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Abstract—Recent text detection frameworks require sev-
eral handcrafted components such as anchor generation, non-
maximum suppression (NMS), or multiple processing stages (e.g.
label generation) to detect arbitrarily shaped text images. In con-
trast, we propose an end-to-end trainable architecture based on
Detection using Transformers (DETR), that outperforms previous
state-of-the-art methods in arbitrary-shaped text detection.

At its core, our proposed method leverages a bounding box
loss function that accurately measures the arbitrary detected text
regions’ changes in scale and aspect ratio. This is possible due to
a hybrid shape representation made from Bezier curves, that are
further split into piece-wise polygons. The proposed loss function
is then a combination of a generalized-split-intersection-over-
union loss defined over the piece-wise polygons, and regularized
by a Smooth-In regression over the Bezier curve’s control points.

We evaluate our proposed model using Total-Text and CTW-
1500 datasets for curved text, and MSRA-TD500 and ICDARI15
datasets for multi-oriented text, and show that the proposed
method outperforms the previous state-of-the-art methods in
arbitrary-shape text detection tasks.

I. INTRODUCTION

Scene text detection is the process of accurately localizing
text instances in wild images; it is an essential component that
enables various practical applications such as text recognition,
blind navigation, and topological mapping to name a few
[1, 2]. While recent text detection methods [3-9] have shown
reliable performance on horizontal and multi-oriented text,
accurate detection of texts in an arbitrary geometric layout
is still an open-ended problem.

The majority of State-Of-The-Art (SOTA) arbitrary shape
text detectors are built on object detection or segmenta-
tion frameworks, and can be categorically divided into two
classes: segmentation-based [3, 10—15] and regression-based
[5, 6, 13, 16-19]. The segmentation-based methods [3, 9—
12, 14, 15, 20] encode text instances at a pixel level, and
aggregate the resulting pixels to generate a segmentation
mask per text instance. While they are flexible in detecting
arbitrarily shaped texts, they require complex architectures and
computationally expensive post-processing steps to be able to
detect quadrilateral and curved text instances. This results in
a high inference time, and increased difficulty to train them,
which in turn requires extensive amounts of training data.

On the other hand, regression-based methods [5, 6, 13, 16—
19] are inspired from generic object detection frameworks [21—
25], and model text instances as objects. Unlike segmentation-
based methods, they output bounding boxes around the text
regions using relatively simple architectures; as such, they
are fast and easy to train. While some of these methods can
achieve good performance on irregular texts, appropriately

formulating anchors to fit arbitrarily-shaped text instances is
not a solved problem, and requires post-processing steps (e.g.,
NMS) to achieve a reliable final detection.

Recent advancements in object detection enabled Trans-
former frameworks [26-28] like DETR (Detection Trans-
former) [29] to eliminate the need for many of the existing
handcrafted post-processing steps such as anchor generation,
and non-maximum suppression (NMS) from the object detec-
tion pipeline [21, 23, 24, 30], all while achieving superior
performance. For example, Raisi ef al. [31], leveraged the
DETR [29] architecture for multi-oriented scene text detection
and achieved SOTA performance in some benchmark datasets.
Nevertheless, DETR has difficulties detecting small objects
and suffers from a slow convergence rate. To address these
issues, [32] introduced a deformable attention module to focus
on a sparse small set of prominent key elements, thereby
performing better in terms of average precision, and obtaining
faster convergence during training. However, [29, 32] frame-
works can only generate rectangular bounding boxes around
the detected objects, and cannot handle arbitrarily shaped texts.

In contrast to [29, 32], we propose an end-to-end
Transformer-based object detection architecture that can di-
rectly localize multi-oriented or curved text instances in the
given image. Our proposed text representation is tailored to the
scene text detection task as it predicts 8 or 16 control points
of a quadrangle box or Bezier curve respectively, for each text
region; this allows our method to overcome the drawbacks of
directly deploying a generic object detector as in [29] that
predicts only 4 points of every rectangular box.

