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Abstract

We present a classification based approach for the next
best view selection and show how we can plausibly obtain
a supervisory signal for this task. The proposed approach
is end-to-end trainable and aims to get the best possible 3D
reconstruction quality with a pair of passively acquired 2D
views. The proposed model consists of two stages: a clas-
sifier and a reconstructor network trained jointly via the
indirect 3D supervision from ground truth voxels. While
testing, the proposed method assumes no prior knowledge
of the underlying 3D shape for selecting the next best view.
We demonstrate the proposed method’s effectiveness via de-
tailed experiments on synthetic and real images and show
how it provides improved reconstruction quality than the
existing state of the art 3D reconstruction and the next best
view prediction techniques.

1. Introduction
Three dimensional (3D) object reconstruction and acqui-

sition are a long time focus of machine vision research and a
key to visual understanding and interpretation. It has a wide
range of practical applications, including robotics, AR/VR,
autonomous navigation, and industrial automation, to name
just a few. Being able to access the 3D geometric cue about
an object or scene can immensely benefit in post-processing
and decision making for instance in recognition [37], seg-
mentation [39], pose estimation [2] and other computer vi-
sion and pattern recognition tasks.

As a computer vision task, this requires a sensor for ob-
serving the object, which can be of two types, namely, ac-
tive and passive cameras. Active cameras like Laser imag-
ing detection and ranging (LiDAR), Time of Flight (ToF),
and depth cameras like the Kinect directly acquire scene
depth and, in turn, the 3D shape of an object but come with
their limitations apart from the high cost and power require-
ments. Passive cameras are much cheaper and use signifi-
cantly less power to acquire two-dimensional (2D) optical
RGB snapshots of the object, which can then be used to re-
cover the 3D structure by posing this as an inverse problem.

Recovering 3D shape from its two-dimensional snap-
shots has been a goal of classic computer vision problems
like multiview stereo and Shape-from-X techniques. Early
methods approached this with a geometric perspective and
focused on mathematically modeling the process of 2D pro-
jection to pose it as an ill-posed problem [14] constrained
by suitable scene priors. The structure from motion(SfM)
techniques can be used to obtain a sparse 3D point cloud
of an object along with the respective camera poses. Along
similar lines, Multi-View Stereo (MVS) techniques can pro-
vide a dense 3D reconstruction. Recently, with the advent
of deep learning-based methods, a model can directly learn
a non-linear mapping from the images to the 3D representa-
tion outperforming classical methods while doing it in real-
time [53].

Although there are works that attempt to reconstruct the
3D shape of an object from just a single view but these are in
early stages due to their highly ill-posed nature of the prob-
lem. Moreover, as in MVS, taking more than one view of
the object reduces ambiguity and occlusion to significantly
improve the 3D recognition quality as more information is
available for recovery. Typically, these views are acquired
from a set of passively selected viewpoints independent of
the object geometry. To obtain the best 3D reconstruction,
one would expect these viewpoints to depend on the 3D
shape in consideration. Therefore, to obtain the best pos-
sible 3D reconstruction quality from the captured images,
one must actively decide the next best viewpoint to take the
snapshot from.

The Next View Selection (NVS) problem has been ex-
plored since the early days of machine vision research [8].
This problem arises in many scenarios where one would
want to find the next best viewpoint around an object or
in an arena while maximizing a particular quality or per-
formance metric. For instance, to better grasp an object, a
robotic arm equipped with a camera may want to find the
next viewpoint to obtain the best 3D reconstruction for bet-
ter understanding quickly. Similarly, a UAV hovering over
a scene may want to find the next view, which can provide
the best 3D digital elevation model to minimize the flight
time. Several works in robotic navigation, robotic arm po-
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sitioning, and remote sensing are discussed in the related
work section.

