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Abstract—Unsupervised domain adaptation is one of the chal-
lenging problems in computer vision. This paper presents a
novel approach to unsupervised domain adaptations based on the
optimal transport-based distance. Our approach allows aligning
target and source domains without the requirement of meaningful
metrics across domains. In addition, the proposal can associate
the correct mapping between source and target domains and
guarantee a constraint of topology between source and target
domains. The proposed method is evaluated on different datasets
in various problems, i.e. (i) digit recognition on MNIST, MNIST-
M, USPS datasets, (ii) Object recognition on Amazon, Webcam,
DSLR, and VisDA datasets, (iii) Insect Recognition on the IP102
dataset. The experimental results show our proposed method con-
sistently improves performance accuracy. Also, our framework
can be incorporated with any other CNN frameworks within
an end-to-end deep network design for recognition problems to
improve their performance.

I. INTRODUCTION

Deep learning-based image recognition studies have been
recently achieving very accurate performance in visual appli-
cations, e.g. image classification [1], [2], [3], face recognition,
[4], [5], [6], [7], [8], image synthesis [9], [10], [11], [12],
[13], [14], action recognition [15], [16], semantic segmentation
[17], [18]. However, these methods assume the testing images
from the same distribution as the training images, therefore,
these deep learning-based models are likely to fail when
performing in real data in the new domains. Hence, image
recognition crossing domains play an important role to address
the mentioned problem and has become an active topic in
the research communities. Particularly, domain adaptation
[19], [20], [21], [22], [23] has received much attention in
computer vision. Domain adaptation refers to the problem of
leveraging labeled data in a source domain to learn an accurate
model in a target label-free domain. The knowledge from the
source domains will be learned and transferred to the target
domains in a supervised or unsupervised manner. Specifically,
domain adaptation tries to minimize the difference in the
deep feature representation between source and target domains
by minimizing the distance between the source and target
distributions [22], [20], [21]. These prior works have indicated
the importance of the discrepancy between data distributions
across domains. Hence, these works result in the principle
approach to solve the domain adaptation problem is that we
transform the feature distributions so as to make the target
feature distributions closer to the source feature distributions
and utilize the classifier learned in the source domain applying

Fig. 1. Optimal-Transported Based Adaptation. The Gromov-Wasserstein
distance helps to align and associate target features to source features.

to the target domain. In our paper, we also take this intuition
into account and propose a novel framework that allows to
minimize the differences between source and target feature
distributions. Particularly, we approach to the domain adapta-
tion problem based on optimal transport distances.

Optimal Transport (OT) has become an active topic in recent
years since it has various applications in domain adaptation
[24], [25], [26], generative models [27], [28], [29], [30],
shape matching [31], [32], etc. OT distances are used to
compute the distance two probability distributions, which are
known under several metrics such as p-Wasserstein (Earth
Mover), Monge-Kantorovich, Gromov-Wasserstein distances.
Theoretically, OT provides a way of inferring correspondences
between two distributions by leveraging their intrinsic ge-
ometries. One of the well-known OT distances is Wasserstein
which provide a way to measure two probability distributions.
The Wasserstein distance is widely used for domain adaptation
since it can help to mitigate the differences between source
and target feature domains. However, Wasserstein leaves a
serious problem, specifically, the Wasserstein distance will
be not practical if we cannot define the meaningful metric
across domains. In another word, if two feature domains are
unaligned, we cannot directly compared or measure two data
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TABLE I
COMPARISONS IN THE PROPERTIES BETWEEN OUR PROPOSED APPROACH AND OTHER RECENT METHODS, WHERE 7REPRESENTS not applicable

PROPERTIES. GAUSSIAN MIXTURE MODEL (GMM), PROBABILISTIC GRAPHICAL MODEL (PGM), CONVOLUTIONAL NEURAL NETWORKS (CNN),
ADVERSARIAL LOSS (`adv ), LOG LIKELIHOOD LOSS (`LL), CYCLE CONSISTENCY LOSS (`cyc), DISCREPANCY LOSS (`dis) AND CROSS-ENTROPY

LOSS (`CE ), SLICED GROMOV-WASSERSTEIN LOSS (`SGW ).

