
Unified Recurrence Modeling for Video Action
Anticipation

Tsung-Ming Tai
NVIDIA AI Technology Center

Free University of Bozen-Bolzano
ntai@nvidia.com, tstai@unibz.it

Giuseppe Fiameni
NVIDIA AI Technology Center

gfiameni@nvidia.com

Cheng-Kuang Lee
NVIDIA AI Technology Center

cklee@nvidia.com

Simon See
NVIDIA AI Technology Center

ssee@nvidia.com

Oswald Lanz
Free University of Bozen-Bolzano

lanz@inf.unibz.it

Abstract—Forecasting future events based on evidence of
current conditions is an innate skill of human beings, and key for
predicting the outcome of any decision making. In artificial vision
for example, we would like to predict the next human action
before it happens, without observing the future video frames
associated to it. Computer vision models for action anticipation
are expected to collect the subtle evidence in the preamble of
the target actions. In prior studies recurrence modeling often
leads to better performance, the strong temporal inference is
assumed to be a key element for reasonable prediction. To this
end, we propose a unified recurrence modeling for video action
anticipation via message passing framework. The information
flow in space-time can be described by the interaction between
vertices and edges, and the changes of vertices for each incoming
frame reflects the underlying dynamics. Our model leverages self-
attention as the building blocks for each of the message passing
functions. In addition, we introduce different edge learning
strategies that can be end-to-end optimized to gain better flexibil-
ity for the connectivity between vertices. Our experimental results
demonstrate that our proposed method outperforms previous
works on the large-scale EPIC-Kitchen dataset.

I. INTRODUCTION

Video action recognition is a long-standing problem in
computer vision. The goal is to predict the action category
that can be observed in a video clip, by recognizing the
action discriminant spatio-temporal patterns and their context
in the observations [1]. When it comes to action anticipation,
however, a prediction must be made before the actual action
is observed [2], [3], [4]. This is relevant for many real-world
applications, for example, in assistive navigation systems [5],
collaborative robotics [6], interactive entertainment [7], [8] and
autonomous vehicles [9]. Figure 1 illustrates the definition of
the video anticipation problem. Naively re-framing clip-based
action recognition to perform anticipation is inadequate from
a model design perspective, and may result in inefficiency.

Recurrent neural networks are widely adopted for modeling
the temporal relationship in anticipation problems [3], [10],
[11] and lead to better performance than clip-based methods
[12], [13], as opposed to the mainstream in action recognition.
The basic assumption is that in action anticipation the observa-
tions are incomplete and indirect, although related, to the target

action. Some actions also come with misleading and unclear
preamble information, for example, there are many future
possibilities when observing someone extending its hand or
moving closer to an area with many actionable objects in
sight. Action anticipation is more towards forecasting than
recognition, and thus the effectiveness of adapting action
recognition models to the anticipation problem is reduced.

In this paper we present a unified recurrence modeling
for video action anticipation which generalizes the recurrence
mechanism by transferring the sequence learning into a graph
representation learning realized via a message passing frame-
work. We use self-attention as the universal building block
for extracting information in vertices and edges. Vertices are
associated to the representations provided by a backbone’s
specific receptive field. Edges describe the bonding strength
between the vertices. Self-attention can be seen as the function
of routing information between vertices. The attention weights
are derived by the scaled dot-product, which computes the
correlation of vertices, and can be interpreted as an implicit
adjacency estimation. However, in this way, the representation
of edges is limited and purely based on the similarity between
vertices. To improve such trivial estimation, we propose edge
learning strategies which explicitly approximate the edge
connectivity. In the experimental results, we show that the
proposed unified recurrent modeling outperforms several state-
of-the-art methods on the large-scale egocentric video dataset
EPIC-Kitchens. When combined with edge learning strategies,
we obtain a further significant boost in performance.

