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Abstract—Domain generalization methods aim to learn models
robust to domain shift with data from a limited number of
source domains and without access to target domain samples
during training. Popular domain alignment methods for do-
main generalization seek to extract domain-invariant features
by minimizing the discrepancy between feature distributions
across all domains, disregarding inter-domain relationships. In
this paper, we instead propose a novel representation learning
methodology that selectively enforces prediction consistency be-
tween source domains estimated to be closely-related. Specifically,
we hypothesize that domains share different class-informative
representations, so instead of aligning all domains which can
cause negative transfer, we only regularize the discrepancy
between closely-related domains. We apply our method to time-
series classification tasks and conduct comprehensive experiments
on three public real-world datasets. Our method significantly
improves over the baseline and achieves better or competitive
performance in comparison with state-of-the-art methods in
terms of both accuracy and model calibration.

I. INTRODUCTION

Increasing accessibility to data has spurred the use of data-
driven deep learning methods. In practical deployments, mod-
els need to be robust to data distribution shifts between training
(source domains) and test (target domain) data, when data are
collected for the same task but in different environments [1],
[2]. Such domain shift may occur as the collection of training
data is subject to resource constraints and may not provide
sufficient coverage, or is conducted in controlled settings that
do not fully assimilate real environments [3]–[5].

In this work, we consider the domain generalization (DG)
setting where we leverage data from multiple source domains
to generalize to unseen target domains. This differs from
domain adaptation (DA) which assumes access to unlabeled
target samples for training. We further focus on time series
classification; while there are many works studying DG in
image classification [1]–[3], [6]–[9] and natural language
tasks [10]–[12], there is limited literature and evaluation for
time series classification. We therefore aim to address this
gap. Example use-cases include generalization across human
subjects for activity recognition [13], and across operating
conditions for sensor-based machine fault detection [14].

A popular DG approach is domain alignment, that is,
enforcing feature distributions to be the same across all source
domains [1], [13], [15]–[19] to learn domain-invariant features
that potentially generalize to unseen domains. However, some
works in the related domain adaptation and transfer learning
literature suggest that domains can have different informative

Fig. 1. Left: Existing domain alignment methods align all source domains
equally. Right: Our proposed method, by considering inter-domain relation-
ships, selectively aligns closely-related domains and allows greater diversity
in output predictions. Best viewed in colour.

characteristics and transferring between less related domains
can inhibit the learning of these characteristics [11], [20], [21],
causing negative transfer and harming generalization.

In this paper, we propose a novel DG approach for time
series classification where we further consider cross-domain
relationships during domain alignment, and regularize subsets
of source domains separately based on their similarity (as il-
lustrated in Figure 1). We propose selective cross-domain con-
sistency regularization to encourage invariant class-conditional
predictions amongst similar source domains, so that model
predictions are less dependent on domain-specific information,
while still being allowed to be diverse to capture cross-
domain differences. Our consistency regularization is applied
on the logits (pre-softmax classifier outputs); as far we know,
existing DG methods regularize on either features or soft label
predictions [1], [10], [16], [17], [22]–[27] or on logits in
conjunction with features [28]. Features are challenging to
align in high-dimensional space, and soft label predictions
are normalized logits and have less variability. We leverage
auxiliary domain metadata to directly infer inter-domain rela-
tionships based on application-specific knowledge when such
metadata is available. Otherwise, we estimate latent relation-
ships using a clustering-based measure of domain divergence
amongst source domains. Figure 2 provides an overview of our
proposed method. We summarize our contributions as follows:
• We propose a new DG methodology for time series clas-

sification that selectively enforces prediction consistency
between source domains estimated to be closely-related,
which helps to calibrate the model from being over
and/or under-confident in its predictions. We combine this
with domain-wise augmentation to generate more diverse
samples in closely-related domains for regularization;

• The proposed method is easy to implement with data
augmentation and logit regularization on top of empirical
risk minimization;
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Fig. 2. Method overview. Considering multiple source domains, our proposed method enforces prediction consistency between similar domains through
selective regularization of logits (pre-softmax classifier outputs). We encourage similar domains (B and C in illustration) to share predicted class relationships,
while allowing diverse predicted class relationships across dissimilar domains (A vs B and C in illustration).

• We perform extensive evaluation of existing methods on 3
public datasets for classification accuracy and calibration,
and our proposed method demonstrates better or compet-
itive performance compared to state-of-the-art methods.

II. RELATED WORKS

We discuss related works to learn more robust representa-
tions with a single model. Ensembles [7], [11], [29], [30] may
not scale to multiple source domains and not discussed here.

Data augmentation and generation: Enriching training
sample diversity naturally helps generalization. [31]–[33] gen-
erates samples by adversarial perturbation, and [34], [35]
interpolate between samples of different domains. Due to
advancements in style transfer [36] and generative adversar-
ial networks [37], many image augmentation techniques are
developed [2], [38]–[40]. However, advanced techniques for
image augmentation may not readily apply to time series.

Learning domain-invariant features: An approach to learn
invariant features is to train the feature extractor such that the
same classifier is optimal for all domains [41], [42]. Many
works learn invariant features by aligning representations from
all source domains. Some works directly minimize the distance
between features or soft labels by a distance measure or
adversarial networks [13], [15]–[18], [43]–[45], and some
others use meta-learning to simulate domain shift [3], [12],
[24]. However, distribution alignment between less related
domains can cause negative transfer [11], [20], [21].

Robustness: Models can learn to be more robust to domain
shifts through perturbations during training. [6] episodically
switches the feature extractor or classifier to domain-specific
counterparts, and [46] zeros out features associated with the
highest gradient in the classification layer to learn more diverse
features. Another approach to robustness minimizes worst-case
risk over all domains, resulting in a training objective that is
a weighted average of source domain losses [47], [48].