Domain
Modality Network Structures Loss

Functions End-to-End Target-domain
Label-free

FT [33] Transfer Learning CNN `2 3 7

UBM [34] Adaptation GMM `LL 7 3
DANN [21] Adaptation CNN `adv 3 3
CoGAN [35] Adaptation CNN+GAN `adv 3 3
I2IAdapt [19] Adaptation CNN+GAN `adv + `cyc 3 3
ADDA [20] Adaptation CNN+GAN `adv 3 3
MCD [36] Adaptation CNN+GAN `adv + `dis 3 3
ADA [37] Generalization CNN `CE 3 3

E-UNVP [38] Generalization PGM+CNN `LL + `CE 3 3
OTAdapt Adaptation CNN + GAN `adv + `SGW 3 3

points. To address this problem, we propose a new approach
that leverages the Gromov-Wasserstein distance in deep feature
spaces to compare two distributions in different domains.

Contributions of this Work: In order to solve the problem
defined above, we propose the use of recent advanced deep
learning approaches to deal with limited training samples. We
present a novel optimal transport loss approach with domain
adaptation integrated into deep convolutional neural network
(CNN) to train a robust insect classifier. The most recent
domain adaptation methods are based on adversarial training
[20], [21] that minimizes the discrepancy between source and
target domains. However, minimizing feature distributions in
different domains is not practical due to the lack of a feasible
metric across domains. In particular, defining a metric that is
compatible with both two domains and satisfies all properties
in both two domains (e.g. features of different classes should
be distinguished and features of the same class should be
close) is not an trivial task. Other prior metrics (e.g. adversarial
loss, KL divergence, Wasserstein distance, etc) usually could
not sufficiently satisfy this property. Moreover, these current
methods ignore the feature distribution structures between
source and target domains. To address these mentioned issues,
we propose a novel optimal transport distance, specifically, the
Gromov-Wasserstein (GW) distance, that allows comparing
features across domains while aligning feature distributions
and maintaining the feature structures between source and
target domains. In addition, since the computation of GW
distance is costly due to the solving non-convex quadratic
assignment problem, we present a fast approximation form of
GW distance based on 1D-GW distance. Table I summarizes
the properties of our proposed method compared to other
current domain adaptation methods. Through intensive exper-
iments on MNIST, MNIST-M, IP102, and VisDA datasets,
we prove our proposed method can help to improve the
performance of domain adaptation methods.

II. RELATED WORK

Domain adaptation is a technique in machine learning,
especially CNN, that aims to learn a concept from a source
dataset and perform well on target datasets. Deep convolution
networks have been used in segmentation, classification, and

recognition of visual domains in many applications by learning
good features from the given datasets. Moreover, the learned
representation from the deep convolution networks is used
for other datasets. However, these representations may not
generalize enough for the new datasets due to the domain shift.
It is possible to mitigate this problem by fine-tuning but for
large parameters employed by deep networks, it is challenging
to acquire ample of labeled data. The main goal of the domain
adaptation is to reduce the discrepancy between the source and
target feature distributions by leading feature learning.

There are many works published in domain adaptation
recently. The main aim of domain adaptation is to learn a
distribution in a source data and find a way to improve the
performance of a model on a different target data distribution.
It addresses to reduce the domain shift happening between the
source and the target domain. In [39], the method maximizes
domain confusion loss to learn dominant invariant represen-
tation in both source and target domains. The correlation
between classes learned in the source domain transferred to
target domains so that it maintains the relationship between
classes. Tzeng et. al. [20] proposed domain adaptation using
discriminative feature learning and adversarial learning for the
unsupervised domain. At first, a source encoder is trained
using a supervised method. Then, an adversarial adaptation
is used to train the target network. Here, the discriminator
that compares the source and target domain fails to recognize
the difference between them. So, during testing, the trained
target model with source classifier classifies the target images.
Similarly, [21] proposed a unified framework that learns the
labeled data and unlabeled data at the same time. Ber et.
al. [40] presented a novel method for unsupervised domain
adaptation which is suitable for imbalanced and overlapping
datasets and also works with label and conditional shifts.
Luo et. al. [41] identified the label-domination problem on
a natural and widespread conditional GAN framework for
semi-supervised domain adaptation. Also proposed Relaxed
cGAN, addressing the label-domination problem by carefully
designing the modules and loss functions. Here, state-of-
the-art performance is obtained on Digit, DomainNet and
Office-Home datasets. Zhang et. al. [42] proposed a novel