II. RELATED WORK

A. Video Action Anticipation

Early works in video anticipation model the problem with
recurrent neural networks [14], [15], [16]. Some prior works
also leverage the future frames for learning the representations
[17], [18]. A self-regulated learning framework for action
anticipation on the egocentric video is presented in [10], which
learns to emphasize the important context by its revision and
reattend designs. RU-LSTM [19] deploys two LSTMs and
behaves as an encoder-decoder, where the first progressively
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Fig. 1. Illustration of video action anticipation problem. The context of action may be different than the preamble of action. Models can only observe some
frames before action actually starts ts, which is strictly ensured by an inaccessible ”skip” period, and based on the evidence collected in the duration in
ts − τa to predict the next action. The anticipation accuracy is measured at each different τa.

summarizes the observed together with the second that unrolls
over future predictions without observing. The unrolling de-
sign can also be found in [11], [20], but with the rolling part
replaced by SlowFast [21] and Higher-Order Recurrent Trans-
former, respectively. [22] aggregates the multiple predictions
by pooling over different granularity of temporal segments to
improve the anticipation accuracy. [23] combines causal self-
attention with several regularization terms, showing the strong
performance on the video anticipation problems. Our method
also utilizes self-attention and unrolling designs. In addition,
the proposed model learns how to propagate information in
space-time via the generic message passing framework. All
latent representations are further processed and contextualized
with information from vertices and edges.

B. Message Passing Neural Network

The concept of message passing in neural networks is intro-
duced in [24], where it was originally designed for molecular
property prediction. It assumes an undirected graph structure
with data-independent, equal edge contributions. To address
this limitation, [25] deploys two encoders separately for vertex
and edge estimation and aggregates them by an attention
readout. Similar works also leverage attention or dedicated
network design to learn the directed edge representations to
improve the model capability [26], [27], [28]. Recently, [29]
reinterpreted the Non-Local [30] and GAT [31] as a message
passing functions and apply them to video understanding
task. Differently, we view the message passing framework as
the generalized recurrent models and specialize it for edge
representations learning.

C. Self-Attention

[32] first proposed a recurrence-free sequence learning
architecture by stacking several self-attention layers, which

can achieve remarkable performance in the NLP domain.
[33] demonstrates that self-attention can be treated as the
recurrent unit which unfolds to input sequences to processes
with shared weights. On the other hand, [34] proposes Vision
Transformer (ViT), an architecture with only self-attention for
image classification. ViT inherits the class-token design from
[35] to better represent the prediction hypothesis. [36] further
improves ViT by re-attending the multi-heads information in
the post-softmax step to enable deeper configuration. Some
recent studies explore ViT based models on video action
recognition [37], [38], and also video anticipation [23]. Unlike
these prior works, our proposed model processes the video
in a flexible graph representation and leverages the message
passing framework. Our model is lightweight and only con-
tains a few self-attention layers which sequentially process
each timestep.

III. METHOD

A. Backgrounds

1) Message Passing: Given an undirected graph G, the
Message Passing algorithm involves a two-phase forwarding
process. It is composed of (i) message passing phase with
message function M and update function U ; and (ii) readout
phase with readout function R. The message passing phase
can be executed in an arbitrary number of T steps, where each
time step learns to update the graph representation according
to the following definition,

mt+1
v =

∑
w∈N(v)

Mt(h
t
v, h

t
w, avw) (1)

ht+1
v = Ut(h

t
v,m

t+1
v ) (2)

where v is the vertices in G, and N(v) defines the neighbors
of v. avw is the connection strength bonding between vertex



v and w. The readout phase then extracts the features of the
whole graph produced in the message passing phase, at the
final time step T ,

ŷ = R(hTv |v ∈ G). (3)

Our method inherits these three core functions, i.e., message
M , update U , and readout R.

2) Self-Attention: Self-Attention (SA) forms the Q,K, V
tokens (for query, key, and value) from the input x. The
output of attention is a weighted linear combination of values.
Attention weights are computed by the scaled dot-product
between query and key followed by a softmax,

Q,K, V = xW i
Q, xW

i
K , xW

i
V (4)

SAi(x) = softmax(
QTK√
D

)V, (5)

where scaling factor D is the input feature dimension, and
W i
Q,W

i
K ,W

i
V are the trainable embeddings. We use super-

script i to indicate that the embeddings are associated with
each self-attention layer.

