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Abstract—Mesh saliency, which measures the perceptual im-
portance of different regions on a mesh, benefits a wide range of
applications. However, existing mesh saliency models are largely
built with hard-coded formulae, which cannot capture true
human perception. Some existing techniques utilise indirect mea-
sures to capture user perception (e.g., mouse clicks), which can
be unreliable. In this work, we collect eye-tracking data for 3D
objects seen from different views, and develop an optimisation-
based approach to fusing heat-maps captured from individual
views to form consistent saliency maps on meshes. To predict
mesh saliency on a new shape, we further develop a learning-
based approach that regresses local surface characteristics based
on a set of input features. Experimental results show that our
learning-based method achieves better performance than state-
of-the-art methods for unseen shapes. We will make our dataset
publicly available.

I. INTRODUCTION

Mesh saliency can play an important role in computer
graphics in determining the outcomes of many tasks, such as
feature detection [1], shape recognition [2], mesh segmenta-
tion [3], mesh watermarking [4], 3D printing [5], etc. Mesh
saliency measures perceptual importance of local regions on
a mesh, which is clearly subjective. It can be considered
from a generic perspective where some 3D surface regions
are considered more important than others [6], [7], but also
task-dependent, e.g., in relation to touching [8]. Mesh saliency
is also related to other metrics that measure ‘uniqueness’
or ‘distinctiveness’, e.g. surface distinction [9] and region
distinctness [10]. However, distinctiveness measures focus on
regions which set a shape apart from other shapes, which
is different from mesh saliency. The ground truth for mesh
saliency is typically determined by human perception, and
subjective judgement is therefore involved in assessing the
performance of such approaches.

Lee et al. [6] were the first to introduce the concept of
mesh saliency, which is a computational measure of regional
importance on a mesh. Their approach is based on differences
of Gaussian, which is a geometric measure that aims to
approximate human perceptual importance. Kim et al. [11]
applied mesh saliency techniques to human eye movements
using a 2D method in a user research. They used the stan-
dardised chance-adjusted saliency to measure the relationship
between mesh saliency and fixation positions for 3D rendered
images, demonstrating that existing computational models of
mesh saliency can predict human eye movements significantly
better than a purely random or curvature model. Although the
importance of regions on 3D shapes can be considered in a
general way, it can also be task-specific. For example, the
work [8] considers the problem of tactile mesh saliency, where

saliency is defined in the context of grasping, pressing and
touching. In this paper, we focus on general visual saliency
(i.e., without a specific task).

Many computational models for visual saliency of images
have been both proposed and implemented. In 1985, Itti et
al. [12] proposed an early model which stated that image
locations with saliency will have some distinction from their
surrounding environment. Some researchers in this field such
as [13], [14], [15] have described in their works various other
models of saliency. Stove and Strafler et al. [16] used saliency
information acquired from the eye movements of an individual
to simplify images, generating a non-photorealistic, painterly
rendering. However, these works focus on using eye tracking
for image saliency, rather than saliency of 3D shapes, which
we investigate in this paper.

In this paper, we investigate using eye tracking data of
rendered views of 3D shapes as a way to obtain ground truth
saliency on meshes. As each view is only able to cover part
of the mesh, and different views may contain shape parts
with significantly different levels of saliency, an optimisation
approach is developed to fuse saliency derived from individual
views to take into account their relative saliency levels, while
ensuring consistent saliency values in the shared regions.
Based on this, we further build machine learning models to
predict mesh saliency, based on local geometric features and
existing 3D saliency prediction models. Our experiments show
that a learning based approach achieves better performance
than existing saliency methods on unseen shapes.