Fig. 2. (a) The Proposed Framework. (b) An example of SGW in the 3D spaces that are projected to the line by a projection ∆. The solution for this
projection is the anti-identity mapping.

method called Adversarial Continuous learning in unsuper-
vised Domain Adaptation (ACDA). This proposed model
confuses the domain discriminator by learning adversarially
high confidence examples from the target domain. Here, a deep
correlation loss is also proposed to ensure that consistency
is maintained with predictions. Sener et. al. [43] proposes a
unified model for learning transferable representations target
label inference for unsupervised domain adaptation.

Optimal Transport has been widely used to compute
the distance between two probability distributions, which has
been first introduced in middle of the 19th century. Optimal
transport has several applications in image processing (e.g.
color transfer between images, etc), computer graphics (e.g.
shape matching, etc). Recently, OT has gained much attention
from the computer vision research society. OT has become a
major metric in learning generative models [27], [28], [29],
domain adaptations [24], [25], [26]. However, OT suffers sev-
eral issues, specifically, the computation efficiency. Computing
the OT distances (e.g. Wasserstein, Gromov-Wasserstein, etc)
requires a large computational cost since it has to solve the as-
signment problems which are NP hard problem in the general
cases. Recently, there were several prior works that introduced
novel methods to fast approximate the OT distances by using
the sliced approaches [44], [45], [46]. In our approach, we
also take the intuition of the sliced approach into account to
fast approximate the Gromov-Wasserstein distance.

III. THE PROPOSED METHOD

In this section, our proposed method is introduced to the
problem of unsupervised domain adaptation based on the
Sliced Gromov-Wasserstein distance. In unsupervised domain
adaptation, we assume the source image xs ∈ Xs and source
label ys ∈ Ys are drawn from a source domain distribution
pIs(xs,ys). Similarly, the target image xt ∈ Xt is drawn
from pIt(xt) and the target label yt is unknown. Fig. 2(a)
illustrates the proposed method. Our method aims to learn
to minimize the gap between source and target distributions.

The discriminator tries to align the source and target fea-
ture representation distributions extracted from source and
target extractors. Meanwhile, the Sliced Gromov-Wasserstein
distance helps to associate features from the target domain
to the source domain. In other words, we try to learn a
feature representation for the target domain that can utilize the
classifier trained on the source domain. Let F be the feature
extractor, C be the classifier, and D be the discriminator.

Network Backbone Our network consists of two subnet-
works that are a backbone network F and a classifier C.
Particularly, we choose standard networks in our experiments,
i.e. LeNet [47], ResNet-50 [2], VGG-16 [1] as the backbone
of the source and target networks. The classifier C includes a
fully connected layer followed by the softmax layer. However,
it should be noticed that the network structures between
source and target can be different as long as the feature
representations of source and target domain have the same
number of dimensions. The discriminator D is designed as
the a stack of two fully connected layers followed by the
Leaky ReLU activation. The unsupervised domain adaptation
to image classification can be formed as follows:

min
F,C

[
E

xs,ys

Ls(xs,ys;F , C) + E
xt

Lt(xt;F)

]
(1)

where Ls is the supervised loss on the source domain that can
be defined as follows:

Ls(xs,ys;F , C) = −
c∑
i=1

1k=ys log C(F(xs)) (2)

and the Lt is the unsupervised loss defined on the target
domain. Let fs ∼ ps(fs), ft ∼ pt(ft) be the features extracted
from the source image xs and the target image xt by the
feature extractor F , respectively. To adapt the knowledge from
the source domain to the target domain, we minimize the
source and the target feature representation by minimizing
the gap between ps and pt. This can be addressed by the
adversarial training. The domain discriminator D will classify



whether a feature f comes from the source or the target
domain. D can be optimized by adversarial loss as follows,

min
D

E
xs,xt

[− logD(F(xs))− log[1−D(F(xt))]] (3)

Next, we adapt knowledge from the source feature extractor
Fs to the target feature extractor Ft. Hence, the target feature
extractor Ft is optimized according to the adversarial loss as
follows,

Ladv(xt;F) = − logD(F(xt)) (4)

Domain adaptive training helps to minimize the distance
between source and target distributions via domain adversarial
training; however, it is insufficient due to three reasons: (1)
adversarial training helps to align two distributions without
guaranteeing the correct mapping of each classes, (2) this
approach fails when a meaningful metric across domains
cannot be defined, and (3) the adversarial loss ignores the
topology of features distributions between two domains. To
address these aforementioned issues, we adopt the optimal
transport distance, i.e. the Gromov-Wasserstein distance, to
mitigate the issues caused by misaligned domains.

