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Abstract—There are several problems with the robustness
of Convolutional Neural Networks (CNNs). For example, the
prediction of CNNs can be changed by adding a small magnitude
of noise to an input, and the performances of CNNs are degraded
when the distribution of input is shifted by a transformation
never seen during training (e.g., the blur effect). There are
approaches to replace pixel values with binary embeddings to
tackle the problem of adversarial perturbations, which success-
fully improve robustness. In this work, we propose Pixel to Binary
Embedding (P2BE) to improve the robustness of CNNs. P2BE
is a learnable binary embedding method as opposed to previous
hand-coded binary embedding methods. P2BE outperforms other
binary embedding methods in robustness against adversarial
perturbations and visual corruptions that are not shown during
training.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have several issues
with robustness. One of the problems is adversarial pertur-
bations: they can maliciously modify CNN’s prediction by
adding a small magnitude of noise to an input [38]. Since the
finding of adversarial perturbations, many types of attacking
methods [11], [28] and defensive methods [43], [41] have
been proposed. We also know that CNNs do not generalize
on input distributions other than the one they are trained on
[9]. For example, CNNs trained with regular images fail to
generalize on images with the blur effect [40]. CIFAR-C and
ImageNet-C [14] are proposed to investigate the generalization
ability of trained models on such visually corrupted images.
Since then, some training strategies [15], [33] and ensemble
techniques [22] have been proposed to improve the robustness
against visual corruptions which do not appear during training.
Robustness matters for applying the computer vision system
to real-world applications since some malicious exploitations
may occur using the above flaws.

For the robustness against adversarial perturbations, there
are approaches to replace pixel values with binary embed-
dings (e.g., one-hot and thermometer encoding [3]). They
empirically show that binarized input successfully improves
the robustness against adversarial perturbations. These binary
encodings are based on hand-coded simple rules even though
vision tasks are diverse and complex. We consider that such a
simple binary encoding would not be optimal for all problems.
It is a promising direction to learn the rule of binary encoding
for each problem by using data.
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Fig. 1: Overview of P2BE (Pixel to Binary Embedding). Each
value of RGB image have 256 types of magnitude (i.e., 0 to
255) and P2BE replaces each RGB value with learned binary
embedding ek ∈ {0, 1}M where k ∈ [0, ..., 255]. M ∈ N is the
dimension of the embedding and hyperparameter controlling
the expression ability of ek. The black and grey colors indicate
0 and 1, respectively. The figure illustrates the case of M = 4.

In this work, we propose Pixel to Binary Embedding
(P2BE), which is a learnable binary embedding method as
opposed to previous hand-coded binary embeddings [3]. In
addition, we propose embedding smoothness loss to introduce
the effect of quantization which effectively works with adver-
sarial perturbations.

To measure the robustness against visual corruptions, we
use two benchmark datasets for image classification (i.e.,
CIFAR-100-C and ImageNet-C datasets). We show that P2BE
outperforms other binary encoding methods for robustness
against visual corruptions across various CNNs. In addition,
we show that P2BE achieves the best robustness performances
against adversarial perturbations. In our analyses, we show that
the performance of P2BE is not sensitive to the dimension
size M , the proposed embedding smoothness loss is essential
to improve robustness against adversarial perturbations, and
ImageNet-1k pretrained P2BE has the transferability to the
other task.

Our contributions are summarized as follows:

• We propose P2BE, which is a learnable binary embed-
ding unlike other hand-coded binary embedding methods.
P2BE shows the best robustness performances among
RGB and other binary embedding methods on various
datasets.

• The embedding smoothness loss is proposed to realize
the effect of quantization in P2BE. Our analysis shows
that the embedding smoothness loss improves robustness
against adversarial perturbations in P2BE.
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• Binary embedding methods have been evaluated only
from the view of robustness against adversarial per-
turbations. In this work, we additionally assess binary
embedding methods on robustness against visual cor-
ruptions. The results reveal that the approach of binary
embedding effectively improves robustness against visual
corruptions.