However, almost all of these works use range cameras to
capture scene depth directly and select the next view either
heuristically or by optimizing for the surface area covered,
or information gained. Along with this, they have aimed to
reconstruct a surface representation of the scene like mesh
or a point cloud. Volumetric representation like voxels is
better suited for practical applications due to ease of manip-
ulation and training than surface or mesh-based represen-
tations. Hence, we focus on learning a volumetric repre-
sentation of the scene in this work. Moreover, selecting the
next views using only passive camera images of a scene has
been explored much recently but not very actively in the
literature. We focus on this particular setup in this paper.
Predicting a 3D shape or next views using passive cameras
is a more challenging task due to much lesser data available
for use than in active sensors. Due to this setup, classical
solutions based on the surface reconstruction and optimized
for the surface area covered or information gained cannot
be used here.

This paper attempts to address these gaps and propose a
novel classification-based approach for NVS without using
the preprocessed ground truth next views. Since our goal is
to maximize the 3D reconstruction quality, we propose to
extract a supervisory signal from the reconstruction process
itself to drive the classification model’s training and obtain
a better loss-goal correspondence. We present how a light-
weight neural network-based classifier can be incorporated
into existing 3D reconstruction models to perform NVS and
trained without the knowledge of ground truth NVS labels.
Training such a classifier-reconstructor architecture is not
straightforward without the labels. Therefore, we propose
a novel loss objective that facilitates end to end training
of such a joint classifier-reconstructor deep neural network
model.

We demonstrate how the proposed method successfully
selects the next views to maximize the reconstruction qual-
ity for a given 3D object on synthetic and real data. Addi-
tionally, we analyze the selected next views for each object
category to gain insights and observe underlying patterns
to learn how they are distributed depending on the object
shape. Our contributions in this paper are as follows:

• We propose a deep learning-based approach for next
view selection and show how it can be effectively ap-
proached as a classification problem.

• We show how the supervisory signal from the 3D re-
construction process can be used to learn both the clas-
sification and reconstruction networks jointly in an end
to end manner.

• We present a qualitative analysis of the selected next

views to gain insights into the process and their depen-
dence on object categories and shape.

• We present exhaustive experiments on both synthetic
and real data to demonstrate the effectiveness of the
proposed method in selecting appropriate next views
while providing high reconstruction quality.

2. Related Work
Early works on 3D reconstruction focus on mathemati-

cally modeling the imaging process and solving an ill-posed
problem via suitable scene priors and geometric constraints
[14]. Among the recent deep learning-based methods, there
are three broad types of techniques based on output repre-
sentation: Volume-based, Surface-based, and Intermediate
representation. Surface-based methods explore meshes and
point clouds that are unordered representations [48, 18, 36].
Volumetric methods explore regular voxel grid-based rep-
resentation as we consider in this paper [50, 47, 54]. The
recent state of the art works in this category include Pix3D
[44], 3DR2N2 [7] and Pix2Vox [53] which we use as our
baselines to compare with. Some techniques decompose
the problem into sequential steps, each predicting a different
representation that can be used as per application [46, 20].

Early works in NVS acquire range images and aim to
recover the surface geometry of an object. Connolly et
al. [8] did one of the first works on automatic range sen-
sor positioning using partial octree models and optimize for
the surface area covered. Maver et al. employ occlusion
guidance [22] and optimize for information gained [23] for
NVS. These and related methods [33, 35, 34] require the
images to overlap to allow for registration and integration
of the new data captured with previous scans. The earliest
work in data-driven NVS is by Banta et al. [5], which uses
synthetic range data to predict occupancy grids. Here, the
number of viewpoints on the view sphere is limited, and the
radius is large enough to encompass whole object. The cen-
ter and coordinate axes of the view sphere are aligned with
those of the object, and the camera always faces this center.
We work with a similar setup but use passive RGB cameras.