Gromov-Wasserstein Distance Let π be a correspondence
map such that ps and pt are marginal distributions of π. The
distance between two distributions ps and pt across domains
can be formulated as follows,

GW 2
2 (cps , cpt , ps, pt) = min

π∈Π(ps,pt)
J(cps , cpt , π) (5)

where

J(cps , cpt , π) =
∑
i,j,k,l

|cps(f is, f
j
s )− cpt(fkt , f lt)|2πi,jπk,l (6)

cps , cpt are the distances in their space, in our method, we
utilize squared euclidean distances, i.e. cps(f is, f

j
s ) = ||f is −

f js ||22, cpt(f
k
t , f

l
t) = ||fkt − f lt ||22. The GW distance aims to

map pairs of features with similar distances within each pair,
specifically, the pairs cps(f is, f

j
s ) is associated to cpt(f

k
t , f

l
t)

when the distances are similar and the transport coefficients
πi,j and πk,l of these pairs are high respond.

As shown in Eq. (5), we only need to know the intra-
distance of each domain without defining any metric across
two domains. In particular, the Ecludian distance has been used
as intra-distance of each domain since the Ecludian distance
is invariant to permutations, rotations, or translation. This
invariant-property allows GW to align the complex feature
domains. In addition, the corresponding map (transportation
map) π illustrates the association between source features
and targets features, which helps to guarantee the correct
mapping of each classes between two domains. Also, the term
|cps(f is, f

j
s )− cpt(fkt , f lt)|2 of the Eq. (6) implies the constraint

of the topology of feature distributions between two domains
have to be identical. Fig. 4(B) illustrates the aligned features
distributions of source and target domains when using the
Gromov-Wasserstein distance.

However, solving the equation Eq. (5) is costly due to
optimizing a non-convex Quadratic Problem with the time

complexity is O(n3). Instead of directly solving the GW
distance, we present the Sliced Gromov-Wassertein (SGW)
distance [46] with the time complexity is less costly than GW
distance. It is similar to the Sliced Wasserstein distance [44],
features are projected from the high dimensional space to the
1D space, and then solving GW distance on the 1D space.
As the results of Quadratic Assignment Problem [46], solving
GW on the 1D space is effectively sufficient. Therefore, the
Eq. (5) on the 1D space can be formulated as follows,

GW 2
2 (cps , cpt , ps, pt,∆) = min

σ

1

n2

∑
i,j

|cps(f̄ is, f̄
j
s )

− cpt(f̄
σ(i)
t , f̄

σ(j)
t )|2

(7)

where σ is a one-to-one mapping {1, ..., n} → {1, ..., n}, f̄
is a projected feature of f on 1D space, ∆ is a projection
matrix. Fortunately, if the source and target projected features
are sorted in the increasing order, the solution for σ is just
either the identity mapping σ(i) = i or anti-identity mapping
σ(i) = n − i. Therefore, the Eq. (7) can be computed in
O(n log(n)) where n is the number of data points. Fig. 2(b)
illustrates an example of solving GW in the 1D space.

Sliced Gromov-Wasserstein Distance As aforementioned,
similar to the Sliced Wasserstein (SW) distance, the main idea
of SW is to project features in the high dimensional space to
the 1D space where computing Wasserstein distance is simple
and easy followed by averaging these distances. In SGW, the
same manner is applied, specifically, the SGW distance can
be defined as follows,

LSGW (xs,xt) = SGW (cps , cpt , ps, pt)

=

∫
∆∈Rd−1

GW 2
2 (cps , cpt , ps, pt,∆)d∆

=
1

L

L∑
i=1

GW 2
2 (cps , cpt , ps, pt,∆i)

(8)

where d is the number of dimensions of source and target
feature spaces; L is the number of projections. In our exper-
iments, we set the number of projections L to 200. The time
complexity of computing SGW distance is O(Ln log(n)).