II. RELATED WORK

A. Robustness of CNNs

Adversarial Perturbations. A small amount of adversarial
noise can intentionally change the prediction of trained CNNs.
This phenomenon is called adversarial perturbations, and it
was initially reported in [38]. Since the finding of adversarial
perturbations, many types of attacking methods [11], [28],
[31], [4], [30], [45], [37] and defensive methods [43], [3],
[27], [12], [8], [41], [36], [35], [1], [24], [5], [48] have been
proposed. However, it has been reported that the most robust
defensive method is still defective against some attacks [21].

Some defensive methods improve robustness against ad-
versarial perturbations by transforming the input x ∈
[0, 1, · · · , 255] into an M -dimensional binary embedding.
One-hot encoding Done-hot(x) ∈ {0, 1}M is a simple binary
discretization method [3] as follows:

Done-hot(x)i =

{
1, if i−1

M ≤ x
255 <

i
M or x = 255

0, otherwise,
(1)

where i ∈ {1, ...,M}, and M ∈ N+ is a hyperparameter
controling the size of the dimension of the binary embed-
ding. Done-hot improves the robustness of CNNs, however,
it degrades the performance on clean images by losing the
information on relative distance (e.g., Done-hot(0.03) is equally
far from Done-hot(0.48) and Done-hot(0.92)). To overcome such
flaw, thermometer encoding Dthermo(x) ∈ {0, 1}M [3] is
proposed as follows:

Dthermo(x)i =

{
1, if x

255 <
i
M or x = 255

0, otherwise.
(2)

The examples of binary encoding methods are summarized in
Table I.
Common Visual Corruptions. CNNs fail to generalize on the
images with visual corruptions, which are not shown during
training [9], [40]. It is essential to measure the robustness
against such common visual corruptions (e.g., blur, brightness,
contrast, and so on) for the reliability of computer vision sys-
tems. For benchmarking the robustness of image classification,
ImageNet-C and CIFAR-C [14] are proposed, and there are 15
types of common visual corruptions for evaluation. PASCAL-
C, COCO-C, and Cityscapes-C are proposed for evaluating the
robustness of object detection [29] by using the same types of
common visual corruptions.
Robust Training. Some training methods are proposed to
improve the robustness of a vision system against adversarial
perturbations or visual corruptions. [4] proposed Adversarial

TABLE I: Examples of binary embedding methods. M is the
dimensional size of embeddings. The examples in the table
represent the case of M = 10. P2BE is a learnable binary
embedding method. Thus the binary translation rules of P2BE
depend on tasks and training strategies.

One-hot [3] Thermometer [3] P2BE (ours)

0.03 [1000000000] [1111111111] [0111101011]
Values 0.48 [0000100000] [0000111111] [1111101001]

0.92 [0000000001] [0000000001] [1011011110]

Training (AT) and they train neural networks on only ad-
versarial perturbed images. AT improves the performance on
adversarial perturbed images in exchange for dropping the
performance on clean images [47], [39].

Several approaches aim to improve robustness against visual
corruptions which never seen during training. One of the
approaches is augxmix training method [15]. augxmix
introduces the regularization loss Laug to enforce the model
to do consistent predictions between the original and visu-
ally transformed images. Laug is computed based on Jensen-
Shannon divergence (JSD) between original image (i.e., x)
and two visually transformed images (i.e., xaug1 and xaug2) as
follows:

Laug(p(x); p(xaug1); p(xaug2)) =

1

3
(KL [p(x)‖V ] + KL [p(xaug1)‖V ] + KL [p(xaug2)‖V ]),

(3)

where V is 1
3 (p(x) + p(xaug1) + p(xaug2)), KL is Kull-

back–Leibler divergence and p is CNN’s prediction from the
softmax layer. Another approach is an adversarial training
method to use an adversarial noise generator [33]. They show
that being robust against noise improves the robustness against
common visual corruptions.