Recent works also focus on active sensors such as Hepp
et al. [16] use a CNN to learn a viewpoint utility function,
Delmarico et al. [10] optimize volumetric information gain,
and Mendez et al. [24] maximize information gain in terms
of total map coverage and reconstruction quality. Chen et
al. [6] propose a prediction model for the object’s unknown
area using a 3D range data acquisition. Zhang et al. [10]
use self-occlusion information for NVS to predict 3D mo-
tion estimation. Potthast et al. [38] and Isler et al. [17] pro-
pose information gain based NVS for occluded enviroments
and 3D reconstruction respectively. Other works include
greedy [31] and supervised learning approach [21] for vis-
ibility based exploration and reconstruction of 3D environ-

2



A

B

A

C

(a) Train Network

A
Base
View

Next-View
ProbabilitiesF.C.

Stage 1

Base
View

Next
View

Base
View

Next
View Encoder - Decoder

Output
Stage 1

Coarse
Volumes

Final
Volume

Encoder - Decoder Coarse
Volumes

Refiner
Final

Volume

Weighted
Reconstruction

BCE
Loss

Stage 2

A B

A

B

(b) Test Network

Base
View

Selected
ViewF.C.

Stage 1

Stage 2

Base
View

Selected
View Encoder - Decoder

Coarse
Volumes

Refiner Final
Volume

(c)  Viewpoints

Refiner

Figure 1. An Overview of the proposed 3D-NVS model used during the (a) training and (b) testing. A detailed explanation of each sub-parts
is given in Section 3. (c) Chosen viewpoints of the ShapeNet dataset to generate images for training.

ments. Hashim et al. [15] propose a view selection recom-
mendation method by minimizing pose ambiguity for object
pose estimation using depth sensors. There are also works
on robotic arm navigation for autonomous exploration and
grasping [28, 29, 4, 49], UAV positioning in remote sensing
[1], Pose estimation [43] and 3D scene inpainting [13].

Closely related to our work and among the deep
learning-based methods, Wu et al. [51] propose a deep neu-
ral network-based view prediction but use 2.5D RGB-D im-
ages to improve 3D object recognition. Daudelin et al. [9]
propose a probabilistic NVS algorithm but use RGB-D sen-
sor data for 3D object reconstruction. Mendez et al. [25] use
stereo image pairs and propose NVS to optimize the surface
area covered by reconstructing the object surface. Dunn et
al. [12] use passive cameras but optimize for the surface
area covered as their goal is surface reconstruction. Men-
doza et al. [26] also pose this as a classification problem but
work with range sensor data and generate exhaustive ground
truth data to train a classifier. They use a small dataset of
12 objects and a CNN-based classifier that takes the par-
tial voxels as input to predict the next view. In contrast, we
use RGB images and do not generate the ground truth but
propose a classification-based approach guided by the su-
pervision from 3D reconstruction directly. Yang et al. [55]
propose a recurrent network for view prediction using pas-
sive cameras but use a highly restricted set of viewpoints on
the view sphere, unlike the broad viewpoints and restrained
acquisition process considered in the literature.

3. Method
This section introduces 3D-NVS – a novel deep learning

model to reconstruct 3D shapes from 2D images while se-
lecting the best next view. The proposed two-stage model
works as follows: given an input image, stage 1 selects
the next camera position out of 11 possible labels. Sub-
sequently, stage 2 inputs the two images (base image and
the selected next view) to a reconstruction model to gen-
erate a 3D shape. The shape is in voxel grids with binary
occupancy (1 means occupied, 0 means empty). To select
the next views, 3D-NVS uses supervision from ground truth
3D shapes. This indirect supervision is facilitated by a novel
loss function, which enables the training of a network with
a softmax classifier in between. Such a unified classifier
followed by reconstruction architecture is the first in our
knowledge and is a key enabler of our proposed method.
An overview of the proposed model is presented in Figure
1, and the detailed architecture is shown in Figure 2.

3.1. Network Architecture

We use slightly different architectures for training and
testing. For training, we incorporate the availability of im-
ages from all camera viewpoints. However, during testing,
we only input images from one viewpoint, and the model
predicts the next view. This idea reinforces the freedom of
obtaining multiple images from all viewpoints during train-
ing while restricted access during testing.