Finally, the total loss for the target feature extractor is a
summation of adversarial loss (Eq. (4)) and SGW loss (Eq.
(8)).

Lt(xt;F) = λadvLadv(xt;F) + λSGWLSGW (xs,xt) (9)

where λadv and λSGW are control weights for Ladv and
LSGW , respectively.

IV. EXPERIMENTS

In this section, we first show the impact of our proposed
method compared to other methods in Sec IV-A. In these
experiments, we consider MNIST as the source dataset and
MNIST-M as the target dataset. The proposed method is also
benchmarked on different network structures, i.e. LeNet [47],
VGG [1], ResNet [2]. Finally, we show the advantages of our
method in the across-domain pest insect recognition on IP102



Fig. 3. Examples of MNIST and MNIST-M datasets

TABLE II
ABLATIVE EXPERIMENT RESULTS (%) ON THE EFFECTIVENESS OF THE

ADVERSARIAL LOSS (Ladv ) AND GROMOV-WASSERSTEIN LOSS (LSGW ).
WE EVALUATE OUR PROPOSED METHOD IN THE CASES OF MNIST→

MNIST-M AND MNIST-M→ MNIST.

Methods MNIST → MNIST-M MNIST-M → MNIST
Pure-CNN 58.49% 98.45%
Ladv Only 64.77% 63.26%
LSGW Only 65.72% 99.06%
Ladv + LSGW 68.56% 99.19%

dataset [48] in Sec IV-B. In our experiments, the accuracy
metric is used to compare our method and prior approaches.

A. Ablation Studies

This ablation study aims to compare our method against
to other domain adaptation methods. In these experiments,
MNIST and MNIST-M are used as the source and the target
datasets, respectively. Fig. 3 illustrates samples of MNIST and
MNIST-M datasets. We compare our proposed method (SGW)
against to Pure-CNN, ADDA [20], ADA [37], TCA [49], SA
[50], DAN [51], UNVP, and E-UNVP [38].

Hyper-parameter Settings: During the training, the batch
size and the learning rate are set to 128 and 0.0002, respec-
tively. For the control weights λadv and λSGW in Eqn (9), we
set λadv = λSGW = 1.0.For the training processes, we train
10 epochs for each process. We use image sizes 32 × 32 for
LeNet and 64× 64 for VGG and ResNet.

As shown in Table II, the proposed LSGW and Ladv help to
improve the accuracy of the network on target dataset. When
both Ladv and LSGW are adopted, the performance of the
proposed method is significantly improved. Table III illustrates
our results compared to other methods. In this experiment,
LeNet is used for all methods in the table. As shown in the re-
sults, our method can achieve the state-of-the-art performance
and help to improve performance of the model from 58.49% to
68.56% on MNIST-M datasets. The experimental results have
shown that with our approach, the performance of the model

TABLE III
EXPERIMENTAL RESULTS ON MNIST→ MNIST-M.

Method MNIST MNIST-M
Pure CNN 99.33% 58.49%

SA [50] 90.80% 59.90%
DAN [51] 97.10% 67.00%
TCA [49] 78.40% 45.20%
ADA [37] 99.17% 60.02%

ADDA [20] 99.29% 63.39%
UNVP [38] 99.30% 59.45%

E-UNVP [38] 99.42% 61.70%
OTAdapt 99.19% 68.56%

TABLE IV
EXPERIMENTAL RESULTS (%) WHEN USING SGW IN VARIOUS COMMON

CNNS ON MNIST→ MNIST-M.

Networks Methods MNIST MNIST-M

LeNet Pure-CNN 99.33% 58.49%
OTAdapt 99.19% 68.56%

VGG Pure CNN 98.91% 60.95%
OTAdapt 99.00% 65.26%

ResNet Pure CNN 98.97% 64.23%
OTAdapt 99.31% 67.44%

Fig. 4. Feature Distributions of MNIST and MNIST-M.

Fig. 5. Examples of IP102 dataset. The images in the source domain and
target domain are captured in nature and laboratories, respectively.

has been improved on the color images (MNIST-M). However,
although the model has been generalized into a new color
image domain, there is a minor decrease in the performance
of the gray-scale images (MNIST).