B. Binary Neural Netowrks

Deep Neural Networks (DNNs) require heavy matrix com-
putations. Therefore, it is hard to deploy DNNs on devices that
have limited computational ability. To overcome such issues,
Binary Neural Networks (BNNs) have been proposed [17],
[32], [6], [49], [46], [25], [10] . In BNNs, the matrix multipli-
cations are replaced with the combinations of bitwise XNOR
and bit count operations, which are lightweight calculations.
BNNs accelerate inference time, save up storage, and improve
energy efficiency. However, BNNs suffer from performance
degradation compared to non-binary DNNs. The motivation
of BNNs and binary embedding methods are different. On
the one hand, BNNs aim to make DNNs resource-efficient.
On the other hand, binary embedding methods translate only
input into binary values for improving robustness.

III. METHOD

A. Pixel to Binary Embedding

We show the overview of P2BE in Fig 1. Our method trans-
forms an RGB image x ∈ {0, ..., 255}3×H×W to the learnable
binary embedding b ∈ {0, 1}3M×H×W where M ∈ N+ is the



dimension size of the binary embedding. There are two steps
in P2BE: Binarization and Embedding Smoothness Loss.
Binarization. In P2BE, the learnable embeddings wk ∈ RM
are translated into the binary embedding ek ∈ {0, 1}M where
k ∈ [0, ..., 255] corresponds to the magnitude of each RGB
value and M ∈ N+ is the hyperparameter to controlling the
dimension size of ek. The binarization is based on the sign
function as follows:

sign(x) =

{
1, if x ≥ 0

−1, otherwise.
(4)

In P2BE, we calculate the binary embedding ek as follows:

ek = 0.5× sign(wk) + 0.5. (5)

Since the sign function is non-differentiable, straight-
through estimator (STE) has been proposed to make it dif-
ferentiable [2]. STE approximates δsign(x)

δx by the derivative
of the identity function. However, using δidentity(x)

δx as
backward function leads unstablities in learning since the
identity and sign functions are greatly different. Since
then, differentiable functions closer to the sign function have
been proposed for better approximation of δsign(x)

δx [17], [25],
[10], [7], [23], [18].

In P2BE, we use a function called approximate sign (i.e.,
signapprox) [25] and its derivatives are as follows:

δsignapprox(x)

δx
=


2 + 2x, if − 1 ≤ x < 0

2− 2x, if 0 ≤ x < 1

0, otherwise.
(6)

signapprox function approximates sign function with
quadratic equation. When we calculate the gradients of Eq
5 to wk, we use δsignapprox(wk)

δwk
instead of sign(wk)

wk
. P2BE

transforms the each RGB value xc,h,w ∈ [0, ..., 255] to binary
values as follows:

Dp2be(xc,h,w) = exc,h,w , (7)

where c, h and w are the channel, height and width of an input,
respectively. The pseudocode of P2BE is shown in Algorithm
1.
Embedding Smoothness Loss. As [11] have hypothesized, the
adversarial perturbations are caused by the linearity of trained
neural networks with respect to an input. Let us consider the
case of the single linear layer with sigmoid function σ.

y(x̂) = σ(w(x+ ε)) = σ(w · x+ w · ε), (8)

where w ∈ Rm×n, x ∈ Rm and ε ∈ Rm are the weight,
input and adversarial noise, respectively. ε satisfies ‖ε‖∞ ≤ C
where C ∈ R+ is small enough. If the dimension m is large
enough, the output of the sigmoid function can be changed
significantly by w · ε.

As [3] have mentioned, the quantization can be a reasonable
approach against adversarial perturbations since quantized
Done-hot(x) may be equivalent to quantized Done-hot(x̂) and
the term of w · ε disappears. As can be seen in Eq 1 and

Algorithm 1: P2BE Pseudocode

Input : Image x ∈ {0, 1, · · · 255}3×K×N ,
Learnable Embedding w ∈ R256×M ,
Loss L