During training, the input RGB image from an arbitrary
camera position, called henceforth as the base image, is
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Figure 2. The proposed 3D-NVS architecture showing various constituent stages: NVS-Net, Encoder, Decoder and Refiner modules. Note
that Encoder shares weight with NVS-Net in the 3D-NVS model for efficient parameter utilization leading to a smaller model size.

passed into NVS-Net, which outputs a probability distribu-
tion over the next views. The number of possible camera
positions for the next view is fixed (details in Section 4) and,
thus, is a classification problem. In parallel to NVS-Net,
we pass images from all the viewpoints into the Encoder
– a sub-network of Stage 2 of 3D-NVS that generate fea-
ture maps. These are then used by the Decoder to produces
coarse voxels. The context-aware fusion and the refiner [53]
are used to fine-tune the generated voxels. The 3D volumes
obtained from all pairs of the base image and possible next-
best views are combined with the probability distribution
predicted by the NVS-Net to get a final 3D volume.

During testing, we detach stage 1, which is NVS-Net,
from the training setup & use it for the next view selec-
tion described above and predicts the probability distribu-
tion over the next views. Now, the viewpoint with maxi-
mum probability is selected as the next view, and the two
views (base view and selected next view) are passed into
the Encoder, Decoder, Context-aware Fusion, and Refiner
sub-networks to obtain the final reconstructed 3D volume.

3.1.1 NVS-Net

We use a classification network inspired by VGG16 [42]
and modify the last few layers of this network to suit our
output classes. We take the model pre-trained on ImageNet
[11] and freeze the first nine layers. An RGB square in-
put image of size 228 pixels is progressively passed into
convolutional layers with ELU activations while increasing
the number of channels as described in Figure 2. Finally,
we obtain a 256x4x4 feature map which is flattened into a
4096-dimensional fully-connected layer and fed to two fur-
ther fully-connected layers output 128 and 11 channel out-
puts, respectively. The last layer’s activation is set to soft-
max to obtain probability distribution over the next views,
as in other standard classification models.

In the remainder of the paper, we define 3D-NVS-R as
the model where we choose the next view randomly from
all the available views. Also, we define 3D-NVS-II when
we choose the second best view, 3D-NVS-III for the third
view, and so on. Finally, 3D-NVS-F is when the next view is
chosen to maximize the distance between the input images.

3.1.2 Encoder-Decoder

The Encoder extracts feature from both input RGB images,
the base, and the next view image selected by NVS-Net.
Since the NVS-Net already extracts features and flattens
them for classification, we share its parameters with En-
coder for parameter efficiency and smaller model. The out-
put of the Encoder is a feature map of size 256x8x8, which
is an intermediate output of NVS-Net. Note that only the
base image is passed into the NVS-Net, whereas all the im-
ages are passed into the Encoder in stage 2 during the train-
ing phase.

After obtaining the feature maps, we use those as input to
recover 3D shapes. The architecture of having an Encoder-
Decoder model is motivated by its success in Image Seg-
mentation tasks [3] and to more related 3D shape recon-
struction tasks [53]. The feature maps of size 256x8x8 are
resized to 2048x2x2 and operated on successive transposed
convolution layers that decrease the number of channels and
increase the feature sizes. The obtained 32x32x32 vector is
passed through a sigmoid activation function to obtain oc-
cupancy probability for each cell.

3.1.3 Context-aware Fusion and Refiner

Context-aware Fusion and Refiner is used in Pix2Vox [53]
to convert coarse 3D volumes into an improved 3D volume.
The idea behind such an additional network is to account
for different reconstructions from different viewpoints. The
Context-Aware Fusion generates a score map based on the
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viewpoint, and the final volume is obtained by multiplying
a softmax-based activation with the corresponding coarse
volume from that view. Finally, the Refiner is a UNet-like
architecture [41], which acts as a residual network to correct
remaining mis-recovered parts of the object. The activation
of the final layer is again set to sigmoid to obtain occupancy
probability for the 32x32x32 grid.

