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Abstract—Accurate quantification of cerebral blood flow (CBF)
is essential for the diagnosis and assessment of cerebrovascu-
lar diseases such as Moyamoya, carotid stenosis, aneurysms,
and stroke. Positron emission tomography (PET) is currently
regarded as the gold standard for the measurement of CBF in
the human brain. PET imaging, however, is not widely available
because of its prohibitive costs, use of ionizing radiation, and
logistical challenges, which require a co-localized cyclotron to
deliver the 2 min half-life 15O radioisotope. Magnetic resonance
imaging (MRI), in contrast, is more readily available and does
not involve ionizing radiation. In this study, we propose a multi-
task learning framework for brain MRI-to-PET translation and
disease diagnosis. The proposed framework comprises two prime
networks: (1) an attention-based 3D encoder-decoder convolu-
tional neural network (CNN) that synthesizes high-quality PET
CBF maps from multi-contrast MRI images, and (2) a multi-scale
3D CNN that identifies the brain disease corresponding to the
input MRI images. Our multi-task framework yields promising
results on the task of MRI-to-PET translation, achieving an
average structural similarity index (SSIM) of 0.94 and peak
signal-to-noise ratio (PSNR) of 38dB on a cohort of 120 subjects.
In addition, we show that integrating multiple MRI modalities
can improve the clinical diagnosis of brain diseases.

I. INTRODUCTION

Cerebrovascular disease refers to conditions that affect the
blood vessels and flow of blood in the brain. Cerebrovascular
diseases are a leading cause of death or serious long-term dis-
ability in the world. In 2019, the Centers for Disease Control
and Prevention reported more than 150,000 cerebrovascular-
related deaths in the united states [1], making it the fifth com-
mon cause of death. The prompt diagnosis of cerebrovascular
diseases is key to faster and more effective treatment to reduce
morbidity and mortality.

Cerebral blood flow (CBF) is a measure of the blood supply
to a given region of the brain in a given period of time, and has
conventional units of ml/100 g/min. Accurate quantification
of CBF is essential for the diagnosis and assessment of
cerebrovascular disorders (e.g., Moyamoya, ischemic stroke),
and neurodegenerative diseases where blood supply to specific
regions of the brain is impaired, resulting clinically in different
types of dementia [2]. Positron emission tomography (PET)
with radiolabeled water (15O-water, 2 min half-life) is con-
sidered the gold standard for measuring CBF in humans [3].
PET scans, however, are relatively expensive and not widely

available. 15O-water PET can only be performed in sites where
the radioactive substance is produced at a nearby location
and can be injected into the bloodstream quickly. Magnetic
resonance imaging (MRI), on the other hand, is less expensive,
more widely available, and does not involve ionizing radiation.
This study aims to improve the clinical utility of MRI-derived
CBF measurements, turning brain MRI into PET CBF maps
and accurately diagnosing cerebrovascular diseases.

Deep learning models, in particular, the deep convolutional
neural networks (CNNs) have opened the door for numerous
imaging applications in neuroradiology [4], [5]. For instance,
convolutional encoder-decoder architectures have markedly
improved the state-of-the-art in neuroimages segmentation
[6]–[9], and more importantly, brain image-to-image trans-
lation [10]–[13]. Moreover, the common deep CNN archi-
tectures such as GoogleNet, VGG, ResNet, PyramidNet, and
SENet have dramatically boosted the diagnostic and prognostic
performance to classify cerebrovascular and neurodegenera-
tive diseases [14], [15]. The unceasing improvement in the
performance of emerging neural network architectures will
certainly open the door for new commercially available tools
for neuroradiologists.

Recently, multi-task neural networks have shown superior
performance to other individual neural network architectures
on different medical imaging applications [16], [17]. This
type of neural networks simultaneously integrates different
pieces of information from diverse tasks to improve the
overall performance of the network and leads to better
generalization under real-life conditions [18]. In this study,
we developed a multi-task CNN architecture for classifying
cerebrovascular diseases and synthesizing high-quality PET
images from multi-contrast MRI. The proposed joint dual-
task model comprises two branches; the first branch adopts
a 3D convolutional encoder-decoder network with attention
mechanisms to predict the gold standard 15O-water PET CBF
maps from the combination of structural MRI and arterial
spin labeling (ASL) MRI perfusion images without using
radiotracers. The second branch comprises a multi-scale 3D
convolutional network that integrates multi-parametric MRI
images to distinguish between healthy controls and people
with cerebrovascular diseases. Results show that the proposed
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multi-task deep learning model can efficiently improve the
MRI-to-PET translation performance and the diagnostic ac-
curacy for identifying cerebrovascular disorders.