III. PROPOSED METHOD

A. Preliminaries: Notation

We denote total N observed samples from M source
domains as {(xn,yn, dn)}Nn=1, where for the n-th sample,

xn and yn are predictor and response, and dn ∈ {1, . . . ,M}
is domain label and is unavailable at test-time. yn is a one-hot
vector of the true class label in L classes. Samples in each do-
main d are independently and identically distributed according
to a domain-dependent data distribution as (x,y) ∼ Pd(X ,Y).

A neural network model is composed of feature extractor
f(·) parameterized by Θ that yields learned features z =
f(x; Θ), and classifier h(·) parameterized by Ψ that yields
logits output g = h(z; Ψ). Soft labels (a vector of estimated
class probabilities) are obtained by s = softmax(g) where
s[i] = exp(z[i])∑L

`=1 exp (z[`])
. The final predicted class is the one with

the highest probability in s i.e. arg maxi s[i].

B. Selective Cross-Domain Consistency Regularization

We hypothesize that domains can have different informative
characteristics and consequently class relationships which do
not exactly match. That is, there exists domain d(i) and d(j)

with Pi(X ) 6= Pj(X ) where there exists sample x(d(i)) such
that Pi(Y|x(d(i))) 6= Pj(Y|x(d(j))) for all x(d(j)) under ground
truth distributions; note Pi(Y|x) = Pj(Y|x) for the same
x. Aligning these two domains can result in inaccurate class
relationships. Specifically, objectives such as DANN [10] align
d(j) to d(i) assuming that for every x(d(i)), there exists a
matching x(d(j)) where Pi(Y|x(d(i))) = P (Y|f(x(d(i)); Θ)) =

P (Y|f(x(d(j)); Θ)) = Pj(Y|x(d(j))). When this assumption is
invalid, aligning implies that a x(d(j)) where Pi(Y|x(d(i))) 6=
Pj(Y|x(d(j))) will be aligned to x(d(i)) in the feature space, re-
sulting in inaccurate class relationships since Pi(Y|x(d(i))) =

P (Y|f(x(d(i)); Θ)) = P (Y|f(x(d(j)); Θ)) 6= Pj(Y|x(d(j)))
[20]. Instead, we align only similar domains to balance
between domain-invariance and diversity. We align logits
instead of features to directly calibrate task-specific predictions
through both feature extractor and classifier.

More formally, we aim to learn model parameters such that
the conditional distribution P (G|Y) = P (h(f(X ; Θ); Ψ)|Y)
is invariant for closely-related domains according to latent
inter-domain relationships. By encouraging invariant class-
conditional predictions, model predictions can be less reliant
on domain-specific information and more robust to domain



shifts at test-time. Specifically, for closely-related domains
d(i) and d(j) with g(d

(i),`) ∼ Pi(G|Y = `) and g(d
(j),`) ∼

Pj(G|Y = `) for class `, we apply squared maximum mean
discrepancy (MMD) [49] for distribution matching. Squared
MMD between two distributions Qi and Qj is defined as

MMD2(Qi,Qj) = ‖EQi(φ(G))− EQj (φ(G))‖2B (1)
for reproducing kernel Hilbert space B and mapping function
φ. We take B as Euclidean space and φ as identity function,
for which MMD is equivalent to the L2 distance between
distribution means. This formulation is computationally simple
and empirically outperforms a more complex alternative (see
Appendix B).

The objective function for model learning is
L(Θ,Ψ) = LCE(Θ,Ψ) + λΩ(Θ,Ψ) (2)

where LCE(Θ,Ψ) = −
∑N
n=1 yn · log(sn) is the supervised

cross-entropy loss, and Ω(Θ,Ψ) is the proposed regularizer:

Ω(Θ,Ψ) =

M∑
d(i)=1

M∑
d(j)=1

w(d(i), d(j))

L∑
`=1

‖ḡ(d
(i),`)−ḡ(d

(j),`)‖22

(3)
where ḡ(d

(i),`) is the mean logit vector for domain d(i) class `,
referred to as the class-conditional domain centroid. Weights
w(d(i), d(j)) ≥ 0 depend on pairwise domain similarity
between d(i) and d(j) to impose greater regularization on
more similar domains. We describe estimation procedures for
w(d(i), d(j)) in Section III-C. The learned model is encouraged
to preserve prediction consistency between similar domains.
This helps to prevent the model from being over-confident
in its predictions due to overfitting on spurious features of
individual domains, thus improving calibration, in addition
to increasing robustness to domain shifts. We summarize the
proposed method in Algorithm 1.

Algorithm 1 Proposed method
Input: Training data (x,y, d); regularization hyperparameter
λ, model parameterized by (Θ,Ψ); learning rate η; # iterations
I; cluster update interval U
Additional input for metadata sim.: Metadata T
Additional input for learned sim.: RBF kernel parameter ξ

1: for iteration i = 0 : I − 1 do
2: Augment time series input x← Augment(x)
3: if (i mod U) = 0 then
4: Update regularization weights w by Eqn 4 (meta-

data sim.) or 6 (learned sim.)
5: Get regularization Ω(Θ,Ψ) by Eqn 3
6: Get overall objective L(Θ,Ψ) by Eqn 2
7: Update model (Θ,Ψ)← (Θ,Ψ)− η∇L(Θ,Ψ)

C. Defining Domain Similarity for Selective Regularization

Inter-domain relationships need to be determined in order to
select closely-related domains for consistency regularization.
We consider two scenarios: when domain metadata is avail-
able, and when it is not; domain metadata are descriptions of

source domains to provide (possibly limited) context of the
environments in which data is collected.