Our main contributions can be summarized as follows:
(1) We propose an end-to-end trainable Transformer-based
framework for arbitrary shaped text detection; the proposed
architecture can directly output fixed vertices for the Bezier
curves that bound multi-oriented and curved text shapes. This
is achieved by modifying the prediction head of the baseline
pipeline via designing a new text detection technique that aims
to infer m-vertices of a polygon or the degree of a Bezier
curve that is better suited for irregular-text regions; and (2)
We propose a loss function that is accurate in measuring the
changes in scales and aspect ratios of the detected text regions,
and accepts arbitrary shapes of text instances using both
Bezier curves and polygon bounding boxes. (3) We study the
effect of different vertices of polygon representation with the
Transformer’s architecture on arbitrary shape text instances.



II. RELATED WORK
A. Segmentation-based Methods

Segmentation-based methods typically decompose text in-
stances in a given image into pixels/segments that are then
aggregated into an output mask. Segmentation methods cover a
large body of research including [3, 9-12, 14, 15, 20] to name
a few. For example, PixelLink [3], adopted a segmentation
framework of SSD [23] with a FCN [33] to predict the rela-
tionship links between pixels of text and non-text instances, to
localize similar adjacent pixels, and to group them. TextSnake
[10] proposed to detect the arbitrary shape of text instances
with ordered disks and text centre lines. To efficiently separate
close text instances, PAN [11] made use of an efficient instance
semantic segmentation framework that selectively aggregates
text pixels according to their embedding distances, resulting in
a model that can handle arbitrary shape text regions. PSENet
[12] expanded the final local segmented areas from small
kernels to predefined scales, allowing close text instances to
be separated using a progressive scale algorithm. TextField
[14] deployed a deep direction field approach to generate
candidate text parts, and to link neighboring pixels. Different
from mentioned word-level detectors, CRAFT [15] proposed
to detect and connect character regions to generate polygons
of arbitrary-shape text instances; this was achieved by training
a U-Net [22] type framework in a semi-weekly supervised
learning process.

B. Regression-based Methods

Regression based methods such as [5, 6, 13, 16-19, 34, 35]
are mostly inspired by general object detectors (e.g., Faster
R-CNN [21] and SSD [23]); they directly regress the entire
word or text-line with arbitrary shape in an image at object
level.

Early regression-based methods such as TextBoxes++ [5]
and EAST [6] used SSD’s [23] architecture to detect text
regions with rotated rectangles or quadrilateral descriptions.
More recently, [31] extended DTER’s [29] architecture to
output rotated rectangular boxes directly and achieved SOTA
performance in multi-oriented benchmark datasets. However,
these representations ignore the geometric traits of the arbi-
trary shape of curved texts and end up producing considerable
background noise.

To better fit arbitrary shaped text, more advanced methods
proposed the use of polygons; For example, LOMO [13]
took advantage of both segmentation and regression-based
architectures by utilizing Mask-RCNN [24] as their base
framework, and introducing iterative refinement and shape ex-
pression modules to refine bounding box proposals of irregular
text regions. TextRay [16], leveraged the SSD framework by
eliminating the anchor design, and detecting polygons in the
polar coordinate system to better represent arbitrary shape text
instances. ABC-Net [17, 19] build on a ResNet-50 [36] feature
extractor with a Feature Pyramid Network (FPN) [25] as
their backbone, and introduce a Bezier curve representation in
order to detect multi-oriented and curved scene text instances.

FCENet [18] extends the base network of [17] by performing
some post-processing steps like Inverse Fourier Transforms
(IFT) and NMS to reconstruct text contours of arbitrary-shape
text instances.

III. METHODOLOGY

Our proposed framework leverage the efficient and fast-
converging encoder-decoder as the base detection architecture
[32]. A CNN backbone extracts first multi-scale feature maps
from the input. After attaching positional encodings to the
resulted features, they fed into the Transformer encoder, which
outputs refined multi-scale features. Then A fixed small set of
learnable embedding called object queries is passed through
the Transformer decoder parallelly. The decoder generates
instance-aware query embeddings, which are then fed into a
prediction head that directly converts the decoders’ outputs
into each query’s class and bounding box set. The proposed
network is trained by a Bipartite matching loss that utilizes the
Hungarian matching algorithm [37] to compare a one-to-one
mapping between N queries and N ground-truths [29].