Initialization: w ∼ N (0, 1)
Forwarding (x):
// e ∈ {0, 1}256×M

e = sign(w)+1
2

for c = 0, · · · , 2 do
for k = 0, · · · ,K − 1 do

for n = 0, · · · , N − 1 do
for m = 0, · · · ,M − 1 do

// bMc+m,k,n ∈ {0, 1}

bMc+m,k,n = exc,k,n,m
end

end
end

end
// b ∈ {0, 1}MC×K×N

return b
Backwarding ( δLδb ):
// δL

δb ∈ R3M×K×N

for c = 0, · · · , 2 do
for k = 0, · · · ,K − 1 do

for n = 0, · · · , N − 1 do
for m = 0, · · · ,M − 1 do

// × is scalar multiplication

// δL
δwxc,k,n,m

∈ R
δL

δwxc,k,n,m
+=

1
2
( δL
δbMc+m,k,n

×
δsignapprox(wxc,k,n,m)

δwxc,k,n,m
)

end
end

end
end
// δL

δw ∈ R256×M

return δL
δw

2, the quantization of Done-hot and Dthermo [3] are pre-defined
(e.g., location and the step size of quantization). We propose
the embedding smoothness loss to introduce the effect of
quantization in P2BE. The embedding smoothness loss Lsmooth
is computed by cosine similarity cos(a∠b): Rd×Rd → [1,−1]
as follows:

Lsmooth(w) =
∑

k∈[0,...,254]

1− cos(wk∠wk+1)

=
∑

k∈[0,...,254]

1− < wk, wk+1 >

‖wk‖‖wk+1‖
,

(9)

where <·, ·> denotes the dot product and ‖ · ‖ represents
the l2 norm. The smaller Lsmooth, the angle of neighbored
embeddings wk and wk+1 is closer to 0.



IV. EXPERIMENTS

A. Preparations
Dataset. We use CIFAR-100 [19] and ImageNet-1k [34] for
our experiments. CIFAR-100 are image classification datasets
with 100 classes. They contain 50000 training images and
10000 validation images. We use three types of models: Wide
ResNet 40-2 [44], DenseNet-BC (k=12, d=100) [16] and
ResNeXt-29 (32× 4) [42].

ImageNet-1k is the large-scale dataset for image classifica-
tion with 1.28M training images and 50k validation images
of 1000 classes. In this work, we use ResNet50 [13] as the
baseline model for ImageNet-1k experiments.
Evaluation. We evaluate the robustness of models in two
aspects: common visual corruptions and adversarial perturba-
tions. As the benchmarks of the robustness against common
visual corruptions, we use CIFAR-100-C and ImageNet-C
datasets [14]. Fifteen types of visual corruptions c transform
the images with five different severities s (e.g., blurring,
contrasting). On CIFAR-100-C, we calculate the average of
the test error Es,c across all corruptions c and severities
s. On ImageNet-C, we calculate the mean Corruption Error
(mCE) for the measurement of the robustness as proposed in
[14]. mCE is the average of Corruption Error (CEc) across
all corruptions c. CEc is normalized test error as follows:
CEc =

∑5
s=1 Es,c/

∑5
s=1 Ealexnet

s,c where Ealexnet
s,c is the test error

of alexnet [20].
To evaluate robustness against adversarial perturbations, we

measure the test error on adversarially perturbed test images.
Since binary embedding methods are not differentiable, or-
dinal attacking methods of adversarial perturbations are not
applicable. Thus, we generate adversarial noise for testing by
using the LS-PGA attacking method [3], which is specifically
designed for the network with binary embeddings.

B. Common Visual Corruptions
Implementation Details. As the optimizer for the classifi-
cation models, we use Momentum SGD with momentum of
0.9. On the CIFAR-100 dataset, we train the models for 200
epochs with 128 batches. We set the coefficient of weight
decay to 5.0 × 10−4, and the learning rate is scheduled by
cosine annealing strategy, which starts from 0.1 and ends at
1.0× 10−5. On the ImageNet-1k dataset, we train the models
for 180 epochs with 64 batches. The coefficient of weight
decay is 1.0 × 10−4 and the initial learning rate is set to 0.1
and divided by 10 at 60 and 120 epochs.