1) Metadata Based Similarity: With expert knowledge of
the application, users can directly use available metadata
to infer relationships and group the domains into clusters.
Domains across clusters are assumed to not share class re-
lationships and hence are not regularized. We denote the
function clust : {1, . . . ,M}×{T} → {1, . . . ,K} as the map
from domain index and metadata T to cluster index for K
clusters, and Sc = {d|clust(d, T ) = c, d ∈ {1, . . . ,M}} the
set of domains in cluster c. We set

wmeta(d(i), d(j)) =

K∑
c=1

1

2|Sc|
1{clust(d(i),T )=clust(d(j),T )=c}

(4)
and the consistency regularization function in Equation 3 can
be restated as

Ωmeta(Θ,Ψ) =

K∑
c=1

∑
d∈Sc

L∑
`=1

‖ḡ(d,`) − γ(c,`)‖22 (5)

where we refer to γ(c,`) = 1
|Sc|

∑
d∈Sc ḡ

(d,`) of cluster c class
` as the class-conditional cluster centroid. The scaling factor in
wmeta ensures that when domain centroids are equidistant to
their cluster centroids, the amount of contribution each cluster
makes to the regularization is proportional to its size.

2) Learned Similarity: When no domain metadata is avail-
able, we propose estimating domain relationships by inter-
domain divergences during training. We measure the distance
between two domains for class ` as the squared L2 distance
between their class-conditional domain centroids, and d(j)

is defined as the nearest neighbor domain to d(i) if it is
nearest to d(i) for the most number of classes. We estimate the
nearest neighbor domain as the most similar domain to d(i)

at fixed intervals during training (every 100 iterations in our
experiments), and we enforce prediction consistency between
each domain and its nearest neighbor domain. That is, we set
the weights wlearned(d(i), d(j)) as per Equation 6 if d(j) is the
nearest neighbor and 0 otherwise, where

wlearned(d
(i), d(j)) =

1

L

L∑
`=1

exp

(
−‖ḡ(d(i),`) − ḡ(d(j),`)‖22

2ξ2

)
(6)

by applying an RBF kernel on the inter-domain distance with
hyperparameter ξ. We block gradients to prevent w and inter-
domain distance from updating in opposing directions.

D. Domain-wise Time Series Augmentation

To achieve additional robustness to data perturbations, we
apply time series augmentations with 0.5 probability. For each
source domain, we sample an augmentation function from
a pre-defined distribution at each iteration. The domain-wise
augmentation simulates potential test-time domain shifts. We
consider 3 time series augmentations, namely mean shift,
scaling and masking, in Table I. The choice of augmentations
depends on the dataset to avoid perturbing characteristics
known to be important for classification. We provide augmen-
tation details for each dataset in Section IV.



TABLE I
TIME SERIES AUGMENTATIONS.

Augmentation General Expression

mean shift amean(x) = x− µ+ µnew

scaling ascale(x) =
(
x−µ
σ

)
∗ σnew + µ

masking amask(x[i]) =

{
x[i] w.p. 0.9
µ w.p. 0.1

TABLE II
DOMAIN ATTRIBUTES.

Loc. Loading torque

0 1 2 3

Drive A B C D
Fan E F G H

(a) Bearings

User Phone model

Nexus S3 S3 mini S+

User 1 A B C D
User 2 E F G H
User 3 I J K L

(b) HHAR

IV. EXPERIMENTS

We compare with baseline ERM and state-of-the-art DG
methods: GroupDRO [47], VREx [48], IRM [41], Interdomain
Mixup [34], RSC [46], MTL [50], MLDG [3] and Corre-
lation [45]. We also reformulate 4 popular domain adaption
methods for DG following [1]: MMD-DG [17], CORAL-
DG [22], DANN-DG [10] and CDANN-DG [18], [51].

We evaluate the proposed method on three real-world time
series datasets, and use leave-one-domain-out evaluation fol-
lowing [1]. We provide details of the evaluation procedure,
backbone networks and hyperparameters in the Appendix
A. We evaluate on classification performance and expected
calibration error (ECE), where the latter is a metric that
measures how closely model confidence match probabilities
of correct predictions and zero ECE means perfect calibration.
Specifically, ECE is the expected difference between confi-
dence and accuracy empirically approximated by

ECE =

J∑
j=1

‖Bj‖
N
‖acc(Bj)− conf(Bj)‖

where Bj = {n|n ∈ {1, . . . , N},max(sn) ∈
(
j−1
J , jJ

]
} is a

bin containing indices of samples whose confidence for the
predicted class falls in the corresponding interval, for j ∈
{1, . . . , J} and total J = 15 bins following [52]. For each
bin, acc(Bj) = 1

|Bj |
∑
n∈Bj

1(ŷn = yn) and conf(Bj) =
1
|Bj |

∑
n∈Bj

max(sn).

A. Results on Fault Detection

The Bearings dataset [53] from Case Western Reserve Uni-
versity is widely used for predictive maintenance. It contains
12kHz vibration signals to detect bearings faults in rotating
machines. We extract length-4096 samples by a sliding win-
dow with stride 290 [54]. There are 1 healthy class and 9 fault
classes: inner-race fault (IF), outer-race fault (OF), and ball
fault (BF) with each subdivided into dimensions 0.007, 0.014
and 0.021 inches. We apply mean shift, scaling and masking
augmentations by setting µ = x̄, µnew = 0, σ = sd(x) and
σnew = 1 in Table I. Samples are augmented with probability
0.5, and additional augmentations are applied with probability

0.5 to allow a mixture of perturbations. There are 8 domains:
drive end and fan end location with each operated at 0, 1,
2, and 3 loading torques as in Table II. For metadata based
similarity, consistency regularization is applied on domains
with the same location. From Table III, the proposed method
improves over baseline ERM on almost all target domains. On
average, the proposed method attains the best accuracy across
all methods with 87.9% and 89.1% given metadata based
and learned similarity, respectively. The proposed method also
attains lowest calibration errors of 9.2% and 6.2%.