In this work, instead of computing 4 scalars that correspond
to the (z,y,w,h) coordinates of the centers (z,y) and the
height (k) and width (w) of the box, we extend the number
of predicted variables to 2 x n scalars that correspond to the
coordinates of the n control points of a Bezier curve in (1)
and the k polygon points in (9). To train the network, we
modify the regression head, along with the loss and matching
functions as described in Section III-B.

A. Text Regions Representations

Rectangular Bounding Boxes: Rectangular bounding boxes
are one of the most intuitive representations of horizontal
text regions; as shown in Figure 1(a), a bounding box b =
[z,y,w,h]" can encase the text region by simplify defining
(z,y) as the bounding box’s center point coordinates, and w, h
representing the box’s width and height respectively. However,
rectangular bounding boxes suffer from several limitations
that render them inadequate for irregular text representations;
some of these limitations include: (a) limited ability to dis-
tinguish among overlapped or nearby text regions, (b) they
can not precisely bound marginal-text, and (c) they include
large irrelevant background areas that can affect the detector’s
loss function during training. To address these limitations,
arbitrary shaped text regions are typically represented using
other categories of bounding boxes as shown in Figure 1(b)-
(d).

Quadrilateral Representation: A Quadrilateral bounding box
can be described as b = [x1,y1, T2, ¥2, T3, Y3, T4, Y] | » Where
(z4,y;) are the four vertices of the quadrilateral arranged in a
clockwise order. The added dimensions allow the quadrilateral
to precisely represent various types of text regions including
horizontal, multi-oriented, and slight-round texts.

Polygon Representation: Polygons are a natural extension of
quadrilaterals, where the number of points is increased from 4
to n—point vertices; the bounding box defined by the polygon
vertices can then be defined as b = [(z;,v;)|i = 1,2,...,n] T,



(a) Rectangle bounding box (b) Rotated Rectangle bounding box (c) Quadrilateral bounding box (d) Polygon bounding box

(z,y, w, h)

(e) Bezier curve bounding box
Pi=(zi,y)|i=1,2,..,8

(z,y,w, h, 6) (ziyy:) |1=1,2,3,4 (Tiy9i) |i=1,2,...,n

Figure 1: Illustrations of different techniques for representing bounding boxes for scene text detection. The Bezier curves in (e)
better draw smooth lines between arbitrary shaped text instances with fixed 8 control points that are more suitable for training
our proposed framework. Furthermore, we can better rectify the detected regions in (e), which later lead to a more accurate

word recognition performance [17].

which can essentially better follow the boundary of a text
region, and accordingly represent any arbitrarily-shaped text.

Bezier Curves: Unlike polygons, a Bezier curve is a para-
metric curve of degree n, Y,,(¢), which is used to draw smooth
lines between text bounds. The general form of an n-degree
Bezier curve can be expressed in terms of a set of n+1 control
points {P;}1_, as:

Yo(t) =Y Bin(t)P, 0<t<1 (1)
=0

where P; = (z;,yi = 0,1,...,n), t is a normalized
independent variable that is used to move along the Bezier
curve with a step that determines the smoothness of the curve,
and B; ,,(t) denotes the ith version of the n—degree Bernstein
Polynomials [38] that are defined using:

Bin(t) = (?)ti(l — )" i=0,1,....,n (2

and (7) is the Binomial coefficient.

While a 3"-degree Bezier curve, defined by 4 control points,
is effective in representing one side of an arbitrary shape
text, another 3"-degree Bezier curve is needed the represent
the opposite side (as shown in Figure 1(e)), bringing the
total number of control points needed to fully represent text
boundaries to 8. The 8 control points are then computed during
regression and prediction as:

(Pl:xzyymhzoa]-),37]:071) (3)

where b; in (4) are the vertices of the Bezier curve obtained
using (1).

B. Proposed System

Similar to [17], we adopt Bezier curves to represent the
boundaries of arbitrary shape text instances. To achieve this,
we modify the prediction head of deformable DETR’s archi-
tecture [32] to output 16 parameters that represent the Bezier
control points. However, unlike [29] and [32] that use a generic

Generalized Intersection over Union (GIoU) with ¢, -regression
[39] (shown in Figure 1(a)), we propose a split GloU loss for
Bezier control points of (3) (shown in Figure 2), along with a
Smooth-In regression based loss [31].

