
ComDensE : Combined Dense Embedding of
Relation-aware and Common Features for

Knowledge Graph Completion
Minsang Kim1,2, Seungjun Baek2

Email: kmswin7@gmail.com, sjbaek@korea.ac.kr
1Kakao Enterprise, 2Korea University

Abstract—Real-world knowledge graphs (KG) are mostly in-
complete. The problem of recovering missing relations, called KG
completion, has recently become an active research area. Knowl-
edge graph (KG) embedding, a low-dimensional representation of
entities and relations, is the crucial technique for KG completion.
Convolutional neural networks in models such as ConvE, SACN,
InteractE, and RGCN achieve recent successes. This paper takes
a different architectural view and proposes ComDensE which
combines relation-aware and common features using dense neural
networks. In the relation-aware feature extraction, we attempt to
create relational inductive bias by applying an encoding function
specific to each relation. In the common feature extraction, we
apply the common encoding function to all input embeddings.
These encoding functions are implemented using dense layers in
ComDensE. ComDensE achieves the state-of-the-art performance
in the link prediction in terms of MRR, HIT@1 on FB15k-237
and HIT@1 on WN18RR compared to the previous baseline
approaches. We conduct an extensive ablation study to examine
the effects of the relation-aware layer and the common layer of
the ComDensE. Experimental results illustrate that the combined
dense architecture as implemented in ComDensE1 achieves the
best performance.

I. INTRODUCTION

The knowledge graph (KG) is an essential tool to represent
real-world facts and related knowledge. The KG is defined
as a directed heterogeneous graph; KGs contain nodes and
edges with types and directions, where nodes represent entities
and edges represent their relationships. To represent a relation
between entities, triples (s, r, o) of KGs are defined where s, r
and o represent “subject-entity”, “relation” and “object-entity”
respectively.

Recently, KGs have been widely adopted in applications
for language models like LUKE [1], KALM [2], KELM [3],
KGBART [4]; question answering models like Query2Box [5],
CQD [6], LEGO [7]; information extraction models which
extract knowledge graph from text such as Distant Supervision
for Relation Extraction [8], Knowledge Vault [9], End-to-
End Neural Entity Linker [10], Autoregressive Entity Re-
trieval [11].

However, popular KGs such as WordNet [12], Free-
Base [13], Dbpedia [14], and YAGO [15] are mostly incom-
plete. Thus, the task of completing missing relations among
entities, called the knowledge graph (KG) completion, has

1https://github.com/kmswin1/ComDensE

Fig. 1. ComDensE combines relation-aware dense layers specific to the
relation types contained in triples, and common dense layers shared among
all the triples. Convolution (left) and ComDensE (right). ei denote an entity
embedding vector and ri denote a relation embedding vector.

become a active research area. A related technique is the
KG embedding which finds the representation of entities and
relations in low-dimensional continuous vector spaces. One
of the foundational approaches for KG embeddings is based
on translational distance [10], which performs embeddings
on Euclidean or non-Euclidean space, and uses translational
distance between embeddings based scoring functions for link
prediction. Those works include TransE [16], TransH [17],
TransD [18] and RotatE [19]. Another type of KG embed-
ding is the non-neural semantic matching model such as
DistMult [20], ComplEx [21], HolE [22], which propose
embeddings on Euclidean or non-Euclidean spaces, and use
similarity based scoring functions capturing more complex
semantic information.

Recently, neural network based models have been intro-
duced. The models based on convolutional neural networks
(CNN) use 2D reshaped embeddings, e.g., ConvE [23], Con-
vTransE [10], SACN [10], ReInceptionE [24] and Inter-
actE [25]. RGCN [26] exploits the connectivity structures of
KGs using graph convolutional network (GCN). The CNN
based approaches have yielded outstanding results on link
prediction.

In this paper, we consider KG embedding using neural
networks, but begin by questioning the use of convolution
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operations over embeddings. Somewhat surprisingly, we find
that a proper design using dense or fully connected networks
combining relation-aware and common features suffices to
achieve outstanding link prediction performance. The rationale
behind our approach is as follows.