Multi-Head Self Attention (MHSA) performs n-way self-
attention in parallel, where n is the total number of heads.
An additional aggregation function, with parameters Wagg , is
adopted to fuse the information computed from each head,

MHSA(x) = [H1, . . . ,Hn]Wagg, (6)
where Hi = SAi(x)

where [., .] presents concatenation.
Following the transformer-style architecture, a Feed-

Forward Network (FFN) is introduced after each attention
layer to project the attention output and bring the non-linearity.
The FFN computes

FFN(x) = σ(xW1 + b1)W2 + b2 (7)

where σ can be any arbitrary nonlinear function.

B. Unified Recurrent Modeling

1) Self-Attention Block (SABlock): Following [39], as with
many transformer-style architectures, we define our self-
attention building block (SABlock) in prenorm style. It con-
tains a Multi-Head Self-Attention (MHSA) followed by a FFN.
Figure 2 left shows the SABlock design,

fMHSA(x) = x+MHSA(LayerNorm(x)) (8)
fFFN (x) = x+ FFN(LayerNorm(x)) (9)

SABlock(x) = fFFN (fMHSA(x)) (10)

We can optionally expose the edge information, in the form
of the adjacency matrix A, into SABlock(.;A) by fusing A
into the step after the softmax of scaled dot-product compu-

Fig. 2. Overview of proposed unified recurrent model. The message function,
update function, and readout function leverage multi-head self-attention. Our
proposed modeling scheme is also flexible to work in conjugation with explicit
edges information provided.

tation. The extension can also be applied to MHSA(x;A).
Accordingly, we rewrite (5) and (6) as

MHSA(x;A) = [H1, . . . ,Hn]Wagg, (11)
where Hi = SAi(x;A)

SAi(x;A) =

(
softmax(A) + softmax(

QTK√
D

)

)
V

(12)

Note that A is unique and shared in multi-heads self-attention.
2) Recurrent Cell: Figure 2 shows the design of the pro-

posed architecture. Given the frame features xt at time t
in shape (H , W , C), computed by a frame-level feature
extractor, we compute the vertices etv by a gated nonlinear
transformation of xt. The vertex representations are reshaped
into (HW , C), which presents the number of vertices HW
and feature dimension C of each vertex. A position encoding
Wpe is added to etv . We then leverage SABlock(.;A) with the
adjacency matrix A for modeling each core function: message
function, update function, and readout function.

The message function is a Multi-Layer Perceptron (MLP)
with a self-gated design to form the vertex representations
etv . We concatenate the information coming from the previous
ht−1v with an additional linear transformation. The output is
then processed by the self-attention block. Overall,

xt = MLP (xt) (13)
etv = sigmoid(xt) · xt +Wpe (14)
gtv = Wh([e

t
v, h

t−1
v ]) + bh (15)

mt
v = SABlock(gtv;A

t) (16)

Note that the linear transform, parameterized by Wh and bh,
reduces the feature size from 2C to C.



Fig. 3. Proposed edge learning extensions to the multi-head self-attention layer. The left figure shows the original self-attention block; The two figures at the
right illustrate two proposed edge learning strategies, Class-Token Projection (CTP) and Template Bank (TB), respectively.

The update function is another self-attention block that
updates the graph representation from the message function
with the vertices derived from the current frame,

utv = SABlock([etv,m
t
v]). (17)

For better stability during the temporal propagation, the hy-
perbolic tangent (tanh) is applied to the computed graph
representation from the update function,

htv = tanh(utv). (18)

The readout function, which is also formed by self-attention,
retrieves the layer output from the updated graph representa-
tion htv ,

yt = SABlock(Wrh
t
v + br) (19)

where Wr and br are the weights of a linear transformation
that decodes the hidden representation, which is bounded to
[-1, 1], into a more flexible value range. The output yt is then
sent to a task-specific classifier.