The intuition behind the split GIoU is to better compute
the difference (loss) between the ground truth and estimated
text boundaries. While GIoU can be computed over the Bezier
curves, it is computationally inefficient and more complex to
calculate the area of intersection between two Bezier curves.
To mitigate this, we split the Bezier curve computed from the
regressed control points into several rectangles. The piece-wise
GIoU over the rectangles can then be computed efficiently,
and the overall set of rectangles defining one text instance are
smoothed with the regression loss function over the Bezier
curve control points.

The bounding box loss function of [29] uses a linear
combination of ¢; and GIoU loss. Let Ei and b; denote the ith
predicted and j** ground truth bounding boxes, respectively,
then we define our loss function as:

L8, (bi,b;) = MLE (i b)) + MLy (bib) @)

where A\; and X\, € R are hyper-parameters, and L (-)
and L& ;(-) are the Bezier-curved loss functions based on
regression and GloU. For regression, we use the Smooth-In
based Regression Loss as in [31]. The regression loss is then

defined as:

L5 (bi,b;) = (|Abs| + 1) In(|Aby| + 1) — [Aby| (5
where Ab;; = b; — b; and | - | demonstrates the absolute
operator. The second part of (4) consists of GloU loss, which
plays an important role in the framework of detection using
Transformers [29]. The GloU loss is computed as:

[:B

giou

(bs,b;) = 1 — GloU(b;, b;), (6)
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Figure 2: Illustration of the proposed methods. The control
points (dotted lines) in (a) and polygon vertices ("x’ points) in
(b) are predicted directly by the network. The entire rectangle
(green dash lines) in (a) is used for Full GIoU calculation. The
three split rectangles (blue lines in (a)) and rotated rectangles
(orange lines in (b)) make the GIoU and then the Bezier curves
(cyan line) and polygon vertices to better bound to high curved
text instances.

The GloU for two arbitrarily bounding boxes b, b €S e R"
can be defined as follows:

GIOU(ZH, b]) :IOU(ZH, b]) - Area(C) )

_Area(b; Nb;)

Area(i)i U bJ) ’
where C' shows the smallest area that encloses both prediction
and ground-truth boxes b; and b;, and Area(-) denotes the
area of a set. To compute the GIoU loss for 16 Bezier points
of the architecture, we start by calculating the rectangular
bounding box that bound all control points of (3) in the ground
truth and prediction outputs of the network. To better fit to high
curved text instances in arbitrary shape benchmarks [40, 41],
we then split the Bezier control points into several axis-aligned
rectangular bounding boxes, where the first rectangular box
is computed from P;, P>, P;, Ps Bezier control points, the
second and third boxes are also obtained from Ps, P35, Ps, P
and Ps, Py, P5, Ps, respectively. This process is summarized
in Figure 2(a).

with  ToU(b;, b;) (8)

C. n—point Polygon Ground Truth Generation

The Bezier control points move outside of the image when
the text appears near the margin of an image, requiring
negative values of (z,y). Since the final prediction head of
[29, 32] only outputs positive values, it fails to precisely detect
the mentioned text instances. To address this issue, instead of
using the Bezier control points directly as shown in Figure
2(a), we first calculate the 3"-degree Bezier curve for each side
of the text, defined by 4 control points. We then recalculate the
n—polygon vertices (as illustrated in Figure 2(b)) by uniformly
sample n, points as follows:

n=4
pr =Y PiBink/ny, ©)
i=0
where py demonstrates the new k-th sampled polygon points,
P; indicates the ¢-th Bezier control points and n, shows
the polygon points used for sampling. B; , represents the
n—degree Bernstein Polynomials [38] as described in (2).

IV. EXPERIMENTAL EVALUATION

We evaluate the performance of our proposed system, on
public scene text detection datasets [40—43] that cover a
wide range of challenging scenarios. We also perform a set
of quantitative and qualitative experiments to benchmark the
SOTA text detection [3, 6, 9-20, 34, 35, 44-46] techniques
against our proposed model. Following the criteria used in
[17] to evaluate performance on arbitrary shaped text, and the
evaluation metrics [42, 43] used to evaluate ICDAR’s multi-
oriented text, we report on the Recall, Precision, and H-mean
of the various methods.