Deep Network Structures This experiment evaluates the
robustness and consistent improvement of our method with
common deep networks, including, LeNet, VGG, ResNet.
The proposed method consistently outperform than the stand-
alone deep network (Pure-CNN). As shown in Table IV, the
proposed method helps to improves 10.07%, 4.31%, 3.21%
on MNIST-M using LeNet, VGG, ResNet, respectively.

Sample Distributions Fig. 4 illustrate the feature distribu-
tions of MNIST (source dataset) and MNIST-M (target dataset)
in the cases of with domain adaptation and without domain
adaptation. Features of 10 classes extracted from testing sets
of MNIST (blue points) and MNIST-M (green points) are
projected into the 2D space by the t-SNE method. As shown in
Fig. 4(A), the features of MNIST-M are not well distributed.
Meanwhile, features of MNIST and MNIST-M visualized on
Fig. 4(B) are well aligned.



TABLE V
EXPERIMENTAL RESULTS (%) WHEN USING SGW IN VARIOUS COMMON

CNNS ON INSECT PEST DATASET
Networks Methods Nature Laboratory

VGG Pure CNN 48.33% 47.04%
OTAdapt 50.54% 50.35%

ResNet Pure CNN 53.05% 50.96%
OTAdapt 55.51% 53.87%

DenseNet Pure CNN 58.82% 58.70%
OTAdapt 62.42% 62.32%

B. Insect Pest Recognition

IP102 Dataset: The IP102 dataset is a benchmark dataset
for Insect Pest Recognition [48]. In particular, it includes
more than 75000 images belonging to 102 different categories
collected in the Internet. In the taxonomic system of the
IP102, there are 8 types of crops damaged by insect pests,
specifically, Rice, Corn, Wheat, Beet, Alfalfa, Vitis, Citrus,
and Mango. Based on the property of image collection, we
divide this dataset into two domains for the source and the
target domains. The source domain is a set of images collected
in nature; in particular, images were collected in the farms and
outside. Meanwhile, the target domain images are captured in
laboratories. Fig. 5 illustrates the examples of the source and
the target domains of the IP102 dataset.

In this experiment, the proposed method is evaluated in
Insect Pest Dataset (IP102) [48]. Our proposed method is
evaluated with common deep network structures. In this
experiment, we use image size 224 × 224, batch size and
learning rate are set to 128 and 0.0002, respectively. Table
V shows the results of our proposed method on various deep
network structures on IP102 dataset. The experimental results
in Table V show that our proposed methods help to improve
the recognition performance on the target domain. Specifically,
it helps to improve by 3.31%, 2.91%, and 3.62% on VGG,
ResNet, and DenseNet, respectively.

C. Office-31 and VisDA 2017 Experiments

Office-31 Dataset: The Office-31 dataset is a benchmark
dataset for domain adaptation [54]. In particular, this dataset
includes 31 object categories in 3 domains i.e., Amazon ,
DSLR and Webcam. All the 31 categories in this dataset are
the objects which are commonly seen in the office environ-
ments. The Amazon domain contains a total of 2817 images
where each class is having 90 images on average. The DSLR
domain have 498 low-noise high resolution images with high

TABLE VI
EXPERIMENTAL RESULTS (%) ON THE OFFICE-31 DATASET (A: AMAZON,

W: WECAM, D: DLSR).
A → W A → D W → A W → D D → A D → W

GFK [52] 58.60% 50.70% 44.10% 70.50% 45.70% 76.50%
MMDT [53] 64.60% 56.70% 47.70% 67.00% 46.90% 74.10%

TCA [49] 72.70% 74.10% 60.90% − 61.70% −
DAN [51] 78.60% 80.50% 62.80% − 63.60% −

VGG 63.64% 71.23% 67.21% 65.37% 72.54% 68.67%
+OTAdapt 75.32% 73.83% 72.37% 73.69% 75.48% 74.57%

ResNet 61.55% 62.44% 74.87% 69.23% 71.63% 63.80%
+OTAdapt 73.33% 73.29% 77.78% 75.50% 78.21% 73.46%
DenseNet 67.42% 62.85% 65.35% 68.35% 42.06% 72.20%

+OTAdapt 78.49% 77.51% 77.78% 74.39% 79.27% 73.46%

Fig. 6. Examples of Office-31 Datasets

resolution. Finally, for Webcam, there are a total of 795 images
of low resolution with resolution of 640× 480.