Our design translates the anticipation problem into a mes-
sage passing scheme producing a graph-structured space-time
representation. The connectivity of the graph structure is
inferred from the input at each time step, as described next.
The readout function is called when the prediction is required
at any time t. The proposed model utilizes only multi-head
self-attention for information routing between vertices. Note
that the resulting spatial graph is either bi-directed, when an
adjacency matrix A is provided, or else it is undirected.

Without any prior knowledge, we assume each vertex in
the graph G is accessible by all other vertices (N(v) in (1)
contains all vertices). In this case the scaled dot-product in the
self-attention computes the pairwise similarity of all vertices
from the inputs, which can be viewed as an implicit edge
estimation. This can be extended by optionally providing the
edge estimation explicitly, in the form of an adjacency matrix
A = {avw;∀w ∈ N(v), v ∈ G}, and using it during the

attention computation as described in (11) and (12). We refer
to these two cases as implicit and explicit edge learning.

C. Explicit Edge Learning

We propose two learning strategies to explicitly construct
the edge information, as shown in Figure 3. Template Bank
(TB) forms the estimation of edge connections by soft-fusing
a set of learnable templates using weights computed from the
frame input. Class Token Projection (CTP) performs the outer-
product of class tokens to construct the edge estimation, which
are supervised from provided class labels. Both methods oper-
ate at frame-level at time t and approximate the corresponding
edge estimation Ât for the message function in (16).

1) Template bank (TB): We introduce a template bank B
of size S. Each template in the bank is of shape (N , N ) where
N is the number of vertices in our graph. During the forward
process, the adjacency matrix Ât is formed by a weighted sum
over the S templates. Template weights I are computed from
an aggregated representation of frame inputs using a selector
fselect, consisting of a multi-layer perception (MLP), followed
by softmax normalization,

etv =
1

N

N∑
i=0

etv,i (20)

I = softmax(fselect(etv)) (21)

Ât =

S∑
i=0

Ii ·Bi,:,: (22)

where etv is the aggregated representation of the input obtained
by average pooling of vertex information etv .

2) Class Token Projection (CTP): Leveraging the fact that
the class tokens receive the supervision signal from ground-
truth labeling, we can span the edge estimation by adopting
the outer-product of class tokens projected into an embedding
space. The learnable class tokens CLStverb and CLStnoun
represent the verb and noun hypothesis at time t, and have



dimension (1, C). We project both class tokens individually
by introducing two linear transforms that map each token into
an embedding space whose dimension matches the number of
vertices N . The outer-product of the projected token vectors
then defines the adjacency matrix Ât of shape (N , N ),

V = LN(WvCLS
t
verb + bv) (23)

N = LN(WnCLS
t
noun + bn) (24)

Ât = V ⊗N, (25)

where LN is the layer normalization, ⊗ is the outer-product
operator, and Wv,Wn, bv, bn are the learnable weights of the
projection functions. Note that with this definition, the class
tokens are directly used in the self-attention computation of
the readout function and in the task-specific classifier.

IV. EXPERIMENTAL RESULTS

A. Datasets
We evaluate our methods on the EPIC-Kitchens-55 (EK55,

[12]) dataset and its extension EPIC-Kitchens-100 (EK100,
[45]). EK55 is a large scale egocentric video dataset with
55 hours of video recordings captured by 32 subjects in 32
kitchens. The data split for the action anticipation tasks is
inherited from [19], containing 23492 segments for training
and 4979 for validation. All combinations of 125 verbs and
352 nouns in the training split result in 2513 verb-noun
action categories. EK100 extends EK55 to 100 hours of video
recordings with revised annotations. The data split contains
67217 segments for training and 9668 for validation. EK100
considers 97 verbs and 300 nouns. Unique verb-noun pairs
provide 3087 action categories.

We evaluate the predictive performance of our model for a
range of anticipation intervals τa, which indicate up to how
many seconds before the action start time ts a model can
access frames of the video recording.