II. RELATED WORK

In the past three years, several deep convolutional neural
networks have been introduced to predict PET CBF maps
from structural and perfusion MRI images [11], [19], [20].
In [11], Guo et al. adopted a deep CNN (dCNN) to generate
synthetic 15O-water PET CBF images from multi-parametric
MRI inputs including ASL. The dCNN notably improved CBF
image quality, when compared to ASL, achieving an average
structural similarity index (SSIM) of 0.85. In [19], Shin
et al. studied the possibility of synthesizing different brain
PET tracers (specifically AV45, AV1451, fluorodeoxyglucose)
solely from T1-weighted MRI images using generative ad-
versarial networks (GANs). This method achieved limited
PET prediction results, with an average SSIM of 0.26-0.38.
In [20], a residual-based attention-guided CNN was intro-
duced for translating 2D ASL and T1-weighted images to
PET-like images; achieving an average SSIM of 0.85. Other
CNN-based image-to-image translation methods, including
encoder-decoder networks and GANs, have been used for
MRI-to-computed tomography (CT) translation [21], CT-to-
MRI translation [22], PET-to-CT translation [23], CT-to-PET
translation [24], and also for translating between different MRI
neuroimaging modalities [25].

For the detection of cerebrovascular diseases, several deep
learning works on MRI and PET neuroimages have emerged in
the past few years. In [26], a six-layer convolutional network
was proposed to identify Moyamoya disease (MMD) in plain
skull radiograph images. The proposed network attained clas-
sification accuracy rates of 91% and 75·9% for the institutional
test set and external validation set, respectively. To improve the
diagnostic accuracy of MMD, the authors of [27] proposed to
use a convolutional-recurrent network architecture that com-
bines a 3D CNN and gated recurrent unit. This hybrid model
was able to learn the spatio-temporal features from digital
subtraction angiography (DSA) images, showing an average
MMD detection accuracy of 97.88%. Deep learning was also
used in [28] to automatically detect cerebral aneurysms from
MR angiography images, yielding recognition sensitivity rates
between 91-93%. Further, a deep CNN was adopted for
classifying ischemic stroke onset time based on perfusion MRI
images [14]. The proposed network was able to determine
whether the time since stroke (TSS) onset is less than 4.5
hrs with a sensitivity of 0.78 and a negative predictive value
of 0.61. In [15], Dawud et al. used a pre-trained CNN and
transfer learning to identify brain hemorrhage in CT images;
revealing high classification accuracy rates of 90.65-93.48%.

Recently, multi-task deep learning algorithms have been
receiving attention in computer-aided medical applications. In
[16], a multi-task neural network framework was introduced
to identify COVID-19 patients and segment abnormal lesions
on chest CT images. This model showed impressive results
with an AUC score greater than 97% for the diagnosis task

and a Dice score of 0.88 for the segmentation task. Similarly,
Von et al. in [17] developed a multi-task deep learning
model for the classification and segmentation of primary bone
tumors on musculoskeletal radiographs. This model was able
to distinguish between malignant and benign tumors with an
average classification accuracy of 80.2% and segment the
bone lesions with an average Dice coefficient of 0.60. Also,
multi-task deep learning was adopted for the segmentation and
prognosis with head and neck cancer [29]. The proposed multi-
task deep UNet model was applied to FDG-PET/CT images to
predict patient prognosis and learn the segmentation of head
and neck tumors volumes.

III. MATERIALS AND METHODS

This section describes the dataset and the proposed multi-
task network architecture used for simultaneous MRI-to-PET
translation and disease classification.

A. Dataset

This is a retrospective study, approved by the Institutional
Review Board of Stanford University in accordance with
the ethical standards of the Helsinki declaration for medical
research involving human subjects, and HIPAA compliant.
Written informed consent was obtained from all participants
prior to the study. Data were acquired from 120 subjects (60
healthy controls (HC) and 60 cerebrovascular disease patients)
on a 3T PET/MRI hybrid system (SIGNA, GE Healthcare,
Waukesha, WI, USA) using an 8-channel head coil. The pa-
tients’ dataset comprised 52 patients with Moyamoya disease,
4 patients with the intracranial atherosclerotic steno-occlusive
disease (ICSD), and 4 patients with stroke.