3.1.4 Loss Function

We propose a loss function to train this unique architecture.
The proposed loss function considers both NVS-Net output
probability and the reconstructed 3D shape for each pair of
views. Let the probability of selecting ith image is pi as per
NVS-Net. Correspondingly, let vi denote the reconstructed
volume of size 32x32x32 using base image and ith image
as input. The averaged 3D shape is defined as

r =
∑
∀i

pivi (1)

We propose the averaged per-voxel binary cross entropy be-
tween r and ground truth voxel t as the loss function of the
network. Mathematically,

L(r, t) =
1

N

N∑
j=1

(tj log(rj) + (1− tj) log(1− rj)) (2)

It is advantageous to have output from both the sub-
networks in the expression of the loss. Such a choice pre-
vents a network weight bottleneck at the NVS-Net outputs
and serves the objective of simultaneous classification and
reconstruction tasks. Our motivation to use this loss func-
tion is to improve the weighted reconstruction; that is, at
each training step, we aim to improve the reconstruction
performance on the network. Once it is trained success-
fully, the NVS-Net is inclined to assign a higher weight to
the view which has a lower loss, thus achieving our two-fold
objectives of Next View Selection and reconstruction.

4. Experiments and Observations
We conduct experiments with the proposed model on

both the synthetic dataset and real images. The details of the
dataset, implementations, and observations are presented in
the next sub-sections.

4.1. Dataset

ShapeNet [52] is a large-scale dataset containing 3D
CAD models of common objects. We use a subset of
ShapeNet with 13 categories having 43,782 models. This
subset choice is the same as that used in [7, 53, 55]. The 3D
models are voxelized into a 32x32x32 grid using the binvox
package [27, 30]. However, the rendered images for previ-
ous work [53, 7, 55] positions the camera only on a circular

trajectory over a fixed elevation (25◦ – 30◦). Such highly-
constrained acquisition of images is not particularly appli-
cable to real-world acquisition followed by reconstruction.
In fact, we show that if these previous models are trained
and tested on images taken from positions away from such
fixed locations, the reconstruction performance drops sig-
nificantly. Besides, many real-world applications, such as
UAV acquisition and underwater acquisition, can have im-
ages from arbitrary locations, and requiring them to obtain
images from a particular viewpoint may be infeasible.

To mitigate this inconsistency and to increase the
robustness of chosen camera positions, we render im-
ages from a much broader viewpoint. We use Py-
Torch3D [40] to render images from much broader view-
points with Soft Phong Shader. We choose elevations of
−90◦,−60◦,−30◦, 0◦, 30◦, 60◦, 90◦ and the azimuths also
vary uniformly around the sphere to generate 24 views that
span the whole view sphere to represent a real acquisition
scenario. Also, some of the object textures are incompati-
ble with PyTorch3D, and thus, we use those models without
adding any default texture. This choice also adds robust-
ness to both textured and untextured images. We finally
use 11 views in this experiment since diametrically oppo-
site images are degenerate for untextured images (images
from both poles are also removed to maintain mathematical
stability during rendering calculations). A schematic repre-
sentation of the camera locations is provided in Figure 1.

To evaluate our proposed model’s performance on real
images, we use the Pix3D dataset [45]. Pix3D offers real-
world images of common objects, along with a 3D model
of the same. The images are accompanied by a mask for the
respective object class. Multiple images are corresponding
to one 3D object taken from various viewpoints. Although
viewpoint-mapping is not provided explicitly, we use the
input image metadata’s camera position and map it to the
nearest viewpoint used in the previous synthetic data. How-
ever, we observe that the dataset does not contain as many
images to cover the whole viewpoint. In such a scenario,
the next-best view is the one that has the highest probability
out of the available viewpoints.