A. Implementation Details

We adopt the recent Deformable DETR [32] model with a
ResNet-50 [36] backbone as our base object detector archi-
tecture. The number of object queries are set to 300 and an
AdamW [47] optimizer is used to optimize the parameters of
the model. We use a horizontal flip and and resize the images
similar to [32] for augmentation. All our proposed models are
pre-trained on synthetic datasets as in [17] for 20 epochs with
a batch size of 2 per GPU using 4 Tesla V100 GPUs with a
learning rate (LR) of 1 x 10~%. We follow [32] for other hyper-
parameters during pre-training. During fine-tuning, we adopt a
different LR schedule and train for about 200 epochs for both
the Total-text and CTW-1500 datasets, and drop the LR by
a factor of 10 after 70 epochs. As for ICDARI1S5, we further
pre-train the models using about 10, 000 images of ICDAR17
[43] dataset for 50 epochs and then fine-tune for about 300
epochs to ensure the training converges. For calculating the
rotated version of bounding box loss function, we used the
method described in [31].

B. Datasets

We make use of several recently published and challeng-
ing datasets, that can be categorized into multi-oriented text
datasets, ICDARIS5 [42] and MSRA-TD500 [48] with quadri-
lateral representation (Figure 1(c), and arbitrary-shaped text
datasets, Total-Text [40] and CTW-1500 [41] with n-vertices
polygon representation as shown in Figure 1(d).

C. Comparisons with SOTA Methods

In this section, we first compare the proposed model with
the SOTA methods [3, 6, 11, 12, 15] on two popular datasets
containing curved text: Total-Text [40] and CTW-1500 [41].
We evaluate the datasets on two models: (1) that uses 16 con-
trol points of the Bezier curve with three splits rectangularly
(Figure 2(a)) and (2) that uses 20-points polygon with three
splits rotated rectangularly (Figure 2(b)).

Arbitrary-Shape Text Datasets: We first compare our base-
line and proposed models on two popular benchmarks, Total-
Text and CTW-1500, containing curved text and have n-
vertices polygon annotations.

Results of Total-Text: As seen in Table I, both proposed
models achieved the best performance in terms of Recall
and Precision compared to other segmentation-based and
regression-based methods. The second model outperformed



Table I: Comparison of the detection results on Total-Text, CTW-1500, ICDARI1S5, and MSRA-TD500 datasets with recent
regression and segmentation based methods. The best performance is highlighted in bold.

Methods Total-Text CTW-1500 MSRA-TD500 ICDAR15
Recall | Precision | H-mean | Recall | Precision | H-mean | Recall | Precision | H-mean | Recall | Precision | H-mean

SegLink [44] - - - - - - 70.0 86.0 77.0 76.8 73.1 75.0
Textboxes++ [5] - - - - - - - - - 78.5 87.8 82.9
EAST [6] 50.0 36.2 42.0 49.7 78.7 60.4 67.4 87.3 76.1 78.3 83.3 80.7
TextSnake [10] 74.5 82.7 78.4 77.8 82.7 80.1 73.9 83.2 78.3 84.9 80.4 82.6
TextDragon [45] 75.7 85.6 80.3 82.8 84.5 83.6 - - - 83.7 92.4 87.8
TextField [14] 79.9 81.2 80.6 79.8 83.0 81.4 75.9 87.4 81.3 80.0 84.3 82.4
PSENet-1s [12] 77.9 84.0 80.9 79.7 84.8 82.2 - - - 84.5 86.9 85.7
Seglink++ [34] 80.9 82.1 81.5 79.8 82.8 81.3 - - - 80.3 83.7 82.0
LOMO [13] 79.3 87.6 83.3 76.5 85.7 80.8 - - 83.5 91.3 87.2