The MRI scans included T1-weighted (T1w), T2-weighted
fluid-attenuated inversion recovery (T2w-FLAIR), multi-delay
pseudo-continuous ASL (PCASL) from which proton density
(PD) images are also available, and quantified CBF/arterial
transit time (ATT) maps derived from ASL. For all ASL
scans, a proton density image and a coil sensitivity map were
acquired with a saturation recovery acquisition using TR=2000
ms. For the multi-post labeling delay (PLD) PCASL sequence,
crushing gradients (Venc=4cm/s) were adopted to exclude the
signal in the arterial component before the 3D spiral readout.
All MRI images were co-registered and normalized to the
Montreal Neurological Institute (MNI) brain template and
resized to 96×96×64 voxels. Quantitative gold standard PET
CBF was determined using 15O-water injection and the image-
derived arterial input function kinetic model described in [30].

Sixty-two participants underwent at least two simultaneous
PET and MRI scans, at baseline and 20 minutes after in-
travenous administration of acetazolamide (a vasodilator that
increases the blood flow into the brain). The remaining 58 par-
ticipants underwent three separate simultaneous PET and MRI
scans, two at baseline and one 20 minutes after acetazolamide
administration. Acetazolamide was injected during the scan at
a dose of 15 mg/kg of body weight with a maximum dose of
1000mg. Eight MRI sequences (T1w, T2w-FLAIR, PD, ATT,
single-delay ASL, mean of multi-delay ASL, single-PLD CBF,
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Fig. 1. 3D multi-task CNN architecture with an attention-based encoder-decoder network for MRI-to-PET translation and a multi-scale convolutional network
for cerebrovascular disease classification.

and multi-PLD CBF) were used as inputs to the model and
one 15O-water PET CBF map served as the ground truth.
The total number of scans, before and after acetazolamide
administration, is 332. Both input MRI images and output PET
images were normalized so that they had a mean intensity of
1 in the whole brain. Data augmentation was also used to
enlarge the size of the dataset. The augmentation included
flipping, shifting, and rotating the input and output images,
resulting in an eight-fold increase in the dataset size.

B. Model Architecture

The proposed 3D multi-task convolutional neural network
architecture is depicted in Figure 1. The network consists of
different branches/sub-networks that use multi-contrast MRI
as inputs and are trained simultaneously. In particular, the
network incorporates two major branches for improving the
clinical utility of MRI-derived CBF measurements: (1) a PET
Synthesis Branch is used to transform the structural and
ASL perfusion MRI images into PET CBF maps, and (2) a
Diagnosis Branch is used to classify healthy controls and
patients with MMD, ICSD, and stroke. It is worth highlighting
that the MRI-to-PET translation is the prime task of this
study, while the classification task is added to ameliorate
the extracted feature representations, and hence, improve the
quality of synthetic PET images.

PET Synthesis Branch: A 3D convolutional encoder-
decoder network with attention mechanisms was adopted to
integrate spatial data across multiple MRI image types for

synthetizing PET CBF maps, as shown in Figure 1. Both
the encoder and decoder modules use 3D CNNs, where the
encoder compresses the input MRI images into a more con-
densed representation, and the decoder uses this representation
to output PET-like images. Since different MRI sequences
and spatial patterns impose different effects on the quality
of synthesized PET images, the attention mechanism, shown
in Figure2, is embedded into the encoder-decoder network to
concurrently search the relevant aspects of the input at the
channel and spatial levels for a fine-grained quality prediction.
The encoder-decoder network is trained with a customized loss
function, computed as:

Ltrans = w1MSE+w2MAE+w3(1−SSIM)+w4PSNR (1)

where Ltrans is the MRI-to-PET Translation loss; w1,w2, w3,
and w4 are weights that take values between 0 and 1; MSE,
MAE, SSIM , PSNR refer to the mean squared error, mean
absolute error, structural similarity index, and peak signal-to-
noise ratio, respectively, and they are defined as:

MSE =
1

mnp

m∑
i=1

n∑
j=1

p∑
k=1

(
x(i, j, k)− y(i, j, k)

)2
(2)

where x and y refer to the true and predicted PET images, m,
n, and p are the dimensions of the 3D PET images.

MAE =
1

mnp

m∑
i=1

n∑
j=1

p∑
k=1

∣∣∣x(i, j, k)− y(i, j, k)
∣∣∣ (3)
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Fig. 2. The schematic of attention mechanisms used in the 3D encoder-decoder network.

SSIM =
(2µxµy + c1) (2σxy + c2)(

µ2
x + µ2

y + c1
) (
σ2
x + σ2

y + c2
) (4)

where µx is the mean of x, µy is the mean of y, σ2
x is the

variance of x, σ2
y is the variance of y, σxy is the covariance

of x and y, c1=(0.01cmax)
2 and c2=(0.03cmax)

2 are two
constants to stabilize the division with weak denominator, and
cmax denotes the maximum intensity value of the image.