Combined relation-aware and common features. We first
propose to combine the relation-aware encoding functions and
the common encoding functions. The motivation of combining
two layers is that since KGs contain diverse relation types,
and the number of relations is typically less than the number
of entities in KGs (e.g., 11 vs 40K in WN18RR, 237 vs 14K
in FB15k-237), the relation-aware encoder, which applies to
specific relations, better discriminates each relational feature.
On the other side, the common encoder, which is composed of
a wide dense matrix, captures various features from all triples
like multiple filters in CNN. Experimental results demonstrate
that combining two layers illustrates a synergistic effect.

Dense vs Convolution. Previous approaches using CNN
applied convolution operations to concatenated (and reshaped)
embeddings of entities and relations. The key properties of
convolution operations include locality and translational invari-
ance. However, unlike processing image features, the benefits
of these properties applied to KG embeddings are unclear. In-
stead, a filtering operation applied globally to the concatenated
embeddings can fully combine the feature components from
entity and relation embeddings. Dense layers enable such a
global filtering, because the kernel of a dense layer covers the
entire feature map of embeddings. Moreover, KG embeddings
are not very high-dimensional, unlike high-resolution image
features. Thus, dense networks for KG embeddings incurs
manageable computational overhead such as parameter count,
which we show by experiments.

Width vs Depth. We posit that the success of convolutional
methods is attributable to the use of multiple filters in con-
volutional layers. We make a similar observation: the width
of dense layer which corresponds to the number of stacked
fully connected filters, is a key design parameter. Experiments
show that the performance can be significantly improved by
optimizing the width. By contrast, increasing depth of the
neural network can be harmful.

We combine these ideas and propose ComDensE, a simple
dense neural architecture for KG embedding which combines
both relation-aware and common features among embeddings,
as in Fig. 1. Our contributions are summarized as follows.

• We propose ComDensE, a simple KG embedding ar-
chitecture that utilizes dense layers for combining the
extractions of relation-aware and common features from
embeddings. ComDensE exploits inductive biases spe-
cific to relation types and provides full-sized filtering
of concatenated embeddings of entities and relations.
In addition, ComDensE is easy to tune, i.e., the main
hyperparameter of the model is the width of the common
dense layer.

• We evaluate link prediction performances with WN18RR
and FB15k-237 datasets. Experimental results demon-
strate that CombinE outperforms previous neural network

Fig. 2. ComDensE model architecture.

methods, and achieves state-of-the-art MRR, HIT@1 on
FB15k-237 and HIT@1 on WN18RR.

• We extensively conduct ablation study to support our
claims. We experiment the model with common feature
extraction only, adjusting both width and depth. The
study confirms that ComDensE, which combines the both
models, achieves the best performance.

II. RELATED WORK

Translational Distance Models: The knowledge graph
embedding for link prediction became an active research area.
The KG embedding was initiated by TransE [16], which
is based on the translation, i.e., the vector addition, of en-
tity and relation embeddings in a low-dimensional vector
space. TransH [17] is another distance-based model which
uses translation on relation-specific hyperplanes through the
orthogonal projection. RotatE [19] considers embeddings on
the complex space, and proposes to use Euler’s formula to
represent relations as rotation on a unit circle.

Non-neural Semantic Matching Models: DistMult [20] is
an embedding model in the Euclidean space, and computes
a prediction score using bilinear functions. ComplEx [21] is
a semantic matching model where all entities and relation
embeddings are on the complex space.