B. Implementation Details
For our experiments with EK55 and EK100 we use the

pretrained BN-Inception from [19] as a frame-level feature
extractor. For sampling the dataset, we select a total of 14
observable frames for each segment with a fixed stride of
αs = 0.25 (4 fps). All input frames are resized to 256x454
and fed to the proposed model. The output from the readout
function is then mean-pooled and fed to an unrolling classifier
to obtain verb, noun, and action predictions. The unrolling
classifier is a widely adopted design in action anticipation [19],
[11], [20], and we follow the similar classifier design as prior
works. The classifier outputs are supervised with ground-truth
labels using cross-entropy. We train the model by summing up
cross-entropy from eight anticipation intervals, from τa = 2.00
to τa = 0.25 with step size 0.25. RandAugment [46] is used in
all experiments. AdaBelief [47] in combination with the look-
ahead optimizer [48] is adopted. Weight decay is set to 0.001.
Learning rate is initially set to 1e-4 and cosine annealed to 1e-
7 on the last 25% of epochs. We use 4 × NVIDIA A100 40GB
GPUs for training with batch size 32. We train for 50 epochs.
All the experiments are conducted on RGB-only modality.

C. Results

Table I shows the comparison of our proposed model and
existing methods on EK55. We report accuracy for eight
anticipation times τa, from 2.00 to 0.25 seconds with step
size 0.25. Some methods are constrained by its design, mostly
clip based methods, to only being capable of providing the
prediction at one pre-defined time step. Recurrent modeling
has no such limitation, and also shows better performance: our
proposed method using implicit edge estimation outperforms
most of the current state-of-the-art methods. SF-RU ensembles
with different sampling rates achieve higher top-5 action
accuracy at τa = 1, but not at τa = 1.5 and τa = 0.5 seconds.
Using explicit edge learning strategies, Template Bank (TB)
and Class-Token Projection (CTP), shows boosted accuracy at
τa = 1, and also brings significant improvement over mean
top-5 action recalls. Table II includes the comparison to the
previous winners of EPIC-Kitchens anticipation challenges.
Top-1 and top-5 action accuracy at τa = 1, which were used
as evaluation criteria in the challenge, are reported. Under the
same backbone usage, our method shows state-of-the-art per-
formance on both top-1 and top-5 accuracy with explicit edge
learning. AVT-h equipped with a strong backbone achieves
a higher top-1 score but not in the top-5. EK100 evaluation
by mean top-5 action accuracy is reported in Table III. Our
method achieves overall better performance under the same
backbone usage, and is slightly weaker but competitive when
compared to AVT with a stronger AVT-b backbone.

Overall, our proposed method shows state-of-the-art per-
formance on both EK55 and EK100. Explicit edge learning
with the template bank shows slightly better performance
than the class-token projection approach on EK100. Class-
token projection, on the other hand, obtains better accuracy in
different anticipation intervals on EK55.

D. Bank Size

Table IV shows the experimental results on varying the
bank sizes from 1 to 2048. In the case of bank size being
equal to 1, a unique template is always selected globally
across different timesteps. It can be viewed as placing a
strong regularization to the intermediate graph representations,
forcing the vertices to be connected in a specific way. When
the bank size is larger than 1, the templates are no longer
shared globally and become sample conditioned, which brings
flexibility of message routing between vertices. According to
the experiment results, when the bank size is greater than
64, top-1 / top-5 accuracy and mean recall improve over the
configuration with a single global template. The reasonable
choices are between 256 to 1024, with a peak performance
at 512. No improvement is obtained with more than 1024
templates. Accordingly, we used bank size 512 throughout this
study.

E. Design Variants in Class-Token Projection

We report on the performance of three Class-Token Projec-
tion variants. We modified (25) by using: (i) Global Token:
P ⊗ P , where P is the projection of the global token used to



TABLE I
EK55 ACTION ANTICIPATION VALIDATION RESULTS USING RGB AT DIFFERENT τa IN TOP-5 ACTION ACCURACY.