II. RELATED WORK

Recently, several algorithms for computing the saliency of
3D models have been developed. Many algorithms are based
on the ‘centre-surround’ method of Lee et al. [6] that uses the
absolute difference between the Gaussian-weighted average of
the mean curvature at scales o and 20, with the Gaussian
filtering limited to neighbourhoods of size 20. Several scales
with different o values are jointly used to capture saliency at
different scales. Yang et al. [17] proposed a method for quan-
titatively calculating visual attention based on eye-tracking
data for 3D scene maps by obtaining the participants’ gaze
behaviour differences to establish a quantitative relationship
between eye movement indexes and visual saliency. Liu et
al.’s [18] use of virtual agents to simulate how humans interact
with objects helps to understand shapes and to identify their
salient parts in relation to their functions. Moreover, Chen et al.
[19] investigated human perception, and considered 3D mesh
Schelling points, which are feature points chosen by people
in a coordination task. They found that Schelling point sets



Fig. 1. Example views of one mesh (Armadillo) rendered in (a) black and
(b) white backgrounds. 4 out of 20 views are shown here.

are usually highly symmetric, and local curvature properties
are the most useful method for identifying Schelling points.
They propose using sophisticated deep learning approaches to
discover mesh Schelling points automatically, without the need
for participant observations. The authors use mesh convolution
and pooling to extract meaningful characteristics from mesh
objects and then predict the 3D heat map of Schelling points
end-to-end [20].

Mesh saliency has many interesting applications. Leifman
et al. [10] presented an algorithm for identifying regions of
interest on 3D surfaces. Their method studies 3D regions of
distinctiveness from both local and global perspectives, and
demonstrates that saliency derived from their method is effec-
tive for viewpoint selection. Howlett et al. [21] demonstrated
the value of saliency for guiding 3D simplification, where
saliency was captured using an eye-tracker for recording the
two-dimensional image area in which an individual has looked
at a three-dimensional model.

Although there are many ways to detect 3D mesh saliency,
there have been few techniques developed to evaluate their ef-
fectiveness. Many papers utilise heatmaps for showing salient
model parts or utilise saliency-led mesh simplification for
demonstrating the methodology while preserving attention-
grabbing parts. Even though such approaches succeed in
showing how they operate at a high level, they make it hard
to compare the effectiveness of various methods as they only
provide subjective evaluation.

In this paper, we investigate a methodology to produce
ground truth mesh saliency through fusion of eye tracking
data for different views of rendered 3D shapes, and based on
this, further develop machine learning methods for predicting
saliency on 3D meshes.

III. PROPOSED METHOD

Our method involves a methodology to capture ground
truth mesh saliency by fusing eye tracking data for multiple
rendered views of 3D shapes. We then split the captured mesh
saliency dataset into training and test sets, and build machine
learning models using the training set data to predict saliency
on the unseen test set.

A. Obtaining ground truth mesh saliency through eye tracking

1) Shape rendering and eye tracking data capture: Eye
tracking provides an intuitive way for collecting user interest
given visual stimuli. However, it is not possible for the par-
ticipant to see an entire 3D shape at once. To address this, we
place each shape at the origin, scale it to fit in the unit sphere,
and render 20 evenly distributed views (using face centres
of an icosahedron as the camera location with the camera
direction pointing to the origin) to provide sufficient coverage
of the shape. For each rendered image, we also keep the
mapping between the rendered image and the 3D mesh so that
image-based saliency values can be mapped back to the 3D
mesh. For implementation convenience, this is represented as a
vertex map, corresponding to each rendered view, where at the
projected position of each vertex, we use a unique RGB colour
to record its index. This can be efficiently achieved using the
standard OpenGL rendering pipeline. When producing these
view images, we need to ensure they express clear clues for
3D shapes, but avoid introducing artifacts that may distract
user attention. We considered two alternative ways of choosing
the background, namely using black background and white
background (see Figure 1 for some examples).

Our preliminary user evaluation shows that black back-
ground is less distracting than white background so that
participants will concentrate on the actual shapes rather than
their attention wandering around in the background, and so
this is chosen for rendering. This is evidenced by the fact
that users spent significantly more time focusing on the
background when white background is used, compared with
black background. We also set the light source to be in the
same location as the camera and pointing towards the centre
of the object, and ensure the captured view is well lit (but not
over-exposed).