B. Results on Human Activity Recognition

The HHAR dataset [55] consists of multi-channel sensor
readings to classify six activities: Biking, Standing, Sitting,
Walking, Stair down, and Stair up. Following a recent DA
work [13], we focus on smartphone accelerometer readings
in the x, y and z direction and extract length-128 samples.
Samples are scaled by 1

20 so that readings for all 3 channels
approximately fall between -1 and 1. For this application,
mean and standard deviation are known to be important
classification features and activities such as Standing are
sensitive to abrupt sensor reading changes [56], hence we
apply limited augmentation i.e. scaling with µ = 0, σ = 1 and
σnew ∼ Unif(0.8, 1.2). To keep domain number to a suitable
level for leave-one-domain-out evaluation, we use 12 domains:
the first 3 users each with 4 phone models as in Table II.
For metadata based similarity, consistency regularization is
applied on domains with the same user. From Table IV, the
proposed method improves over the baseline ERM in almost
all cases, and has the best accuracy of 88.5% on average.
The second-best performing method RSC encourages learning
more diverse features by feature masking, and applying the
proposed method on RSC by alternating between the two
methods further improves average accuracy to 88.9%. We
chose the alternating procedure [57] so that strategies from
the two methods do not directly interfere with each other.

We note that although RSC performs similarly to our pro-
posed method, it utilizes masking instead of alignment strate-
gies, and our proposed method significantly improves over all
alignment methods evaluated namely Correlation, DANN-DG,
CDANN-DG, CORAL-DG and MMD-DG. Furthermore, our
proposed method (ECE=4.1%, 4.9%) learns better calibrated
models than RSC (ECE=5.3%).

C. Results on Mortality Prediction

MIMIC-III [58], [59] is a public clinical dataset for binary
in-hospital mortality prediction. We select 11 vital signs that
are hourly aggregated, with 24 hours length sample from
each patient [60]. We apply the same data augmentations
as in Section IV-B. Different age groups represents different
domains with Group A: 20-45, Group B: 46-65, Group C: 66-
85, Group D: over 85. Due to class imbalance, we downsample
the negative class so that both classes have equal sample size.
We evaluate performance with AUC following [60]. From
Table V, RSC underperforms even ERM on this task, while
alignment methods improve performance over baseline ERM.



TABLE III
BEARINGS: CLASSIFICATION ACCURACY AND EXPECTED CALIBRATION ERROR (ECE) ON TARGET DOMAIN USING LEAVE-ONE-DOMAIN-OUT TESTING.

Method Accuracy (%) ↑ ECE (%) ↓

A B C D E F G H Avg Avg

ERM 65.4 93.8 96.0 71.2 68.4 83.0 94.0 86.2 82.2 14.2
IRM 60.7 87.0 89.2 76.0 62.8 80.9 92.8 88.5 79.7 15.9
GroupDRO 55.7 70.0 77.8 74.8 60.7 59.2 65.6 50.5 64.3 31.9
Interdomain Mixup 62.0 86.5 96.8 76.0 82.0 95.4 97.7 87.2 85.4 13.8
MLDG 62.8 77.6 85.9 72.8 63.3 58.5 60.7 55.0 67.1 30.8
MTL 35.3 64.5 66.6 48.3 47.6 48.2 36.7 44.9 49.0 44.4
Correlation 46.5 79.0 90.0 69.1 71.5 85.5 80.5 83.9 75.7 18.2
VREx 63.8 90.5 97.2 81.6 70.3 83.9 92.0 84.3 83.0 14.3
RSC 62.4 94.4 98.0 86.5 73.4 87.4 97.3 85.7 85.6 12.0
DANN-DG 56.2 84.7 92.2 80.2 70.0 79.1 89.1 90.5 80.3 15.1
CDANN-DG 56.0 80.8 94.8 80.2 70.7 81.4 90.3 84.0 79.8 15.7
CORAL-DG 62.5 77.9 90.0 76.0 63.1 79.2 74.5 83.0 75.8 19.7
MMD-DG 53.9 67.7 84.2 67.6 63.2 74.3 74.7 56.7 67.8 28.7
Ours (Metadata sim.) 86.8 95.3 97.6 79.8 77.4 82.7 93.4 90.8 87.9 9.2
Ours (Learned sim.) 89.1 97.9 97.1 75.8 81.5 85.3 94.4 91.8 89.1 6.2

TABLE IV
HHAR: CLASSIFICATION ACCURACY AND EXPECTED CALIBRATION ERROR (ECE) ON TARGET DOMAIN USING LEAVE-ONE-DOMAIN-OUT TESTING.

