnet by presenting the Receiver
Operating Characteristic (ROC) curves for a selected group of
ten classes (smartphone model) from our database. Two values
are calculated for each threshold: True Positive Ratio (TPR)
and False Positive Ratio (FPR). The TPR of a given class,
e.g. Huawei Y7, is the number of outputs whose actual and
predicted class is Huawei Y7 divided by the number of outputs
whose predicted class is Huawei Y7. The FPR is calculated
by dividing the number of outputs whose actual class is not
Huawei Y7, but whose predicted class was Huawei Y7 by the

number of outputs whose predicted class is not Huawei Y7.

Impact of place and repetition of the layer in the network (I) is
explored as shown in Table III. This shows that the position is
more suitable for layers with high, mid, or low-level features.

A. Result discussion

Recently, Deep Learning methods have been introduced to
solve source camera identification. The methods can help to
improve the results obtained with traditional methods such as
the PRNU methods. Overall, the results obtained at the frame
and video levels suggest that PRNU-Net is more successful
than MISLnet for the SCMI problem in all device models.
For both methods, when the results are reported at the video
level, improvement can be cleaely observed. In addition, the
results of PRNU-Net and MISLnet with the constrained layer



when compared against MISLnet without the constrained layer
clearly show that the separation of content and noise is useful
for source camera identification. The results are discussed in
more detail below. As can be seen in Table II at the frame level,
a few devices are hard to identify, such as the Y7, 8 Plus, and
Redmi Note9 Pro, and this requires further analysis to find out
the reason for the differences, which could be the resolution of

the videos or the imaging technology used by the devices, etc.

However, from other results, resolution does seem to be the
reason, since Y7 and Y9 have the lowest resolution, but their
identification results are not worse. The biggest improvement

is for the Redmi Note9 Pro compared to MISLnet about 9%.

At the video level, an overall improvement is achieved for
all devices. The best result with 95% is also obtained for the
Note 9 by both the methods. The best improvement on video
level is also for Redmi Note9 pro compared to MISLnet about
12%. Figures 4 shows the TPR compared to the FPR for the
two methods at different frame-level thresholds. As can be
seen from the figure, all models achieve a larger Area Under
Curve (AUC) value than MISLnet. A different analysis for
the devices in terms of TPR and FPR as shown in the figure,
shows that the best performance is obtained by Nokia 5.4 with
Area Under Curve (AUC=0.991) for PRNU-Net (Figure 4 (a))
compared to AUC=0.989 for MISLnet (Figure 4 (b)). Table III
shows the best result when the layer position is [ = 2 and the
layer repetition is 2, namely, [ = {1,2} in frame level. When
the repetition is set for all layers, a drop in performance is
indicated showing that the fingerprint extracted can be effected
by convolutional layers. This also shows that the layer gives

better results when placed after layers with low-level features.

This may be because PRNU extracts low level features and
the features may be more accurate if the input is low level.

VI. CONCLUSION

This paper has presented a new layer based PRNU extracted
from videos taken with a smartphone to identify the camera
source. In general, PRNU methods extract low-level features
from frames, and we have studied the feature extraction by the
methods using a deep-learning approach. For the new layer,
forward propagation and backpropagation are defined based on
the extracted PRNU and the derivative of the loss with respect
to the input data, respectively. The method is evaluated with
a database containing five popular smartphone brands with
two models per brand and two devices for each model, 6000
original videos, and 76,531 I-frames. The results show that the
approach achieves promising results compared to MISLnet, one
of the most popular deep learning methods in the field. The
best results are obtained when the layer located after low level
inputs. However, it is obvious that it is essential to improve
the results in future works.

To improve the results, especially when the layer is repeated,
defining new learnable parameters can help to reduce the impact
of the convolutional layers. The parallel use of other PRNU
methods and filters can be considered as a bank of operators that
can be used instead of convolutional layers. Also, it is possible
to add the layer to other Deep Learning architectures. It would
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Fig. 4. True and false positive rates (ROC) obtained in SCMI scenario (a) 10
classes with PRNU-Net (b) 10 classes with MISLnet

be a worthwhile endeavor for the future to change architecture
so that videos are seen as a sequence of frames rather than
focusing on single frames. Finally, the PRNU network should
be tested using other scenarios such as ISCI to obtain a more
accurate analysis.
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