The proposed method is evaluated in Office-31 dataset [54].
By using the common deep neural network architectures, our
proposed method is evaluated. Under this experiment, we use
images of size 224× 224, batch size is 128 and learning rate
is set to 0.0001. Table VI shows the results of our proposed
method on various deep network architectures along with
baselines, i.e. Geodesic Flow Kernel (GFK) [52], Max-Margin
Domain Transforms (MMDT) [53], TCA [49], DAN [51]. This
experiment demonstrates that our proposed method achieves a
better recognition performance and is able to outperform the
other domain adaptation techniques.

VisDA 2017: We have evaluated our approach on the
VisDA dataset [55]. The source domain is a collection of
synthetic images. Meanwhile, images in the target domain
are real photos. We compare our results with DAN [51],
DANN [21]. As shown in Table VII, our approach outperforms
other baselines. Also, we conduct ablation study to illustrate
the performance of our proposed components. In particular,
with the adversarial loss (Ladv) only, the result is 68.97%;
Meanwhile, the Gromov-Wassertein loss only improves the
result to 70.53%. When we use the two proposed losses
together, the results have been improved up to 71.88%.

V. CONCLUSIONS

In this paper, we present a novel Domain Adaptation method
that utilizes the optimal transport distance. Our proposed
method is able to compare and align feature distribution
across domains; meanwhile, previous methods are usually
failed when the meaningful metric across domain cannot be
defined. Through the experiment on MNIST and MNIST-M,
we prove our method is able to consistently improve per-
formance on various deep network structures and outperform
other methods. Experiments on IP102, Office-31, and VisDA
have showed our method is outstanding in classification tasks.
Acknowledgment: This work is supported by NSF Small
Business Innovation Research Program (SBIR), Chancellor’s
Innovation Fund, and SolaRid LLC.

TABLE VII
EXPERIMENTAL RESULTS ON VISDA 2017.

Methods VisDA
Source Only 52.40%
DAN [51] 51.62%

DANN [21] 57.40%

OTAdapt
Ladv 68.97%
LSGW 70.53%

Ladv + LSGW 71.88%
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[44] J. Rabin, G. Peyré, J. Delon, and M. Bernot, “Wasserstein barycenter
and its application to texture mixing,” in Scale Space and Variational
Methods in Computer Vision, 2012.

[45] S. Kolouri, K. Nadjahi, U. Simsekli, R. Badeau, and G. Rohde, “Gener-
alized sliced wasserstein distances,” in NIPS, vol. 32, 2019, pp. 261–272.

[46] V. Titouan, R. Flamary, N. Courty, R. Tavenard, and L. Chapel, “Sliced
gromov-wasserstein,” in NIPS.

[47] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, 1998.

[48] X. Wu, C. Zhan, Y. Lai, M.-M. Cheng, and J. Yang, “Ip102: A large-
scale benchmark dataset for insect pest recognition,” in CVPR, 2019.

[49] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Transactions on Neural Networks,
vol. 22, no. 2, 2011.

[50] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, “Unsupervised
visual domain adaptation using subspace alignment,” in ICCV, 2013.

[51] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable
features with deep adaptation networks,” in ICML, vol. 37, Lille, France,
07–09 Jul 2015, pp. 97–105.

[52] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for
unsupervised domain adaptation,” in CVPR, 2012, pp. 2066–2073.

[53] J. Hoffman, E. Rodner, J. Donahue, T. Darrell, and K. Saenko, “Efficient
learning of domain-invariant image representations,” in arXiv, 2013.

[54] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category
models to new domains,” in ECCV, 2010.

[55] X. Peng, B. Usman, N. Kaushik, J. Hoffman, D. Wang, and K. Saenko,
“Visda: The visual domain adaptation challenge,” 2017.

https://www.mdpi.com/1999-5903/13/8/194

	I Introduction
	II Related Work
	III The Proposed Method
	IV Experiments
	IV-A Ablation Studies
	IV-B Insect Pest Recognition
	IV-C Office-31 and VisDA 2017 Experiments

	V Conclusions
	References