Method Accuracy (%) ↑ ECE (%) ↓

A B C D E F G H I J K L Avg Avg

ERM 86.4 91.6 81.0 91.7 71.3 96.9 96.4 85.9 85.0 88.1 86.6 89.5 87.5 6.0
IRM 87.2 92.0 80.0 90.5 71.7 96.5 96.6 85.3 84.3 88.4 87.3 89.6 87.4 6.2
GroupDRO 80.4 76.7 52.4 74.6 63.6 77.3 76.6 75.0 86.3 86.8 82.8 70.3 75.2 15.2
Interdomain Mixup 80.2 68.9 61.4 69.7 55.3 71.1 81.4 64.7 87.8 85.0 84.9 71.5 73.5 13.5
MLDG 81.7 75.8 58.8 79.3 58.4 70.7 70.9 68.0 86.8 87.7 84.7 70.4 74.4 18.2
MTL 79.6 75.8 60.9 77.1 62.8 75.7 80.2 72.7 85.7 81.1 79.3 71.9 75.2 17.9
Correlation 80.3 91.0 81.7 87.9 69.1 95.4 95.8 88.5 85.1 85.6 88.6 88.9 86.5 5.8
VREx 87.1 90.6 80.5 92.2 71.0 96.5 96.7 85.5 85.5 88.7 87.5 90.2 87.7 5.7
RSC 87.3 90.5 84.4 92.2 73.9 96.7 96.9 86.2 86.8 87.5 88.5 90.1 88.4 5.3
DANN-DG 84.7 89.5 72.4 92.8 71.2 95.1 94.8 84.2 81.6 84.3 84.9 86.7 85.2 7.5
CDANN-DG 85.6 86.0 79.8 89.6 72.4 93.6 95.6 83.0 81.3 87.0 83.4 85.8 85.2 8.2
CORAL-DG 80.5 76.8 58.4 74.3 62.5 77.5 85.8 74.2 86.8 79.7 86.2 69.1 76.0 15.4
MMD-DG 81.9 74.0 52.9 75.4 60.3 76.8 79.0 74.6 86.9 85.6 83.7 68.9 75.0 17.2
Ours (Metadata sim.) 87.4 91.0 80.7 94.6 75.7 96.5 97.1 86.2 85.0 89.2 89.1 89.8 88.5 4.1
Ours (Learned sim.) 87.3 90.6 85.3 93.5 76.0 96.1 96.7 86.0 85.1 88.1 88.6 88.9 88.5 4.9
RSC
+ Ours (Metadata sim.) 87.2 89.9 86.0 93.6 75.6 96.6 96.4 86.1 85.7 88.6 90.4 90.6 88.9 4.5
+ Ours (Learned sim.) 86.3 89.0 84.3 93.3 74.4 96.8 96.9 86.8 87.0 86.7 90.4 89.2 88.5 4.8

TABLE V
MIMIC-III: AUC AND EXPECTED CALIBRATION ERROR (ECE).

Method AUC (%) ↑ ECE (%) ↓

A B C D Avg Avg

ERM 84.9 78.0 77.4 73.1 78.4 7.6
RSC 83.5 78.1 77.5 73.5 78.2 8.5
DANN-DG 84.9 79.5 76.2 74.0 78.7 7.4
CDANN-DG 85.2 79.2 76.1 75.1 78.9 8.2
CORAL-DG 86.3 78.0 77.1 74.7 79.0 7.5
MMD-DG 85.5 77.8 77.0 73.6 78.5 8.2
Ours (Learned sim.) 86.5 78.1 77.5 74.4 79.1 6.4

The proposed method has highest AUC (79.1%), and although
CORAL-DG achieves similar AUC (79.0%), our proposed
method’s calibration error is lower by 1.1%.

V. FURTHER ANALYSIS

Ablation study: In Table VI, we see that applying data
augmentations and consistency regularization individually im-
proves model performance over ERM for both datasets. Per-
formance increases further when both strategies are applied.

Effect of design choices for regularizer: To further study
the regularizer in isolation, we apply the proposed method with

TABLE VI
EFFECT OF REGULARIZATION AND AUGMENTATION STRATEGIES.

Strategy Avg Acc (%)

Reg Aug Bearings HHAR

7 7 82.2 87.5
7 3 86.5 88.1

(Metadata sim.)
3 7 87.1 88.5
3 3 87.9 88.5

(Learned sim.)
3 7 86.8 88.3
3 3 89.1 88.5

(a) Regularization and augmentation

Aug Avg Acc (%)

None 82.2
Mean shift 83.0
Scale 82.4
Mask 82.4
All 86.5

(b) Bearings: Time series
augmentation without con-
sistency regularization

metadata based selection and no time series augmentations.
Distance functions: We experiment with 3 distance func-

tions: squared L2 distance, cosine distance and KL-divergence,
either between individual samples and cluster centroids or
between domain and cluster centroids. Regularization is ap-
plied on the features z, logits g or soft labels s. Comparing
the generalization performance in Table VII, domain-level
regularization tends to have higher accuracy, possibly because
it allows greater diversity of representations in each domain.

Logits vs Soft labels vs Features: Regularizing on logits



TABLE VII
BEARINGS: ACCURACY USING DIFFERENT REGULARIZATION FUNCTIONS.

Avg Accuracy (%)

Sample-level Domain-level

Regularize on L2 cos KL L2 cos KL

Features z 83.9 84.9 N/A 85.4 82.3 N/A
Logits g 86.2 84.2 N/A 87.1 85.9 N/A
Soft labels s 82.9 83.3 82.8 82.5 83.8 83.8

TABLE VIII
BEARINGS: ACCURACY GIVEN DIFFERENT CLUSTER ASSIGNMENTS.

Cluster assignment # clusters Avg Acc (%)

{A},{B},{C},{D},{E},{F},{G},{H} 8 (ERM) 82.2
{A,B},{C,D},{E,F},{G,H} 4 84.4
{A,B,C,D},{E,F,G,H} 2 87.1
{A,B,C,D,E,F,G,H} 1 85.6

results in higher accuracy in most cases (Table VII). It allows
more flexibility as both feature extractor and classifier are
directly regularized while preserving class-relationships. Soft
labels are normalized logits and have limited variability across
source domains for further alignment. The feature space is
generally much larger than the logit or label space, and hence
possibly more difficult to effective align. We observe that all
choices of distance functions and representations attain better
performance than ERM (82.2%), with regularization of logits
at the domain-level achieving the best accuracy of 87.1%.