PSNR = 10 · log10
( cmax

MSE

)
(5)

Diagnosis Branch: A multi-scale 3D convolutional neural
network is adopted to distinguish between healthy controls and
patients with MMD, ICSD, and stroke. The multi-parametric
MRI images are fed into three parallel paths of 3D convolution
layers with different kernel sizes, which allows learning local
features (through smaller convolutions) and high-abstracted
features (with larger convolutions) (see Figure 1). The ex-
tracted multi-scale feature representations are then concate-
nated into a single feature tensor forming the input of the next
few layers. The aggregated output is flattened and presented
as an input to two fully connected layers, and then the
softmax function is used to compute the label probabilities
and prediction. The categorical cross-entropy function is used
as a loss function for the cerebrovascular disease classification
task, which is defined as:

Lclass = −
1

N

N∑
i=1

C∑
c=1

1yi∈Cc
log10

(
Pmodel [yi ∈ Cc]

)
(6)

where Lclass is the classification loss, N is the number of
observations, C is the number of classes, 1 is an indicator
function (0 or 1) of the observation i belonging to the class
c, and Pmodel [yi ∈ Cc] is the probability that observation i
belongs to class c.

From equations 1 and 6, the global loss function (Lglobal)
for both MRI-to-PET translation and disease classification
tasks is computed as:

Lglobal = Ltrans + Lclass (7)

In our experiments, the Nesterov Adam optimizer [31], an
improved variant of the Adam optimization algorithm, was
used with a learning rate of 0.0002 and a batch size of 4.

The proposed multi-task neural network was trained with the
global loss function for 150 epochs and early stopping of 20
epochs.

The proposed multi-task network was trained and tested
using fourfold cross-validation. The dataset was divided into
four subgroups, each includes PET and MRI images from 15
healthy control participants (with 40 scans), 13 patients with
Moyamoya disease (with 38 scans), one ICSD patient (with 3
scans), and one stroke patient (with 2 scans). For each fold, the
scans from three of the four sub-groups were used for training,
from which 10% were randomly selected for validation. The
fourth subgroup was then used for testing the performance of
the trained multi-task network. To avoid data leakage, we were
careful to avoid having a single subject’s scans (either baseline
or post-acetazolamide) simultaneously in the training and test
sets.

IV. RESULTS AND DISCUSSION

The performance of the proposed multi-task network was
quantitatively evaluated using SSIM, normalized root-mean-
square error (NRMSE), and PSNR for the MRI-to-PET Trans-
lation task. The performance metrics of accuracy (Acc),
sensitivity (Sens), specificity (Spec), precision (Prec), false-
positive rate (FPR), false-negative rate (FNR), and Matthew’s
correlation coefficient (MCC) were also used for the disease
classification task.

MRI-to-PET Translation Results: Compared to a previous
PET CBF prediction method that achieved an average SSIM of
0.85 and NRMSE of 0.209 [11], our model yielded improved
PET prediction performance, achieving an average SSIM of
0.94, NRMSE of 0.038, and also PSNR of 38.8dB. Figure 3
shows the input MRI volumes, predicted (synthetized) PET
CBF maps, gold standard PET CBF measurements, and corre-
sponding absolute error maps (magnified) for healthy controls
and patients with cerebrovascular diseases. Results indicate
that a 3D convolutional encoder-decoder network integrating
multi-contrast information from brain structural MRI and ASL
perfusion images can efficiently synthesize high-quality PET
CBF maps without the need for radiotracers. It also shows how
well-designed loss functions and attention mechanisms can
improve the PET CBF prediction results. Using grid search,
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Fig. 3. MRI-to-PET prediction results for healthy control and cerebrovascular disease patients: Examples of input MRI sequences, output synthetic PET,
target PET, and corresponding Absolute Error maps.

the weights (w1, w2, w3, and w4) of Ltrans (the loss function
of the MRI-to-PET translation task) were assigned to 0.15,
0.15, 0.60, and 0.20, respectively. The highest weight went
to the SSIM loss in view of the fact that SSIM measures the
perceptual difference between two images.

To assess the clinical significance of the proposed PET
prediction algorithm, a set of paired comparison analyses were
conducted. The Bland-Altman plot in Figure 4 delineates the
agreement between the mean CBF of the true and predicted
PET CBF maps. It shows a small bias, where the true gold
standard PET CBF measurements in the whole brain are 4.6
ml/100g/min higher than the synthetic PET CBF maps pro-
duced by our encoder-decoder network, with 95% confidence
intervals of -4.4 and +13.5 ml/100g/min. Figure 5 describes
the histogram, density plots and joint plot of the mean CBFs
of true and synthetic PET images, showing high levels of
agreement and correlation (Pearson’s correlation coefficient =
0.97).