As the subjective result does not have a unique correct
answer, it can be hard to measure the effectiveness of user
input, and so before we start the experiment we show the
participants a trailer of the experiment to make sure they fully
understand the task before starting. Some other studies allow
the user to rotate and zoom in/out of the model; however,
to effectively capture eye tracking data, a series of eye gaze
locations and corresponding durations needs to be recorded
for each view, and so we pre-render and fix each view as
a static image. Also, we let the participants ask questions
during the trailer so the user can feel more confident during
the experiment, leading to more accurate results.

The participants are then shown images of these rendered
views, and their eye tracking data is captured. Note that
adjacent views have large overlaps, which not only happens
naturally, but is also useful, as this allows saliency captured
from different views to be reliably fused. However, this leads
to a potential problem of memorising: when a user is presented
with a similar view shortly before, he/she may not actively try
to explore interesting features of the shape. To avoid this, we
carefully group the 20 views into 5 groups, each with 4 views,
such that these 4 views are as widely separated as possible, and



each user is only asked to look at one group of views for each
shape. Before starting the experiment, we had a quick mock
experiment to test the time needed to view the 3D shape. We
found that showing each rendered image for 5 seconds gives
more accurate results than 10 seconds, and a gap of 2 seconds
between images is sufficient to rest the eyes and lose any
fixation from the previous image and to provide a pause in
order to allow the subjects’ eyes to relax and focus.

The previously generated vertex map can then be used to
remap eye-tracking data on a two-dimensional image back to
the three-dimensional model. When the eye-tracking data has
marked a fixation on a point in the image we can find the
nearest non-black pixel on the vertex map and use the RGB
colour data in that pixel to find the exact vertex the subject had
fixated on allowing us to assign fixations on a two-dimensional
rendered image back to the original model. However, a vertex
is likely to be seen from multiple rendered views, so these
need to be fused to obtain a consistent saliency value for each
vertex.

2) Ground truth mesh saliency generation and fusion: In
the following, we discuss how we work out the ground truth
saliency map on a mesh M. Let R; (i = 1,2,...,20) be the
20 rendered views of M. For each view R;, the eye tracking
data of all the users is collected, and represented as a sequence
of eye fixation points (33;1)7y§-z)7t§7)), where j is the sample
index, (a:gz), yJ(Z)) are the coordinates of the fixation point in
the image domain, and ty) is the duration of the fixation.
As fixation points tend to be sparse, following the common
practice in image saliency research that applies Gaussian
blurring to the fixation map to estimate the saliency map,
we map discrete fixation maps to meshes to obtain per-vertex
saliency values as follows. We first map 2D fixation point
(zy),yy)) to the corresponding fixation vertex v}l) on the
3D mesh M. It iterates over each fixation in the experiment.
Each fixation takes the vertex map corresponding to the 2D
image fixation, takes the fixation z and y position in pixels,
finds the nearest coloured pixel in the vertex map, and decodes
the RGB value into a vertex index. Let d,.x be the distance
between the two farthest apart vertices on the mesh. Each
vertex v in the neighbourhood J\/'j(l) on the mesh M receives

a saliency contribution from the fixation vertex ne

; according
to the following formula:

s(v,08") = exp{—d(v,v\")/d} - 11" (Vo e N,
ey

In practice, d is set to 0.05 times dyax, and ./\/j(l) is
defined as those vertices v with distance to the fixation vertex
d(v,vj(-z)) < d. This ensures each fixation point influences a
reasonably sized neighbourhood, with the influence dropping
where the distance from the fixation point increases. The
distance measure d(-, -) is ideally geodesic distances, although
in practice Euclidean distance gives a decent approximation
and is used in our experiments due to the relatively small
neighbourhood size, and shapes not having highly folded

structures.

Then, the contributions of all fixation points from the same
view are summed up to work out the saliency value for each
vertex w.r.t. the given view sgf):

s = Z s(v,vj(-i)).