4.2. Evaluation Metrics

We use the standard Intersection over Union (IoU) as the
evaluation metrics. As the name suggests, this metric cal-
culates the ratio of the number of matching occupied voxels
and the total number of occupied voxels. Mathematically,

IoU =

∑
∀x,∀y,∀z

1{r(x,y,z)>vt} ∧ t(x,y,z)∑
∀x∀y∀z

1r(x,y,z)>vt
∨ t(x,y,z)

(3)

Here vt denotes the binarization threshold and ∧, ∨ de-
note logical AND and OR, respectively. Also, r(x,y,z) and
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Category 3D-R2N2 [7] Pix2Vox [53] 3D-NVS (Proposed) 3D-NVS-R 3D-NVS-F
airplane (810) 0.486 0.619 0.627 0.418 0.384
bench (364) 0.336 0.442 0.522 0.345 0.311

cabinet (315) 0.645 0.709 0.656 0.619 0.595
car (1501) 0.781 0.815 0.836 0.740 0.730

chair (1357) 0.410 0.473 0.526 0.362 0.306
display (220) 0.433 0.508 0.508 0.416 0.402
lamp (465) 0.272 0.365 0.370 0.318 0.299

speaker (325) 0.619 0.649 0.631 0.585 0.583
rifle (475) 0.508 0.597 0.579 0.387 0.344
sofa (635) 0.568 0.602 0.640 0.503 0.456

table (1703) 0.405 0.438 0.510 0.343 0.293
telephone (211) 0.636 0.818 0.681 0.628 0.700
watercraft (389) 0.477 0.529 0.553 0.428 0.387
Overall (8770) 0.511 0.574 0.601 0.465 0.432

Table 1. Class-wise comparison between state of the art reconstruction methods and our proposed 3D-NVS. Details of the experiment are
described in Section 4.4. We also compare 3D-NVS-R and 3D-NVS-F with 3D-NVS, details of which is included in the Ablation Study
(see Section 4.5). We can observe that 3D-NVS has the best overall reconstruction IoU amongst all the methods.

t(x,y,z) denotes values at location (x, y, z) for predicted
voxel grid and ground truth, respectively. IoU ranges from
0 to 1, with higher value implying better reconstruction.

4.3. Network Parameters

We use PyTorch [32] to train 3D-NVS described in the
previous section. The network is trained until convergence,
which takes about 30 hours on an Nvidia 1080Ti GPU. The
number of epochs is set to 20 with a batch size of 8. The
learning time per epoch is high due to an increased number
of gradient calculations for one sample. For all the possible
next views, the model parameters are shared, and hence the
network computes gradients for all the images. Fortunately,
it also leads to a considerable increase in learning per epoch.
The learning rate of the network layers is set to 0.0001. We
experiment with both SGD optimizer, and Adam optimizer
[19] and report the latter due to better performance. We use
standard data augmentation techniques like adding random
jitter and using random colored background for better ro-
bustness. To recall, the input images are of size 228x228,
and the output shape is a voxel grid of size 32x32x32.

4.4. Reconstruction Evaluation

4.4.1 Synthetic Multi-view Images

To establish the effectiveness of our approach, we com-
pare the reconstruction performance on various state of the
art shape reconstruction methods. We conduct the experi-
ment on rendered images discussed in Section 4.1. Also,
we again train 3D-NVS on the limited-elevation rendered
images used in Pix2Vox [53], 3D-R2N2 [7], and Yang et al.
[55] for a fair baseline and to demonstrate the robustness of

our model with respect to capturing locations.

A comparison of our results with that of 3D-R2N2 and
Pix2Vox is included in Table 1. All the methods are trained
on our rendered images with wider viewing angles and a
mix of textured and untextured images. The proposed 3D-
NVS achieves a mean IoU of 0.601, thus outperforming
both Pix2Vox and 3D-R2N2, which achieves a mean IoU
of 0.574 and 0.511, respectively. This improvement in 3D-
NVS is due to a better selection of the second view, given
the first input image. On the other hand, both Pix2Vox
and 3D-R2N2 chooses a fixed set of views for two-view
reconstruction – thus not learning subsequent views. An il-
lustration of reconstructed shapes is provided in Figure 3
where we also show reconstructed shapes when we choose
ith view for i > 1. We can observe that for 3D-NVS, we
obtain a good reconstruction (IoU ≈ 0.80) while the shape
degrades as we choose less probable next views.