Cluster assignments: Next, we study the effect of cluster
assignments on DG performance for each target domain in
the Bearings dataset in Table VIII. Consistency regularization
tends to improve performance over ERM across all target
domains. While regularization with 4 clusters and 1 cluster
both improve accuracy over ERM by 2.2% and 3.4% re-
spectively, regularization with 2 clusters achieves the highest
improvement of 4.9%. Domains in each of the two clusters
have the same machine location, and hence can be expected to
be closely-related with similar class relationships. This shows
good cluster assignments are critical for good performance.

Training process: Figure 3a shows loss components using
regularization with 2 clusters, where the model initially priori-
tized learning the classification task and then increased domain
alignment as training progresses. Figure 3b and 3c show loss
and computation time per iteration (total 3000 iterations) for
different number of clusters ran on Tesla V100-SXM2 GPU.
Hyperparameter is fixed at λ = 0.01. Training loss converges
and computation time is low for all cluster numbers tested.

(a) Loss components (b) Training loss (c) Training time
Fig. 3. Bearings: Loss and average computation time with target H. ERM is
equivalent to no regularization or assigning each domain to its own cluster.

Analysis of target risk bound: In multi-source DA, the
target domain risk is bounded by a sum consisting empirical
source domain risks and divergence between source and target
domains, as stated in Theorem 1.

Theorem 1: [61] Let H be a hypothesis class with VC
dimension v. For source domain {Ŝm}Mm=1 with N

M i.i.d.
samples from each domain, and target domain T̂ with N
samples, with probability 1− δ, for all γ ∈ H and ∀a ∈ RM+
such that

∑M
m=1 am = 1,

εT (γ) ≤
M∑
m=1

ai

(
ε̂Sm(γ) +

1

2
divH(T̂ ; Ŝm)

)
+ ra

+O

(√
1

N

(
log

1

δ
+ v log

N

v

))
(7)

where ε(γ) and ε̂(γ) are risk and empirical risk of γ w.r.t.
the true labeling function respectively, ra is upper bound
of infγ∈H

(∑M
m=1 amεSm

(γ) + εT (γ)
)

, and H-divergence
divH(T ;S) := 2supA∈AH

‖PT (A) − PS(A)‖ with AH :=
{γ−1({1})|γ ∈ H}.

In DA, adversarial learning and regularization are used
to align source and target domains to directly reduce H-
divergence. Unlike DA, target domain T̂ is unavailable during
training for DG. Aligning source domains helps to prevent
learning spurious features, but aligning all source domains
as in existing domain alignment methods does not guarantee
reducing H-divergence.

We create a two-channel toy dataset for binary classification
of sawtooth and square-shaped signals to compare the bound
terms and empirical target risk for different methods; we leave
out the ra term since we use the same backbone network for all
methods. Domain A and B have shaped signals on channel 1.
Domain C and D additionally have square signals on channel
2 for the square signal class. Noise added to signal is Gaussian
distributed with standard deviation 2 for A and B and 4 for C
and D. We use D as target and the rest as source.

We implement our proposed method with regularization on
domain A and B since C differs by having additional channel
2 features. In Table IX, lower H-divergence indicates lower
target risk. Our proposed method has lower H-divergence and
target risk than DANN-DG and CDANN-DG. By not aligning
domain C, we also allow the model to retain channel 2 features
which target domain D can use for classification. More details
are in Appendix B.

TABLE IX
TOY DATASET: COMPARISON OF BOUND TERMS AND TARGET RISK.

Method Source Risk H-divergence Target Risk

DANN-DG 0.196 1.597 0.399
CDANN-DG 0.198 1.591 0.333
Ours 0.196 1.536 0.111

VI. CONCLUSION

In this work, we introduced a representation learning
method for domain generalization for time series classification.
We applied augmentations to improve sample diversity, and se-
lective consistency regularization to enforce similar predictions
for similar domains. From comprehensive experiments, we
showed that the proposed method significantly improves over
ERM and performs competitively compared to state-of-the-art
methods in both classification accuracy and model calibration.
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APPENDIX

A. Implementation Details

We provide additional details on the implementation for our
experiments and the datasets used.

We evaluate the proposed method on three real-world time
series datasets for fault detection, human activity recognition
and mortality prediction following the evaluation procedure in
[1]. For each dataset, we use leave-one-domain-out evaluation
where we treat each domain as the unseen target in turn and
train with rest as source domains. Each source-target combi-
nation is evaluated over 3 random seeds, and each method
is tuned with 20 random hyperparameter configurations with
the best configuration selected using validation accuracy. All
methods use the same backbone networks specific to each
dataset.

1) Hyperparameters: We fix learning rate 0.001, weight
decay 5 × 10−5, and batch size 32 per domain. Models are
trained for 3000 iterations, with learning rate reduced by a
factor of 10 after 2400 iterations. All other hyperparameters
are tuned by random sampling from distributions in Table XVI.
All experiments are run using Adam optimizer with the
NVIDIA container image for PyTorch, release 20.03.

2) Datasets and Network Architectures: We provide details
on the sample size of the datasets. Backbone network archi-
tectures used for each dataset is given in Table XVII.

Bearings: All domains have the same number of samples.
For each domain, the sample size of each class is ‘nor-
mal’: 416, ‘IF:0.007’: 371, ‘BF:0.007’: 409, ‘OF:0.007’: 417,
‘IF:0.014’: 387, ‘BF:0.014’: 408, ‘OF:0.014’: 398, ‘IF:0.021’:
407, ‘BF:0.021’: 383, ‘OF:0.021’: 404. We use a 6-layer CNN
as feature extractor and a 3-layer FCN as classifier [57].