CRAFT [15] 79.9 87.6 83.6 81.1 86.0 83.5 78.2 88.2 82.9 84.3 89.8 86.9
PAN [11] 81.0 89.3 85.0 81.2 86.4 83.7 83.8 84.4 84.1 81.9 84.0 82.9
DDRG [35] 84.9 86.5 85.7 83.0 85.9 84.5 82.3 88.0 85.1 84.7 88.5 86.5
TextRay [16] 77.9 835 80.6 80.4 82.8 81.6 - - - - - -
ABC-Net-vl [17] 81.3 87.9 84.5 78.5 84.4 81.4 - - - - - -
FCENet [18] 82.5 89.3 85.8 83.4 87.6 85.5 - - - 82.6 90.1 86.2
CounterNet [46] 83.9 86.9 85.4 84.1 83.7 83.9 - - - 86.1 87.6 86.9
DB [20] 82.5 87.1 84.7 80.2 86.9 83.4 79.2 91.5 84.9 82.7 88.2 85.4
ABC-Net-v2 [19] 84.1 90.2 87.0 83.8 85.6 84.7 81.3 89.4 85.2 86.0 90.4 88.1
Our model-1 85.7 89.4 87.5 84.0 88.3 86.1 84.5 87.4 85.9 81.5 89.3 85.2
Our model-2 86.4 89.1 87.8 85.3 89.2 87.2 85.0 88.1 86.5 83.1 90.2 86.5

the first model, overall by ~ 0.6. The effectiveness of our
contributions are evident in the qualitative results of Figure
3 as it demonstrates how the Bezier curve and 20-point
polygons estimated by our proposed methods can better fit
more challenging arbitrary-shaped text instances.

Results of CTW-1500: Despite the highly curved text in-
stances in this dataset, our first method surpassed other SOTA
systems, achieving the best precision of 88.3% and a H-mean
of 86.1%. The second method also performed better than
the first on this dataset, which shows how effectively using
20—points polygon can bound high curved text-line instances.
The qualitative results using the proposed methods for some
challenging samples of the CTW-1500 [41] dataset are shown
in Figure 4, where the proposed methods perform better
than ABC-Net [17] and TextRay [16] and exhibit competitive
results in some cases against FCENet [18] that uses a smoother
curve. The second model that uses 20-points of a polygon
with split rotated rectangular outperformed the first model, by
overall ~ 0.6. It is worth mentioning that the Bezier curve
model showed poor performance in detecting text instances
near the margin of the images. The second proposed model
performed better in these types of text instances.

Multi-oriented Text Datasets: We also compare the detec-
tion performance of the Transformer’s architecture using the
Bezier curve for multi-oriented datasets of MSRA-TD500
and ICDARI1S5. For this purpose, we use the baseline-4 with
Smooth-In regression and rectangular GIloU loss for training
of Bezier curve and 20-points polygon models because of
the quadrilateral annotation in these datasets. It is worth
mentioning that splitting the GIoU in these datasets does not
affect to the final performance.

Results of MSRA-TD500: As shown in Table I our proposed
methods achieves SOTA results in terms of Recall of 85.0%
and H-mean of 86.5%. The proosed-2 model that uses 20-
points polygon representation outperformes the Bezier curve
representation and it surpasses the previous best method by a

relatively big margin of ~ 4% and ~ 1.5% on the Recall and
H-mean performances, respectively.

Results of ICDARI15: As shown in Table I, our both models
achieve competitive results with SOTA detection models in
ICDAR-15 datasets. When using a 20—points polygon our
models outperform the Bezier curve representation with 16
control points.

D. Ablation Study

To assess the added value of the various components in our
model, we performed an extensive ablation study on Total-Text
and CTW-1500 as demonstrated in Table II.

We started the experiments by eliminating the GIoU loss
and training the model with ¢; loss only; the model achieved
a H-mean performance of 79.01% and 78.25% for Total-Text
and CTW-1500 datasets, respectively. We then replaced the ¢,
with the Smooth-In loss, yielding a slightly improved H-mean.

We found that only using the GIoU loss defined over the
entire rectangle led to further performance boosts, which in
turn was further improved when we combined both GloU
and Smooth-In losses. Then, we evaluated the split version of
GloU loss with 3 rectangles achieved the best performance by
improving ~ 4% and ~ 2.5% for Total-Text and CTW-1500
datasets in the ablation study.