Methods Top-5 Action Accuracy (%) at different τa Top-5 Acc. (%) @ 1s Mean Top-5 Rec. (%) @ 1s
2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 Verb Noun Action Verb Noun Action

DMR [17] - - - - 16.86 - - - 73.66 29.99 16.86 24.50 20.89 03.23
ATSN [12] - - - - 16.29 - - - 77.30 39.93 16.29 33.08 32.77 07.06
MCE [2] - - - - 26.11 - - - 73.35 38.86 26.11 34.62 32.59 06.50
VN-CE [2] - - - - 17.31 - - - 77.67 39.50 17.31 34.05 34.50 07.73
SVM-TOP3 [40] - - - - 25.42 - - - 72.70 28.41 25.42 41.90 34.69 05.32
SVM-TOP5 [40] - - - - 24.46 - - - 69.17 36.66 24.46 40.27 32.69 05.23
VNMCE+T3 [2] - - - - 25.95 - - - 74.05 39.18 25.95 40.17 34.15 05.57
VNMCE+T5 [2] - - - - 26.01 - - - 74.07 39.10 26.01 41.62 35.49 05.78
ED [14] 21.53 22.22 23.20 24.78 25.75 26.69 27.66 29.74 75.46 42.96 25.75 41.77 42.59 10.97
FN [41] 23.47 24.07 24.68 25.66 26.27 26.87 27.88 28.96 74.84 40.87 26.27 35.30 37.77 06.64
RL [42] 25.95 26.49 27.15 28.48 29.61 30.81 31.86 32.84 76.79 44.53 29.61 40.80 40.87 10.64
EL [43] 24.68 25.68 26.41 27.35 28.56 30.27 31.50 33.55 75.66 43.72 28.56 38.70 40.32 08.62
RU-RGB [3] 25.44 26.89 28.32 29.42 30.83 32.00 33.31 34.47 - - 30.83 - - -
SRL [10] 25.82 27.21 28.52 29.81 31.68 33.11 34.75 36.89 78.90 47.65 31.68 42.83 47.64 13.24
SF-RU [11] (αs= 1

8 ) 24.53 25.63 27.30 28.97 30.96 32.23 33.49 35.02 - - 30.96 - - -
SF-RU [11] (αs= 1

2 ) 26.39 - 28.40 - 30.94 - 32.87 - - - 30.94 - - -
SF-RU [11] (αs= 1

2 ,
1
8 ) 26.78 - 29.25 - 32.05 - 34.34 - - - 32.05 - - -

Ours (Implicit) 27.25 27.76 29.36 30.63 31.68 32.76 34.41 36.65 78.66 47.93 31.68 43.67 47.93 13.19
Ours (Explicit: TB) 26.67 27.76 29.32 30.49 32.02 33.47 34.71 36.85 78.60 46.86 32.02 43.63 46.86 13.58
Ours (Explicit: CTP) 26.87 27.90 29.44 30.63 31.96 33.19 34.92 37.05 78.74 47.59 31.96 44.96 47.19 13.61

TABLE II
EK55 ACTION ANTICIPATION VALIDATION RESULTS USING RGB WITH

TOP-1 AND TOP-5 ACTION ACCURACY AT τa = 1s.

Method Backbone Pretrain Top-1 (%) Top-5 (%)
RU-RGB [3] BNInc In1k 13.1 30.8
ActionBanks [22] BNInc In1k 12.3 28.5
ImagineRNN [44] BNInc In1k 13.7 31.6
AVT-h [23] BNInc In1k 13.1 28.1
AVT-h [23] AVT-b In21k+1k 12.5 30.1
AVT-h [23] irCSN152 IG65M 14.4 31.7
Ours (Implicit) BNInc In1k 13.5 31.7
Ours (Explicit: TP) BNInc In1k 13.8 32.0
Ours (Explicit: CTP) BNInc In1k 13.6 32.0

TABLE III
EK100 ACTION ANTICIPATION VALIDATION RESULTS USING RGB WITH

MEAN TOP-5 RECALL (%) AT τa = 1s.