Cerebrovascular Disease Classification Results: This sec-
tion depicts how 3D multi-scale convolutional networks, as
part of the proposed multi-task deep learning model, can
differentiate between healthy controls and patients with Moy-
amoya disease, intracranial steno-occlusive disease, and stroke.

Figure 6 depicts the confusion matrix of the proposed
multi-task network for one of the four sub-groups of data.
One can observe that 38 of 40 healthy control scans are

Fig. 4. Bland-Altman plot of whole brain CBF Mean and Difference of
measured and synthetic PET.

classified correctly, where only 2 scans are misclassified as
Moyamoya patients (both scans were for the same participant).
For Moyamoya disease, only two scans are misidentified
as healthy controls and one misidentified as an intracranial
steno-occlusive disease. The remaining 35 scans are identified
correctly. The classification of ICSD and stroke was more
challenging because of the limited number of participants
having these diseases. We used data augmentation to generate
variants of the multi-contrast MRI images and corresponding



Fig. 5. Joint plot of mean global CBF in measured and synthetic PET.

Fig. 6. Confusion matrix of the multi-task convolutional nertwork.

PET CBF measurements, which helped expand the training
dataset and improve the classification performance of the
model and its ability to generalize in clinical settings.

The test set included one ICSD patient with three scans
(two scans at the baseline and one scan after acetazolamide
administration). The trained network was able to identify the
two baseline scans correctly where the post-acetazolamide
scan was identified as Stroke. It is worth clarifying that ICSD
occurs when blood flow to the brain is restricted by narrowed
arteries or plaque buildup, and without adequate treatment,
ICSD patients may develop mini-strokes or strokes [32]. This
may explain why a post-acetazolamide scan for an ICSD
patient could be classified as a stroke. Lastly, the model was
tested on a stroke patient with 2 scans (one pre-acetazolamide
and one post-acetazolamide), and both scans were classified
correctly.

TABLE I
PERFORMANCE OF THE MULTI-TASK DL MODEL FOR IDENTIFICATION OF

HEALTHY CONTROLS AND PATIENTS WITH MOYAMOYA DISEASE, ICSD
AND STROKE.

Classification
metrics HC MMD ICSD Stroke Average

Acc (%) 95.18 93.97 97.60 98.80 96.38
Sens (%) 95.00 92.10 66.66 100.0 88.44
Spec (%) 95.34 95.55 98.75 98.76 97.10
Prec (%) 95.00 94.59 66.66 66.66 80.73

FPR 0.046 0.044 0.012 0.012 0.028
FNR 0.050 0.079 0.333 0.0 0.115
MCC 0.903 0.878 0.654 0.811 0.812

Table I reports the performance metrics of the multi-task
network for the classification of healthy controls and pa-
tients with Moyamoya disease, ICSD, and stroke. An average
classification accuracy, sensitivity, and specificity of 96.38%,
88.44%, and 97.10% were achieved, respectively. The FPR,
FNR, and MMC were also evaluated for this imbalanced
classification problem, revealing a notably high performance
of 0.028, 0.115, and 0.812, respectively. This gives us in-
sights into how multi-task deep learning and sharing feature
representations among two tasks can help maintain reliable
performance even with limited data.

Although the proposed model produces high-quality syn-
thetic PET images, the neuroradiologists still need to spend
substantial time examining 3D images trying to identify the
area(s) of the brain affected by the cerebrovascular disease.
In future work, we plan to add a third branch to automati-
cally localize the brain regions with abnormally low cerebral
blood flow. An expansion of this approach to other types of
brain diseases (like certain types of dementia) could also be
clinically valuable.

V. CONCLUSION

Adequate quantification of PET from MRI has a great poten-
tial for increasing the accessibility of cerebrovascular diseases
assessment for underserved populations and underprivileged
communities. In this study, we proposed a multi-task deep
learning model that allows for accurate and simultaneous brain
MRI-to-PET translation and classification of cerebrovascular
diseases. The network consists of two branches that coop-
eratively use structural MRI and ASL perfusion images as
inputs. The first branch adopted an attention-guided 3D con-
volutional encoder-decoder network that efficiently synthesizes
high-quality PET CBF maps from multi-contrast MRI while
eliminating the need for radioactive tracers. The second branch
used a multi-scale convolutional neural network to extract
the distinguishable imaging biomarkers and thus differentiate
between healthy controls and patients with cerebrovascular
diseases. The proposed multi-task learning approach was
found to achieve superior performance than existing medical
image-to-image translation and classification techniques.
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