Finally, we conducted another experiment by using a
20—points polygon representation with 3 split rotated rect-
angles and rotated loss functions as shown in Figure 2(b).
Applying this system on the network’s head outperformed the
first model, especially on the CTW-1500 dataset by a margin
of ~ 1%. It is worth mentioning that using a split version of
the rotated rectangle does not affect the Bezier curves’ H-mean
performance on the mentioned datasets. The qualitative results
on some challenging cases of Total-Text (shown in Figure 3)
confirm the effectiveness of the proposed methods with split
GlIoU when compared to only using a single rectangular GIoU.

We also trained the Total-Text [40] dataset with different
fixed 8, 16, 20, 24, 40, 80-points of polygon representation and



Table II: Ablation study on the effects of the various proposed
components on the H-mean metric for Total-Text [40] and
CTW-1500 [41] datasets. R and RR denote the rectangle and
rotated-rectangle, respectively.

Method Reg GIoU #split Total-Text CTW-1500
Baseline-1 v - - 79.01 78.25
Baseline-2 v - - 79.52 78.63
Baseline-3 - v R(1) 82.46 80.83
Baseline-4 v v R(1) 83.41 83.70
Our model-1 v v R(3) 87.50 86.10
Our model-2 v v RR(3) 87.80 87.20

Table III: Ablation study of our model using different points of
Polygon vs. Bezier (16 points) representation for Totat-Text.

Method # points Recall Precision H-mean
Bezier curve 16 64.5 71.3 67.7
Polygon 8 51.7 59.6 55.4
Polygon 16 62.0 68.6 65.1
Polygon 20 64.2 73.5 68.5
Polygon 24 63.6 67.6 65.5
Polygon 40 64.8 59.7 62.1
Polygon 80 20.4 58.7 30.3
Our model-1 16 66.2 74.3 70.0
Our model-2 20 66.1 76.6 70.9

compared it with Bezier curve representation in Table III. The
reason for using the Total-text dataset in this experiment is
that it contains challenging curved and oriented text instances
at the word level. For a fair comparison, we used a model
with similar loss function and split rectangle in Table II
and the whole training set of Total-text. We trained both
models for 300 epochs. As seen, the Bezier curve with 16
control points and 20—points polygon representation are more
suitable for detection than using other vertices of a polygon.
In addition, we continue experimenting by training the first
and second models that use three split GloU with 16 Bezier
control points, and three splits rotated GloU with 20-point
polygon representations, respectively, which the second model
performed better in terms of precision and H-mean.

V. CONCLUSION

We have presented an arbitrary-shape text detector that
directly outputs the bounding boxes of arbitrary shape text
instances in natural images. The proposed framework builds
on DETR’s architecture to output a fixed set of Bezier curve’s
control vertices and n—points of polygon, which in turn can
be used to represent arbitrary polygons of curved and multi-
oriented texts. For accurate detection, especially on different
challenging arbitrary shape text instances in irregular-text
datasets such as Total-Text and CTW-1500, we have also
proposed a split version of the Bezier curve and n—points
of polygon computed from the regressed control points into
several rectangles to better fit to the highly curved texts.

We have validated our proposed system using several quan-
titative and qualitative experiments on challenging benchmark
datasets, including multi-oriented quadrilateral annotated text
and curved text with n-vertex polygons representations. We
have also compared the performance of our proposed method

(b) Bezier curve
split GIoU

(c) 20-point polygon
Split rotated GIoU

(a) Bezier curve

rectangular GIoU
Figure 3: Compare the effect of using split GIoU and baseline
GloU. As seen, the proposed methods with split GIoU in Table
II better fits the highly curved text instances.

B

(b) ABCNet-v1 [21] (a) TextRay [40]

(d) Proposed-1 (c) FCENet [52]

(e) Proposed-2

Figure 4: Qualitative comparison of our proposed models
among SOTA methods. The sample results of other methods
are taken from [18].

with SOTA scene text detection methods, and demonstrated
the superior performance of our models on arbitrary shape text
and multi-oriented text benchmarks. Our best proposed model
that uses a 3 splits rotated rectangular loss function achieves
the best H-mean performance of 87.8% and 87.2% for Total-
Text and CTW-1500 datasets, respectively. Our system also
exhibits SOTA performance in Recall (85.0%) and H-mean
(88.1%) on the MSRA-TD500 dataset and yield competitive
results for ICDAR15 benchmarks.
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