Method Backbone Pretrain Verb Noun Action
RU-RGB [3] BNInc In1k 27.5 29.0 13.3
AVT-h [23] BNInc In1k 27.3 30.7 13.6
AVT-h [23] AVT-b In1k 28.2 29.3 13.4
AVT-h [23] AVT-b In21k+In1k 28.7 32.3 14.4
AVT-h [23] AVT-b In21k 30.2 31.7 14.9
AVT-h [23] irCSN152 IG65M 25.5 28.1 12.8
Ours (Implicit) BNInc In1k 28.4 31.3 14.5
Ours (Explicit: TB) BNInc In1k 28.7 31.4 14.8
Ours (Explicit: CTP) BNInc In1k 28.1 31.2 14.8

present verb and noun; (ii) V,N Tokens: V ⊗N ; (iii) V,N,A
Tokens: V ⊗N+A⊗A, where A is the projection of the action
token. Based on the results shown in Table V, we conclude
that using individual tokens for verbs and nouns consistently
achieves better accuracy. We obtain similar performance by
replacing the classifier inputs (mean-pooled over the vertices)
with an additional action token. Based on the overall action
accuracy, we used V,N tokens for projection in this study.

F. Parameters and Computation Counts

Our model implements message, update, and readout func-
tions with only a multi-head self-attention (MHSA) followed
by a feed-forward block (FFN). The total parameters in our
model are about 21C2, around 21M when C=1024. The

TABLE IV
DIFFERENT BANK SIZES ARE SET ON EK55. ALL THE NUMBERS ARE

CONDUCTED AT 1s ANTICIPATE INTERVAL.

Bank Top-1 (%) Top-5 Acc. (%) Mean Top-5 Rec. (%)
Size Action Acc. Verb Noun Action Verb Noun Action
1 13.22 78.34 47.39 31.38 44.07 45.86 12.99
32 12.99 78.96 47.49 31.68 43.60 46.43 12.62
64 13.05 78.42 47.51 31.58 42.77 46.91 13.20
128 13.37 79.04 48.17 31.84 44.70 47.15 13.07
256 13.44 78.80 48.07 31.98 44.18 48.08 13.13
512 13.84 78.60 46.86 32.02 43.63 46.86 13.58
1024 13.31 78.38 48.23 32.08 42.76 47.75 13.34
2048 12.89 78.98 47.18 31.23 42.35 45.76 12.63

TABLE V
DESIGN VARIATIONS OF CLASS TOKEN PROJECTIONS ON EK55. ALL THE

NUMBERS ARE CONDUCTED AT 1s ANTICIPATE INTERVAL.

Class Top-1 (%) Top-5 Acc. (%) Mean Top-5 Rec. (%)
Tokens Action Acc. Verb Noun Action Verb Noun Action
Global 13.07 78.40 47.47 31.64 42.91 47.73 12.74
V,N 13.60 78.74 47.59 31.96 44.96 47.19 13.61
V,N,A 13.66 78.54 48.39 31.46 43.88 47.46 13.40

template bank introduces additional 6.5M parameters for the
selector and the stored templates. The class-token projection,
on the other hand, introduces additional 0.23M parameters for
class tokens and projections. The total computation, excluding
backbone and classifier, is about 40 GFLOPs per timestep.

V. CONCLUSION

We presented a unified recurrent modeling which general-
izes the recurrence mechanism by transferring the sequence
into graph representation via message passing framework. We
also propose novel edge learning strategies which explicitly
approximate the edge connectivity of graph representation. On
the large-scale egocentric EPIC-Kitchen dataset we outperform
the current state-of-the-art in video action anticipation. The
proposed model is generic, utilizes only self-attention, and
hence provides a flexible framework that can be further
extended. We plan to integrate multi-modality and explore the
rich information in the annotations in future work.
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