HHAR: Sample size differs across domain according to
availability of data per user and device, as in Table XVIII. We
use a 3-layer CNN as feature extractor and a 1-layer fully-
connected network as classifier [62].

MIMIC-III: All classes are sampled to be of the same size.
The sample size of each class for the 4 domains are A: 164, B:
625, C: 1179, D: 495. We use the same network architecture
as for HHAR but with smaller hidden dimension size.

B. Further Experiment Results

Visualization of learned domain relationships on Bear-
ings and HHAR: The proposed method estimates inter-
domain relationships when domain metadata are not provided.
Figure 4 plots the proportion of runs each pair of domain is
estimated to be closest neighbors. For Bearings, the estimated
clusters approximately match location groupings. For HHAR,
the variation between phone models (i.e. Nexus and S3 versus
S3 mini and S+) appears larger than that between some users
(i.e. User 1 versus User 3). Domain relationships estimated
from data can be different from those inferred from metadata
descriptions and can contain finer measures of inter-domain
similarity. In fact, using learned similarity obtains higher
accuracy (89.1%) than using fixed metadata-inferred similarity
(87.9%) for Bearings.

Drive-end Fan-end

(a) Bearings
User 1 User 2 User 3

(b) HHAR
Fig. 4. Fraction of runs where domain j (column) is the nearest neighbor of
domain i (row) at end of training. Diagonal values are 1.

Additional experiments on Bearings and HHAR: We
additionally evaluate on a more challenging setting where tar-
get domain conditions are not combinations of source domain
conditions. For Bearings, we use only domains from drive-
end location, so each domain has a distinct loading torque.
For HHAR, we use only domains from the first user, so each
domain has a distinct phone model. We fix the hyperparameter
of our proposed method with learned inter-domain similarity
to λ = 0.01 and ξ = 0.1. From Table X and XI, our proposed
method outperforms ERM on all target domains in Bearings,
and on average in HHAR.

TABLE X
BEARINGS DRIVE-END DOMAINS: CLASSIFICATION ACCURACY AND

EXPECTED CALIBRATION ERROR (ECE) ON TARGET DOMAIN.

Method Accuracy (%) ↑ ECE (%) ↓

A B C D Avg Avg

ERM 84.4 94.9 98.9 86.0 91.0 5.2
Ours (Learned sim.) 93.9 97.8 99.0 88.7 94.8 3.1

TABLE XI
HHAR USER 1: CLASSIFICATION ACCURACY AND EXPECTED

CALIBRATION ERROR (ECE) ON TARGET DOMAIN.

Method Accuracy (%) ↑ ECE (%) ↓

A B C D Avg Avg

ERM 79.0 80.5 71.5 80.3 77.8 14.6
Ours (Learned sim.) 78.7 81.8 70.8 82.0 78.3 13.4

TABLE XII
BEARINGS: REGULARIZATION STRATEGIES FOR REGULARIZATION WITH

LEARNED INTER-DOMAIN SIMILARITY.

Selected neighbor Weight function Avg Accuracy (%)

Random 1 80.9
Random RBF (ξ = 0.1) 81.2
Nearest 1 84.9
Nearest RBF (ξ = 0.1) 83.2

Ablation study: We study the effect of neighbor domain
selection and weight function in regularization with learned
inter-domain similarity on Bearings. Hyperparameters are
fixed at λ = 0.01 and ξ = 0.1. In Table XII, regularizing each
domain with its nearest neighbor achieves higher accuracy than
regularizing random pairs of domains. While nearest neighbor
selection and a fixed weight of 1 has best accuracy in this



(a) Signal w/o noise (b) Domain A (c) Domain B (d) Domain C (e) Domain D

Fig. 5. Toy dataset: Example series. (a) Clean sawtooth and square signals used for data generation, (b)-(e) Samples generated for domain A to D, with
channel 1 in blue and channel 2 in orange. Best viewed in color.

TABLE XIII
CHOICE OF MMD KERNEL FUNCTION.

Kernel Avg Acc (%)

Bearings HHAR

(Metadata sim.)
Gaussian 83.1 87.6
Linear 87.1 88.5
(Learned sim.)
Gaussian 86.5 87.6
Linear 86.8 88.3

TABLE XIV
TOY DATASET: DOMAIN ATTRIBUTES. DOMAIN A, B AND C ARE SOURCE,

DOMAIN D IS TARGET.

Channel with signal Noise std. dev.

2 4

Channel 1 A B
Channel 1 and Channel 2 C D

TABLE XV
TOY DATASET: COMPARISON OF BOUND TERMS AND TARGET RISK.

Method Source Risk H-divergence Target Risk

A B C Avg A B C Avg D

DANN-DG 0.207 0.375 0.005 0.196 1.992 0.800 2 1.597 0.399
CDANN-DG 0.242 0.352 0 0.198 1.972 0.800 2 1.591 0.333
Ours 0.157 0.362 0.070 0.196 2 0.608 2 1.536 0.111

study, we note that the RBF hyperparameter ξ can be tuned
and the RBF weight approaches 1 as ξ → 0.

Lastly, we study the use of different kernel functions in
MMD for distribution matching in our proposed method. The
linear kernel is the default used in all our experiments, and
the Gaussian kernel is implemented as in [63]. We do not
apply time series augmentations in order to study the effect of
regularization in isolation. From Table XIII, the linear kernel
has better performance than the Gaussian kernel for both
Bearings and HHAR datasets.