Neural Network based Models: Neural Tensor Network
(NTN) [27] proposes to use a relation-specific transformation.
Recently, embedding models based on Graph Convolutional
Network (GCN) [28] have been proposed so as to exploit the
connectivity structures of KGs. RGCN [26] is a GCN based
method leveraging the adjacency matrix of knowledge graph
and relational weight matrices. RGCN introduces basis and
block-diagonal decomposition methods in order to prevent an
over-fitting. CNN have been widely used for the KG embed-
ding. ConvE [23] applies convolutional filters to 2D-reshaped
subject and relation embeddings. ConvE computes similarity
scores between obtained hidden vectors for link prediction.
SACN [10] is an end-to-end architecture using weighted GCN
as the encoder, and Conv-TransE, or ConvE with translational
characteristics, as the decoder. InteractE [25] takes a similar
approach to ConvE, but uses feature permutation and a circular



TABLE I
SCORING FUNCTIONS ψ(es, er, eo) OF KG EMBEDDING METHODS.
es, er, eo ∈ <d FOR TRANSE, DISTMULT, CONVE, INTERACTE, AND
COMDENSE, es, er, eo ∈ Cd FOR COMPLEX AND ROTATE. ◦ DENOTE

HADAMARD-PRODUCT, * DENOTE CONVOLUTION, • DENOTE CIRCULAR
CONVOLUTION, Ψ(Pk) DENOTE FEATURE PERMUTATION, f AND g

DENOTE ACTIVATION FUNCTIONS, [ēs; ēr]2d REPRESENT 2D RESHAPING,
[es; er]1d REPRESENT VECTOR CONCATENATION, Ω DENOTE SHARED

DENSE LAYER AND Ωr INDICATE RELATION-AWARE OPERATION.

Model Scoring function ψ(es, er, eo)
TransE ||es + er − eo||p
RotatE −||es ◦ er − eo||2

DistMult < es, er, eo >
ComplEx Re(< es, er, eo >)

ConvE f(vec(f([ēs; ēr]2d ∗ w))W )eo
InteractE g(vec(f(Ψ(Pk) • w))W )eo

ComDensE f([f(Ωr([es; er]1d)); f(Ω([es; er]1d))]T1dW )eo

convolution operation so as to enhance interactions among the
components of embedding vectors.

III. METHOD

This section describes the details of ComDensE architecture
which is depicted in Fig. 2. Let es, eo ∈ <de denote the
embedding vectors of subject and object entities, and er ∈ <dr

denote the embedding vector of relations. In order to compute
the scoring function of ComDensE, we begin by concatenating
the subject and relation vectors as follows:

[es; er]1d ∈ <d (1)

where d := de + dr and [a; b]1d denote vector concatenation
of vectors a and b. The concatenated embedding is the input
to all the subsequent layers.

A. Common Feature Extraction Layer

The common feature extraction is performed by a dense
layer as well. This layer is commonly applied to all types of
input embeddings. The width of a dense layer corresponds to
the number of filters of the layer where each filter contains
kernel size equal to that of input embeddings. The width is
the key design parameter, in which we explain in more details
in the experiment section.

In the shared dense layer, we first apply an affine function
Ω(·) to input embeddings given by

Ω(x) = Whx+ bh (2)

where Wh ∈ <ndh×d and bh ∈ <ndh . The width of dense
layer is given by ndh, a multiple of dh where n is the hyper-
parameter to be determined. The output of common feature
extraction is obtained by applying the nonlinear activation f(·)
to Ω([es; er]1d).

B. Relation-aware Feature Extraction Layer

In order to extract relation-specific features from concate-
nated embeddings (1), we consider the relation-aware encod-
ing function. The encoding function is denoted by Ωr for
relation r. Note that, if any triple contains the relation given by
r, Ωr(·) is applied to input embeddings irrespective of subject
or object entities. In ComDensE, we use a dense layer for the

relation-aware feature extraction. The encoding function Ωr is
an affine function given by

Ωr(x) = Wrx+ br (3)

where Wr ∈ <dz×d, br ∈ <dz and dz is the output length of
Ωr. We first apply Ωr to input embeddings (1), and then apply
the nonlinear activation function f(·).

C. Projection to Embedding Space

After obtaining the latent vectors from relation-aware and
common feature extraction layers, the vectors are concate-
nated. The concatenated vector is projected to the embedding
space by projection matrix W ∈ <(dz+nd)×de , and then
nonlinear activation f(·) is applied. Specifically, let us define
hsr ∈ <de as

hsr := f([f(Ωr([es; er]1d)); f(Ω([es; er]1d))]T1dW ) (4)

The link prediction score ψ(es, er, eo) is defined as the inner
product hTsreo. See Table I for the comparison of scoring
function ψ.