As the optimizer for embedding parameters of P2BE, we
use AdamW [26]. The learning rate, β1 and β2 are set to
1.0×10−4, 0.999 and 0.999, respectively. We do not apply the
scheduling of the learning rate, and the coefficient of weight
decay is set to 1.0×10−4. The dimension of binary embedding
M is 64.

The total loss is defined as follows:

Ltotal = Lce + αLaug + λLsmooth, (10)

where Lce is cross-entropy loss for the classification and
α ∈ R+ is the hyperparameter for augmix regularization

TABLE II: The test error of CIFAR-100-C. The all models
are trained with Eqn. 10. λ is set to 0 in the case of RGB,
One-hot and Thermometer. The values on the table represent
mean ± std across 5 runs. The values in parenthesis are the
test error of CIFAR-100 (i.e., clean images).

Encoding Model Test error (%)
WideResNet 35.2±0.3 (22.2±0.3)

RGB DenseNet 37.3±0.1 (22.6±0.3)
ResNeXt 33.9±0.3 (20.5±0.4)

WideResNet 34.4±0.4 (23.9±0.2)
One-hot DenseNet 36.6±0.2 (23.9±0.2)

ResNeXt 33.2±0.3 (21.8±0.2)

WideResNet 35.1±0.2 (22.8±0.2)
Thermometer DenseNet 36.9±0.2 (23.0±0.1)

ResNeXt 33.9±0.3 (21.3±0.3)

WideResNet 34.2±0.2 (22.8±0.3)
P2BE (ours) DenseNet 36.3 ±0.2 (23.3±0.3)

ResNeXt 32.6±0.2 (20.7±0.4)

loss. λ ∈ R+ is the hyperparameter controling the degree of
quantization. When the λ is larger, the neighbored embeddings
(i.e., wk and wk+1) tend to have similar directions. For the
training of P2NE, the coefficients λ are set to 1.0, and 10.0
on CIFAR-100-C and ImageNet-C, respectively. α is set to 12
which is the same value used in [15].
Results. The result of CIFAR-100-C is shown in Table II.
It shows that the approaches of binary embedding generally
improve the robustness against visual corruptions with small
performance drops on clean images compared to RGB input
space. This finding is interesting since the binary embed-
dings have only been evaluated from the aspect of robustness
against adversarial perturbations. It implies that designing a
sophisticated input space may be a promising way to improve
robustness against never-seen visual corruptions.

As can be seen in Table II, one-hot encoding has the bigger
performance drops on clean images and bigger improvements
in the robustness against never-seen visual corruptions among
the three binary embedding methods. Thermometer encoding
has the opposite tendencies: the smaller performance drops on
clean images and the smaller robustness improvement against
never-seen visual corruptions. P2BE has the good properties of
both methods that smaller performance drops on clean images
and a bigger improvement of robustness against never-seen
visual corruptions.

The result of ImageNet-C is shown in Table III. The results
are similar to those in CIFAR-100-C datasets and P2BE shows
the best robustness against never-seen visual corruptions. As
can be seen in Table III, the binary embedding methods tend to
improve robustness against corruptions of the noise and digital
categories. However, it has almost no effect on the weather
category. This result indicates the limitation of the approach
of binary embeddings.

C. Adversarial Perturbations

Implementation Details. The same hyperparameters for the
training of CIFAR-100-C in Sec IV-B are used except for some



TABLE III: The clean error of ImageNet-1k and Corruption Error (CEc) of ImageNet-C. CEc is the normalized test error by
the test error of alexnet. mCE is the averaged CEc across 15 different corruptions c. The detailed definition of mCE is denoted
in Sec. IV-A. The all models are trained with Eqn. 10. λ is set to 0 in the case of RGB, One-hot and Thermometer. The lower
the values on the table, the better performances.

Noise Blur Weather Digital
Clean Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel Jpeg mCE

RGB 22.6 66 66 65 69 82 65 66 73 73 62 58 63 80 67 70 68.2
One-hot 23.5 63 63 59 68 78 64 67 73 72 65 59 64 74 56 68 66.1

Thermometer 22.9 62 62 61 69 79 65 67 71 71 63 57 63 78 61 68 66.2
P2BE (ours) 23.3 62 61 61 67 77 63 64 71 71 63 58 63 74 61 67 65.6

TABLE IV: The test error with LS-PGA white-box attack on
CIFAR-10 and CIFAR-100. The values in parenthesis is the
test error on clean images.