Analysis of target risk bound: We create a toy dataset

according to domain attributes in Table XIV for binary classi-
fication of sawtooth and square-shaped signals to compare the
target risk bound terms in main manuscript Theorem 1 and
empirical target risk. Each sample is a length-200 time series
with two channels. Domain A and B only have sawtooth and
square signals on channel 1. Domain C and D additionally
have square signals on channel 2 for the square signal class.
Signals are generated with number of cycles uniformly at
random in [ 16 , 5], and noise added to the signals is Gaussian
distributed with standard deviation 2 for domain A and B
and 4 for domain C and D. We add Gaussian N(0, 1) noise
to channels with no shape signals. We illustrate example
series from each domain in Figure 5. We use domain D
as unseen target domain and the rest as source domains.
Each source domain has 400 samples and target domain has
1200 samples following sample size specifications in main
manuscript Equation 1.

We provide estimates of the target risk bound terms in
Table XV on models trained using existing domain alignment
methods (i.e. DANN-DG, CDANN-DG) and our proposed
method with consistency regularization applied on domain A
and B. We do not regularize domain C in our method because
it is the most dissimilar from the other two source domains by
having additional channel 2 features that are correlated with
signal class. All regularization hyperparameters are set to 1 i.e.
λ = 1, and we use the same network architecture as for HHAR
with 1-layer CNN. We do not apply time series augmentations
in order to study the effect of regularization in isolation. To
control for possible differences due to model convergence, we
stop training for all methods when average source risk falls
below 0.2. We follow the procedure in [10] to estimate H-
divergence. For each source Sm and target T domain pair:

1) Construct domain classification training set with 200
samples from source domain and 200 samples randomly
selected from target domain, and construct domain clas-
sification test set with the other 200 samples from source
domain and 200 samples randomly selected from the
remainder of target domain;



TABLE XVI
SETUP FOR HYPERPARAMETER TUNING.

Method Hyperparameter Distribution

IRM Regularization λ
Iterations of penalty annealing

10Unif(−1,5)

b10Unif(0,4)c

GroupDRO Group weight temperature η 10Unif(−3,−1)

Interdomain Mixup Beta shape parameter α 10Unif(−1,1)

MTL Embedding averaging proportion {0.5,0.9,0.99,1}

MLDG Meta-learning loss β 10Unif(−1,1)

Correlation Regularization λ 10−5

CORAL-DG, MMD-DG Regularization λ 10Unif(−3,−1)

DANN-DG, CDANN-DG Discriminator learning rate
Discriminator weight decay
Discriminator Adam β1
Discriminator steps
Discriminator gradient penalty
Adversarial regularization λ

10Unif(−5,−3.5)

10Unif(−6,−2)

{0, 0.5}
b2Unif(0,3)c
10Unif(−2,1)

10Unif(−2,2)

VREx Regularization λ
Iterations of penalty annealing

10Unif(−1,5)

b10Unif(0,4)c
RSC Feature drop percentage p

Batch percentage
Unif(0, 0.5)
Unif(0, 0.5)

Ours Regularization λ
RBF kernel parameter ξ

10Unif(−3,−1)

10Unif(−2,2)

2) Train SVMs with RBF kernel for binary domain
classification with regularization hyperparameter C ∈
{0.001, 0.01, 0.1, 1, 10, 10, 100};

3) Select C with lowest training error, and evaluate selected
SVM on test set to obtain test error ρ;

4) Approximate the H-divergence by divH(Ŝm, T̂ ) =
2(1− 2ρ).

We observe from Table XV that a lower H-divergence tend
to indicate a lower target risk. Our proposed method has the
lowest H-divergence, especially between domain B and D.
Source domain B is aligned with only one domain in our
method instead of two in other methods, and it is the most
similar to target domain D in terms of signal noise level. By
not regularizing source domain C, we also allow the model
to retain channel 2 signal features for classification on target
domain D.



TABLE XVII
BACKBONE NETWORK ARCHITECTURES FOR EACH DATASET. CONVOLUTION OPERATION IS ABBREVIATED AS ‘CONV’ AND FULLY CONNECTED

OPERATION IS ABBREVIATED AS ‘FC’.

Layer Operation Specifications

Convolution Conv
BatchNorm
LeakyReLU

8 (filter: 64× 1, stride: 2, pad: 1)

Convolution
(3 times)

Conv
BatchNorm
LeakyReLU

8 (filter: 3× 8, stride: 2, pad: 1)

Convolution Conv
LeakyReLU

8 (filter: 3× 8, stride: 2, pad: 1)

Convolution Conv 8 (filter: 8× 8, stride: 1, pad: 1)

Fully connected FC 32

Fully connected
(2 times)

FC
ReLU

32

Fully connected FC 10

(a) Network for Bearings

Layer Operation Specifications

Convolution Conv
BatchNorm
LeakyReLU

hidden dim (filter: 8× 3, stride: 1, pad: 1)

Convolution Conv
BatchNorm
LeakyReLU

2*hidden dim (filter: 5× hidden dim, stride: 1,
pad: 1)

Convolution Conv
BatchNorm
LeakyReLU

hidden dim (filter: 3 × (2*hidden dim), stride:
1, pad: 1)

Pooling Average pooling 1 (filter: 121, stride:121)

Fully connected FC 6

(b) Network for HHAR (hidden dim = 128) and MIMIC-III (hidden dim = 32)

TABLE XVIII
HHAR: SAMPLE SIZE DISTRIBUTION PER DOMAIN.

Domain Class

Biking Standing Sitting Walking Stair
down

Stair up

A 626 933 652 676 874 778
B 346 468 316 341 435 376
C 175 234 162 176 207 212
D 298 237 264 226 223 275
E 999 682 681 771 692 1013
F 487 387 312 407 370 495
G 234 196 161 199 186 245
H 385 251 267 298 253 331
I 539 817 628 768 723 857
J 293 427 312 374 358 445
K 147 213 168 211 164 244
L 275 229 264 265 248 300
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