D. Loss Function

We compute the scores for all the triple, and calculate the
loss using binary cross entropy function. We use 1:N training
strategy introduced by [23]. Let N denote the number of all
entities in KG. The loss L is given by

L = − 1

N

N∑
i=1

[(yi) log(pi) + (1− yi) log(1− pi)] (5)

where pi = σ(hTsre
(i)
o ), e(i)o is the i-th object entity, yi ∈ {0, 1}

is the label, and σ denote the sigmoid function.

E. Properties of ComDensE model

Relation-specific inductive bias is important. Typically
in KGs, the number of relations is less than the number
of entities, e.g., the ratio is 0.03% for WN18RR, 1.6% in
FB15k-237, 0.03% in YAGO3-10. This implies that triples in
KGs having different relations tend to share multiple entities.
Thus, relational inductive bias is needed so as to capture
discriminative features of each relation in the presence of
a large number of entities shared among different relations.
ComDensE leverages both relation-aware and common feature
extraction from embeddings to get the best of both approaches.
Full-sized filters for concatenated embeddings are effective.
It was noted earlier that, it is important to mix as many
components from different types of embeddings, i.e., entity
and relation types when filtering the concatenated embeddings.
Specifically in InteractE [25], the authors propose the concept
of heterogeneous interaction. The heterogeneous interaction is
defined as the degree to which a local (convolutional) filter can
spatially cover different types, i.e., entity and relation types,
of embedding components in the 2-D shaped concatenated
embeddings. InteractE showed that the link prediction per-
formance can be improved by increasing the heterogeneous
interaction. Clearly, ComDensE maximizes such heteroge-
neous interaction by construction, because its dense layers



TABLE II
STATISTICS OF BENCHMARK DATASETS. PAGERANK OF DATASETS IS CITED FROM [23].

Dataset #Entities #Relations #Training triples #Validation triples #Test triples PageRank
FB15k-237 14,541 237 272,115 17,535 20,466 0.733
WN18RR 40,943 11 86,835 3,034 3,134 0.104

TABLE III
PARAMETER SIZES OF INTERACTE AND COMDENSE.

The number of parameters
method FB15k-237 WN18RR
InteractE 18M 60M

ComDensE 256 ×d 66M 33M
ComDensE 128 ×d 35M 22M

TABLE IV
ALL OTHER HYPERPARAMETERS ARE SAME EXCEPT ROW DIMENSION OF
RELATION-AWARE AND COMMON DENSE MATRICES. d DENOTE COLUMN

DIMENSION OF DENSE MATRICES. WHILE COMDENSE USES 256 ×d
MATRICES TO BOTH BENCHMARK DATASETS, COMDENSE USING 128 ×d

MATRICES ACHIEVES A SIMILAR PERFORMANCE GAIN ON FB15K-237.

Various sizes of matrix in ComDensE
FB15k-237 WN18RR

256×d
MRR .356 .473

HIT@10 .536 .538
HIT@1 .265 .440

128×d
MRR .354 .453

HIT@10 .534 .512
HIT@1 .263 .423

use full-sized filters which entirely cover the 2-D area of the
concatenated (and reshaped) embedding vectors of entities and
relations.
Computational overhead is manageable. One of the merits
of convolutional layers is parameter efficiency. Indeed, the
parameter count of dense layers is higher than the convo-
lutional layers with smaller kernel sizes. We however argue
that this incurs manageable computational overhead for KG
embeddings. The size of KG embeddings are on the order of
hundreds, which is much smaller than high-resolution image
features. Furthermore, we later increase the width to capture
abundant relational information for improving link prediction
accuracy. In practice, prediction accuracy is often prioritized
over parameter efficiency. Experiments also show that DensE
incurs reasonable parameter counts compared to previous
methods.