One-hot Thermometer P2BE (ours)

CIFAR-10 ConTrain 66.1 (11.6) 48.0 (16.0) 45.3 (15.7)
AdvTrain 52.1 (16.3) 51.6 (15.0) N/A

CIFAR-100 ConTrain 91.4 (38.1) 73.0 (42.7) 71.5 (42.2)
AdvTrain 75.2 (41.7) 75.3 (41.0) N/A

specific parts in adversarial training. Since binary embedding
methods are not differentiable, ordinal attacking methods of
adversarial perturbations are not applicable. In this work, we
use the LS-PGA attacking method [3] which is specially de-
veloped to attack binary embeddings. For LS-PGA attacking,
we use the seven steps for iterative attack with the annealing
rate δ = 1.2 as [3] use. However, we notice that the step
size of ξ = 0.031 in [3] is too small for the convergence
on CIFAR-datasets. In our experiments, we set ξ to 1.0 for
the convergence, and the results of one-hot and thermometer
encoding are much worse than the scores reported in [3].

To be robust against adversarial perturbations, we use
two types of adversarial training methods: AdvTrain and
ConTrain. The standard adversarial training is to train the
model on only adversarially perturbed images as proposed in
[38] and we call it AdvTrain in this work. ConTrain is a
variant of the augmix training method. We use Lcon instead
of Laug as follows:

Lcon(p(x); p(xadv)) =
1

2
(KL [p(x)‖Vcon] + KL [p(xadv)‖Vcon]),

(11)

where x and xadv are the original and the adversarially
perturbed images, respectively. Vcon is 1

2 (p(x) + p(xadv)) and
p is the CNN’s prediction from the softmax layer.

The total loss of ConTrain is defined as follows:

Ltotal = Lce + αLcon + λLsmooth, (12)

where the coefficients λ are set to 1.0 and 0.1 on CIFAR-10
and CIFAR-100 datasets, respectively.
Results. We show the results of adversarial perturbations in
Table IV. As can be seen in Table IV, P2BE with ConTrain
achieves the best robustness against adversarial perturbations
on both CIFAR-10 and CIFAR-100. On one-hot and ther-
mometer encoding, AdvTrain and ConTrain are suitable

TABLE V: The test error against LS-PGA white-box attack
on CIFAR-10 and CIFAR-100 with various λ. The value in
parenthesis is the test error on clean images. λ is the coefficient
for embedding smoothness loss in Eqn. 12.

Test Error (%)

CIFAR-10 ConTrain (λ = 0.0) 59.3 (12.0)
ConTrain (λ = 1.0) 45.3 (15.7)

CIFAR-100 ConTrain (λ = 0.0) 72.5 (43.4)
ConTrain (λ = 0.1) 71.5 (42.2)

to improve the robustness against adversarial perturbations, re-
spectively. Interestingly, P2BE fails to learn with AdvTrain.
It seems P2BE requires non-perturbed images for the stability
of learning.

V. ANALYSIS

Learned Binary Embedding in P2BE. We show the cosine
similarities of binary embedding in Fig 2. The distance space
of ImageNet-1k trained P2BE is shown in Fig 2-(d). It shows
that the distances of P2BE embeddings are periodically larger
and smaller. Such properties of distance space do not exist in
RGB, one-hot, and thermometer encoding.
Effect of Dimension Size of Embedding M. We conduct
an experiment to investigate the relationship between the
robustness performance and dimension size M of P2BE. The
result is shown in Fig 3. The worst performance is obtained
when M is 128. As can be seen in Table II, it is still better
than the results of other baselines. We claim that P2BE is not
sensitive to the size of M since the biggest performance gap
is 0.5% within various M .
Effect of Embedding Smoothness Loss. We investigate the
effectiveness of embedding smoothness loss. Table V shows
the performances against adversarial perturbations on CIFAR-
10 and CIFAR-100. As can be seen in Table V, P2BE with
λ = 0.1 outperforms P2BE with λ = 0.0 which is the case
without the embedding smoothness loss. This result implies
that embedding smoothness loss is an effective regularization
of P2BE to improve robustness against adversarial perturba-
tions.
Does P2BE Require Longer Training? We investigate the
relationship between the training length and the performances
on CIFAR-100-C. The results are shown in Table VI. As can
be seen in Table VI, it tends to show better performance with
the longer training regardless of input space. Since binary
embeddings are learnable in P2BE, the input space is being