Next, we use the texture-rich, limited-elevation rendered
images used in Pix2Vox, 3D-R2N2, and Yang et al. and
trained our model on that rendered images. We obtain a
mean IoU of 0.651, which is better than two-view recon-
struction in 3D-R2N2 (0.607) and Yang et al. (0.636) and
less than Pix2Vox (0.686).

In conclusion, we see that 3D-NVS outperforms all the
other methods in both reconstructions using images cap-
tured from spread-out viewpoints and the ability to general-
ize to different input image settings. When moving from a
texture-rich, limited-elevation data to a spread-out view, the
performance of Pix2Vox and 3D-R2N2 drops by 11% and
9%, respectively. In contrast, this decrease in performance
is only 5% in 3D-NVS. We could not compare results in
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IoU=0.801
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Figure 3. Examples of rendered input images and corresponding reconstruction performance. The images are sorted according to the
probability outputs of the proposed NVS-Net. The voxel grids below them represent the reconstruction performance with that view along
with the input image. We see a good reconstruction for high probability views, and the performance decreases as we choose less probable
next views, showing that the selected next view is indeed the best. (Please zoom-in to compare voxel grids).

Yang et al. on our rendered images due to the unavailability
of open-sourced reproducible code. Most of the other state
of the art techniques use range cameras with depth map for
reconstruction or view selection, and comparison with those
methods is not relevant since 2D images contain much less
information than RGBD images. We also compare our view
selection method with commonly used baselines in the lit-
erature, namely 3D-NVS-R, where we choose next views
randomly, and 3D-NVS-F, which is choosing views so as
to maximize the spatial distance between camera positions.
This choice of view selection is a heuristic widely used in
next view prediction [52, 55, 10, 15, 21]. A detailed anal-
ysis of the setting and results is included in the Ablation
Study (see Section 4.5). Moreover, we are able to do this
in real-time, unlike traditional methods in next view pre-
diction, which use range sensors and optimize for surface
coverage or information gain and take tens of seconds. This
high speed of our approach is possible as it only requires a
forward pass through the NVS-net and can also be highly
parallelized using a GPU.

4.4.2 Next-View Prediction

One of the advantages of our 3D-NVS over other previous
methods is that we do not require ground-truth for next view
selection despite it being posed as a classification problem.
Consequently, our method learns this selection on the fly us-
ing supervision from 3D shape. It is expected that for some
classes of objects, viewing from a particular position is gen-
erally more informative than some other viewpoints. For
example, consider the class aeroplane. If we view an aero-
plane from the equatorial plane, a significantly less area is
captured in the image. Thus, it is less likely that the chosen

Base View NVS NVS-II

Figure 4. Example showing locations of next view selected by the
proposed method for two object classes aeroplane and chair. For
aeroplane class, both the best and second-best views are majorly
above the equatorial position. For chair, it is indeed the equatorial
position, which concurs with surface methods of view selection.

next view will lie on the equatorial plane. Instead, viewing
from an elevation will be more informative. Now consider
the class chair. Intuitively, the maximum area is exposed
when it is viewed from an equatorial plane.

3D-NVS can learn this class-specific next view selec-
tion without explicit characterization. We illustrate this ef-
fect with two example classes, as shown in Figure 4. For
both the classes, we choose a fixed position for the base im-
age. Next, we observe the best and second-best selection of
NVS-Net in the test dataset, which we denote as 3D-NVS
and 3D-NVS-II, respectively. As expected, we observe that
NVS is based on the 3D shape of the object for both aero-
planes and chairs. These observations are in conjunction
with works that use range images and choose views to max-
imize the surface area scanned by the sensor reinforcing the
effectiveness of 3D-NVS.
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4.4.3 Real Images