IV. EXPERIMENT

A. Datasets and Evaluation Settings

ComDensE is evaluated on two KG benchmark datasets:
FB15k-237 [29] and WN18RR [23]. These datasets are subsets
of FB15k [16] and WN18 [16], respectively. Specifically,
inverse relations are removed from the original datasets so as
to prevent direct inference via reversing triples. The statistics
of benchmark datasets are summarized in Table II.

We evaluate the performance of link prediction in the
filtered setting. Specifically, we compute scores from all other
candidate triples in the test triples not existing in the training,

validation, or test set, where candidates are generated by
corrupting subjects for objects for predicting object. We use
Mean Reciprocal Rank (MRR) and Hits at N (HIT@N) which
are standard evaluation metrics for these datasets and models
are evaluated in our experiments. We train and evaluate 5 times
and then average performance results for robust evaluation. We
compare ComDensE to baseline models: TransE [16], RotatE
[19], DistMult [20], ComplEx [21], RGCN [26], ConvE [23],
ConvTransE [10], SACN [10] and InteractE [25]

B. Hyperparameter Setting

We use Adam [30] optimizer and search the hyperparame-
ters on the validation set. The ranges of the hyperparameters
for the grid design space: (embedding dimension) ∈ {150, 200,
256, 300}, (batch size) ∈ {128, 256}, (learning rate) ∈ {0.001,
0.0001}, (input dropout) ∈ {0.4, 0.5}, (hidden dropout) ∈
{0.4, 0.5}, (width n× dense matrix Wh ∈ <ndh×d, n) ∈
{2, 5, 50, 100, 200}.

Finally, we use same hyperparameters as embedding dimen-
sion 256, batch size 128, learning rate 0.0001, input dropout
0.4, row dimension of matrix dh 256 and hidden dropout 0.5
for both FB15k-237 and WN18RR. However, since the width
is a crucial element of designing ComDensE and it depends on
dataset sensitively, we only search a different width, where our
method contains width 2 × square matrix Wh ∈ <2dh×d for
FB15k-237 and width 100 × square matrix Wh ∈ <100dh×d

for WN18RR, where de denotes the dimension of entity
embedding, dr denotes the dimension of relation embedding
and d := de + dr.

V. RESULTS

A. Prediction performance

Table V demonstrates that ComDensE achieved the best
link prediction performances in MRR, HIT@1 and competitive
HIT@10 between entire KG embedding methods. Scores
of baseline methods were taken from the respective works.
In both FB15k-237 and WN18RR, ComDensE outperforms
InteractE, which is the previous neural network based SOTA.
For details; 0.6% performance gain on MRR, 0.2% HIT@10
and 1.1% HIT@1 on FB15k-237. In addition, there also exist
performance gain in WN18RR; 2.4% performance gain in
MRR, 2.5% HIT@10, and 2.6% in HIT@1. This simple
method outperformed shared-layer models like ConvE, SACN,
InteractE and a relation-specific model like RGCN. Our result
demonstrates that the architecture combining two different en-
coding functions improves performance of the KG embedding.

B. Exploring parameter efficiency

One aspect of ComDensE is that, since it mostly uses dense
layers, it may be less parameter-efficient than CNN. While the



TABLE V
LINK PREDICTION RESULTS OF BASELINE MODELS. BOLD WITH UNDERLINE : THE BEST PERFORMANCE, BOLD : THE SECOND BEST PERFORMANCE.

FB15k-237 WN18RR
Methods MRR HIT@10 HIT@1 MRR HIT@10 HIT@1

TransE [16] .279 .441 - .243 .532 -
RotatE [19] .338 .533 .241 .476 .571 .428

DistMult [20] .241 .419 .155 .430 .49 .39
ComplEx [21] .247 .428 .158 .44 .51 .41

RGCN [26] .248 .417 .151 - - -
ConvE [23] .325 .501 .237 .43 .52 .40

ConvTransE [10] .33 .51 .24 .46 .52 .43
SACN [10] .35 .54 .26 .47 .54 .43

InteractE [25] .354 .535 .263 .463 .528 .430
ComDensE (proposed) .356 .536 .265 .473 .538 .440

TABLE VI
LINK PREDICTION RESULTS BY RELATION TYPE ON FB15K-237 DATASET FOR CONVE, INTERACTE, AND COMDENSE. RELATIONS ARE CATEGORIZED
INTO ONE-TO-ONE (1:1), ONE-TO-MANY (1:N), MANY-TO-ONE (N:1) AND MANY-TO-MANY (N:N). WE OBSERVE THAT COMDENSE IS EFFECTIVE IN

CAPTURING MOST RELATIONS COMPARED TO BASELINES.