(a) One-hot (b) Thermometer (c) Random (d) P2BE (ours)

Fig. 2: The cosine similarity of binary embeddings. The vertical and horizontal axis represents that the indices i, j ∈ [0, ..., 255]
corresponding to the magnitude for each RGB value. In table, the cell at the coordinate (i, j) represents the cosine similarity
between binary embeddings ei and ej . The black and white colors indicate that the cosine similarities are 1.0 and 0.0,
respectively. Figure (c) is the binary embedding generated by the standard normal distribution. Figure (d) is calculated by
ImageNet-1k trained P2BE with ResNet50.
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Fig. 3: The CIFAR-100-C results of P2BE across various M .
The horizontal axis is M and the vertical axis is the test error
of CIFAR-100-C.

TABLE VI: The test error of CIFAR-100-C with different
epochs for training. The hyperparameters are all same as in
Sec IV-B except for epochs.

Epochs Network RGB One-hot Thermometer P2BE (ours)

WideResNet 36.2 36.3 36.3 35.9
50 DenseNet 39.6 40.1 39.7 40.3

ResNext 34.6 34.1 33.8 33.9
WideResNet 34.9 34.5 35.1 34.4

100 DenseNet 37.6 37.5 37.9 38.1
ResNext 33.5 33.1 34.3 33.6

WideResNet 35.4 34.4 35.1 34.2
200 DenseNet 37.5 36.6 36.9 36.3

ResNext 34.2 33.2 33.9 32.5

changed during training, and we have expected that P2BE
requires the model to train longer for convergence. However,
P2BE shows comparable or better performances with short
training periods on the CIFAR-100-C dataset.
Transferability of Learned Binary Embedding in P2BE. It
is known that ImageNet-1k pre-trained classification models
have good features that are transferable to other tasks. Then,
it is reasonable to consider whether the ImageNet-1k trained
P2BE is transferable to other tasks or not.

In this work, we verify the transferability of ImageNet-1k
trained P2BE by using CIFAR-10, CIFAR-10-C, CIFAR-100,

TABLE VII: The test errors of CIFAR and CIFAR-C datasets
with P2BE and fixed ImageNet-1k trained P2BE on WideRes-
Net. Fixed P2BE represents the case that the embedding of
P2BE is fixed during the training of the classification model
with Eqn. 10.

Embeddings Test Error (%)

CIFAR-10 P2BE 4.8
Fixed P2BE (ImageNet-1k) 4.7

CIFAR-10-C P2BE 10.3
Fixed P2BE (ImageNet-1k) 10.1

CIFAR-100 P2BE 23.2
Fixed P2BE (ImageNet-1k) 22.8

CIFAR-100-C P2BE 34.2
Fixed P2BE (ImageNet-1k) 33.9

and CIFAR-100-C. We show the results in Table VII and the
fixed ImageNet-1k trained P2BE outperforms the result with
P2BE. This result indicates that we may be able to get better
binary embeddings by using more complex and large-scale
datasets.

VI. CONCLUSION

We propose Pixel to Binary Embedding (P2BE) for im-
proving the robustness of CNNs. P2BE is a learnable binary
embedding method as opposed to hand-coded binary embed-
ding methods (e.g., one-hot and thermometer encoding). We
show that P2BE achieves the best robustness performances
against adversarial perturbations and common visual corrup-
tions among other hand-coded binary embedding methods.
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