We also test our model on real images from the Pix3D
dataset. We generate a mapping of the next views as de-
scribed previously in section 4.1. We encounter some miss-
ing images as Pix3D consists of common items, and the
images are taken from typical standing positions. Thus, we
choose the next view based on the best NVS-Net output to
map the next image. Denoting Y as the output of NVS-Net
and A as a boolean vector corresponding to available view-
points, the next view selection is

argmax
i

AiYi (4)

We do not separately train the network again on real im-
ages unlike in Pix3D [45], 3D-R2N2 [7] and Pix2Vox [53].
3D-NVS achieves an IoU of 0.105, while randomized view
selection (NVS-R) achieves an IoU of 0.08. A similar per-
formance is obtained in Pix2Vox when a model trained on
synthetic images is used. Thus, we see that using NVS-
Net for next view prediction improves the performance on
real images even without explicit training for such images.
Therefore, 3D-NVS learns to better generalized on unseen
data and seems to be better at scene understanding.

4.5. Ablation Study

In this section, we discuss the performance comparison
when certain parts of 3D-NVS are replaced with other view
selection methods to show our network’s effectiveness.

4.5.1 Individual Sub-network Performance

Our proposed 3D-NVS selects the next view based on fea-
tures extracted from the base image. In contrast, some ear-
lier work uses camera position as a parameter to select the
next view. We show that if NVS-net is removed and re-
placed with these heuristics, the performance decreases.

We use two methods for view selection: random next
view (3D-NVS-R) and farthest next view (3D-NVS-F);
both are widely used baseline in next view prediction
[52, 55, 10, 15, 21]. In the former, given any input image,
we choose the next image randomly from all the available
views. On the other hand, for the farthest next view, we in-
corporate camera position knowledge and find out the next
view which is spatially the farthest. In both cases, we ob-
serve that the mean reconstruction IoU is significantly less
than the IoU obtained when using NVS-net output to select
the next views. The results are presented in Table 1.

Another important feature of 3D-NVS is the Context-
Aware Fusion, followed by Refiner. We again observe that
if we replace these sub-parts and replace them with a simple
average of coarse volumes, the performance decreases sub-
stantially. These findings are in coherence with the findings
of Pix2Vox [53], and hence, we omit a numerical compari-
son.

3D-NVS II III IV V VI VII VIII IX X XI
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Figure 5. A plot of how the reconstruction performance varies with
sub-optimal view selections from 3D-NVS. Here, 3D-NVS-II de-
notes second best view selected, 3D-NVS-III denotes the third best
view and so on. We can observe that the mean IoU monotoni-
cally decreases which reinforces that 3D-NVS successfully learns
to rank the views in a decreasing order of goodness.

4.5.2 View selection orders

During testing, the NVS-Net gives a softMax output, which
is the probability distribution over the next views. The next
view with the highest probability is selected as the next best
view. Now, to investigate if the NVS-Net indeed outputs
the best possible view selection, we modify the network to
choose the ith-best view (i > 1) and compare the results
with NVS-Net. All the other parts of the network are kept
the same. We observe a decrease in the mean IoU of the
reconstruction as we increase i. The results are plotted in
Figure 5 and an example of reconstructed shapes is given
in Figure 3. This decrease in performance when we deter
from the selection of the NVS-Net implies that NVS-Net is
indeed effective in selecting the next view.

5. Conclusion
In this paper, we present how the task of Next Best

View selection can be posed as a classification problem and
learned in a data-driven manner without the knowledge of
underlying ground truth labels. We do this intending to ob-
tain the best possible 3D reconstruction from the acquired
views and use this reconstruction process to obtain indirect
supervision to train the proposed model. The proposed 3D-
NVS method’s performance is evaluated on both synthetic
and real data to demonstrate how it obtains better recon-
struction quality than the existing state of the art 3D recon-
struction techniques by effectively selecting the best view.
Additionally, we present an analysis of how the selected
next view locations are distributed intuitively depending on
the object category, which concurs with previous techniques
that use range sensors. Going forward, we aim to extend this
to successive N-view next view selection.
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