ConvE InteractE ComDensE
Relation Type MRR HIT@10 HIT@1 MRR HIT@10 HIT@1 MRR HIT@10 HIT@1

1:1 .374 .505 .068 .386 .547 .245 .422 .557 .349
Pred 1:N .095 .17 .030 .106 .192 .043 .084 .181 .043
Head N:1 .444 .644 .315 .466 .647 .369 .466 .649 .372

N:N .261 .459 .140 .276 .476 .164 .279 .476 .187
1:1 .366 .51 .052 .368 .547 .229 .422 .563 .349

Pred 1:N .762 .878 .658 .777 .708 .881 .779 .884 .717
Tail N:1 .069 .15 .015 .074 .141 .034 .084 .169 .043

N:N .375 .603 .237 .395 .617 .272 .396 .618 .285

parameter counts of ComDensE for FB15k-237 were higher
than InteractE, those were less than InteractE for WN18RR
datasets. Table III and Table IV demonstrates experimental
results of ComDensE using 256 ×d and 128 ×d matrices.

C. Performance with Different Relation Types

We analyzed the performance of ComDensE on different
relation types of FB15k-237, since FB15k-237 contains more
diverse relations than WN18RR. Four relation types based on
the number of tails connected with head and the number of
heads connected with tail were defined by [17]: one-to-one
(1:1), one-to-many (1:N), many-to-one (N:1), and many-to-
many (N:N). Using this dataset, we compared three models:
ConvE, InteractE, and ComDensE at four types of relations.
The results are presented in Table VI. We find that ComDensE
is effective in complex relation types, i.e., 1:N, N:N, N:1, as
well as simple relations, i.e., 1:1. Notably, the performance
gain is higher in 1:1, demonstrating that ComDensE particu-
larly effective in capturing simple relationships.

VI. ABLATION STUDY

This section conducted ablation study associated with Com-
DensE. Since ComDensE combines both relation-aware and
shared dense layer, we studied models in which some of the
layer is removed or changed. Specifically, we considered the
following configurations:

• Shared dense layer only with varying widths
• Shared dense layer only with varying depths
• Different relation-aware encoding functions

A. Shared dense layer only: Effects of Widths

We evaluated ComDensE only containing the shared dense
layer, i.e., removing the relation-aware dense layer. We ad-
justed the shape of the shared dense layer in order to see
if the model can outperform original ComDensE. We first
explored the effects of the width of shared dense layer. Note
that, increasing the width of dense layer is equivalent to
increasing the number of kernels in CNN. As in Table VII,
the optimal widths are roughly 100d and 200d respectively
for FB15k-237 and WN18RR models. Thus, it appeared that
increasing the number of filters indefinitely does not help.
In most cases, ComDensE outperformed other configurations,
whereas in WN18RR, ComDensE was slightly worse, while
the performance gap was quite small.

B. Shared dense layer only: Effects of Depths

Next, we also considered shared dense layer only and
evaluated the effect of increasing network depth. We increased
the number of layers in the shared network where the depth
is in {2, 3, 4, 5}. In general, increasing the depth enhances
expressive power of the model, while it did not apply to
our experiments. Table VIII illustrates that link prediction
performance aggravates with increasing depth. Thus, we con-
cluded that the width of ComDensE is the only important
design parameter than the depth in order to obtain a better
representation of KGs.

C. Different relation-aware encoding functions

This experiment considers the effect of different relation-
aware encoding functions Ωr. We tested a simple “translation-



TABLE VII
ABLATION STUDY: EFFECT OF THE WIDTH OF SHARED DENSE LAYER-ONLY MODELS. WIDTH n× REPRESENT THE WIDTH OF Wh IS nd, I.E.,

Wh ∈ <nd×d

FB15k-237 WN18RR
Methods MRR HIT@10 HIT@1 MRR HIT@10 HIT@1

Width 1 × (baseline) .336 .515 .246 .437 .503 .402
Width 50 × .348 (+.012) .532 (+.017) .258 (+.012) .471 (+.034) .537 (+.034) .439 (+.037)

Width 100 × .349 (+.013) .531 (+.016) .260 (+.014) .475 (+.038) .543 (+.04) .441 (+.039)
Width 200 × .347 (+.011) .529 (+.014) .258 (+.012) .476 (+.039) .545 (+.042) .443 (+.041)
Width 300 × .347 (+.011) .529 (+.014) .257 (+.011) .462 (+.025) .525 (+.022) .431 (+.029)
ComDensE .356 (+.02) .536 (+.021) .265 (+.019) .473 (+.036) .538 (+.035) .440 (+.038)

TABLE VIII
ABLATION STUDY: EFFECT OF THE DEPTH OF SHARED DENSE LAYER-ONLY MODELS. DEPTH-m DENOTE THE DEPTH m OF COMMON DENSE LAYER.

FB15k-237 WN18RR
Methods MRR HIT@10 HIT@1 MRR HIT@10 HIT@1

Depth-1 (baseline) .336 .515 .246 .437 .503 .402
Depth-2 .338 (+.002) .515 .250 (+.004) .426 (-.011) .503 .380 (-.022)
Depth-3 .328 (-.008) .499 (-.016) .242 (-.004) .446 (+.009) .510 (+.007) .369 (-.033)
Depth-4 .313 (-.023) .478 (-.037) .230 (-.016) .382 (-.055) .491 (-.012) .320 (-.082)
Depth-5 .301 (-.035) .460 (-.055) .220 (-.026) .339 (-.098) .465 (-.038) .273 (-.129)

ComDensE .356 (+.02) .536 (+.021) .265 (+.019) .473 (+.036) .538 (+.035) .440 (+.038)

only” function such that

Ωr(x) = x+ vr (6)

where vr ∈ <d is the learnable relation-specific vectors.
The results and comparison with ConvE were illustrated in
Table IX. Note “translation-only” Ωr does not provide any
heterogeneous interaction between embedding components.
However, the link prediction performance was better than
ConvE on both FB15k-237 and WN18RR. This demonstrated
that the inductive bias from relation-awareness enhances the
link prediction performance. However, the results in Table
IX are worse than ComDensE, which shows that promoting
the heterogeneous interactions [25] among the embedding
components is crucial.

TABLE IX
PREDICTION PERFORMANCE WHEN Ωr IS “TRANSLATION ONLY”

FUNCTION, I.E., VECTOR ADDITION. (+,-) DENOTE THE PERFORMANCE
DIFFERENCE FROM CONVE [23]

vector add operation
FB15k-237 WN18RR

MRR .344 (+.019) .460 (+.030)
HIT@10 .527 (+.026) .522 (+.002)
HIT@1 .253 (+.016) .428 (+.028)

VII. CONCLUSION

We propose ComDensE, which combines two parallel mod-
els consisting mainly of dense layers: one is relation-aware
encoder considering inductive bias based on relations and
the other is common feature extractor for all the triples
irrespective of relations. In our extensive experiments, Com-
DensE achieves state-of-the-art performance for link predic-
tion on both FB15k-237 (MRR, HIT@1) and WN18RR
(HIT@1). In addition, our ablation study demonstrates that the
relation-aware encoder is essential for completing high-degree
KGs like FB15k-237 and fully-connected common feature

extraction improves the prediction for the low-degree KGs
like WN18RR. Notably, increasing width to a certain extent
improves link prediction performance, however, increasing
depth is deemed harmful. In the future, we plan to introduce
architectural novelty to the model inspired by other disciplines
such as computer vision or natural language processing.
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