J

)

However, the saliency values for different views are not
directly comparable. For example, if one view contains highly
salient regions, e.g., faces, some potentially important but
less significant regions, e.g. hands, may receive low saliency,
whereas if the hands are seen without faces at the same time,
they may be seen as highly salient in that particular view.
Therefore, the relative importance of each vertex needs to be
normalised when fusing inputs from different views. Let the
rendered view V() be the vertices that are visible from view
R;, we further introduce a weight w; for the i-th view, and
use the commonly seen regions as anchors for normalisation,
formulated as the following optimisation problem:

Z Z - wizsv(fz))z

i1,42€{1,2,...,20},61#i2 vV (1) (| Viz)
€)]

where 71 and 79 iterate over all adjacent views (with at least
one shared vertex). This ensures shared vertices across mul-
tiple views have saliency values as consistent as possible. To
avoid getting trivial solutions with w; = wgo = - -+ = w99 = 0,
we additionally introduce a constraint:

The above least-squares optimisation problem can be easily
solved by solving a (small) linear system with the weights of
individual views as unknowns. The final saliency value for s,
is obtained by averaging over values, linearly scaled to [0, 1]:

min (wi1 s(in)

“4)
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where spin and spax are the minimum and maximum values
of s, (before linear scaling).

B. Machine learning based approach to predicting mesh
saliency

Existing methods for mesh saliency are largely based on
handcrafted rules. In this paper, we investigate using learning
based approaches to predict mesh saliency. To make this task
feasible, given relatively limited training data, we take features
at each vertex as input, and predict saliency values such that
they are as close as possible to the ground truth saliency
as described in the previous subsection. The features we use
include a combination of geometric features (i.e. Heat Kernel
Signature (HKS) [22], conformal factor [23], MeshSIFT [24],
SHOT [25], Gaussian curvature and off-centre bias [26]) and
existing 3D saliency models, namely Lee et al. [6], [9] and
Song et al. [7]. Here, off-centre bias simply measures the
Euclidean distance of a vertex position from the centre of the
object such that the further away from the centre, the more



salient it is considered. This is intuitive as protrusions tend to
have higher saliency values.

Let £, = (fv,1,fv,2:---, fu,n) be the feature vector con-
taining both geometry related and existing saliency estimation
results for vertex v, where N is the total number of feature
values for a vertex. We split our mesh dataset with ground truth
saliency into training and test sets. Machine learning models
are built using all the vertices of the meshes in the training set,
and then we retain test set mesh vertices for testing purpose.

For this purpose, since we have relatively limited training
data, we focus on traditional machine learning models, rather
than deep neural networks. We tried three different models:
linear least squares regression, a feed-forward neural network
and support vector regression (SVR). The least squares regres-
sion aims to work out the optimal per-feature weight wy, and
bias b such that the model best predicts the saliency values,

ie. N )
minz (Zwkfmk—i—b—sv) . 6)
v k=1

The feedforward neural network is a shallow neural network
with three layers where the input layer contains N nodes
corresponding to the input features, the hidden layer contains
10 nodes, and the output layer contains 1 node corresponding
to the predicted mesh saliency value [27]. For SVR, the
standard model is used, which takes per-vertex features as
input and predicts the saliency value for the vertex [28].

IV. EXPERIMENTAL SETUP AND RESULTS
A. Experimental Procedure

The experiments were administered within the School of
Computer Science and Informatics, Cardiff University. The
experiment was carried out in a computer vision lab space,
with an occasional reflective surface and constant close light.
The viewing distance was kept at around 60 cm. The par-
ticipants’ eye movements were recorded using a non-invasive
SensoMotoric Instrument (SMI) Red-m eye-tracker running at
a rate of 250 Hz. Gaze data was retrieved from raw eye-
tracking data obtained during the experiment using SMI’s
BeGaze™Analysis Software. For every 3D mesh this data
contains the number of fixation points, and for each fixation
point, its coordinates and duration. Fixation was captured by
SMI’s computer software using the distribution and duration-
based formula established, with minimum period of 100 ms.
The mean duration of fixations u; for a subject ¢ is:

1 n
== 7
1223 nj:1xj (7N

where n is the total number of fixations recorded over the
400 stimuli utilised in our study and x; is the duration of the
fixation j.

Participants: Forty female and twenty male members from
the School of Computer Science at Cardiff University, with
ages in the range of 20 to 39, volunteered to participate.

Design and procedure: Participants were informed that
their task in the experiment was to look at the region on the

model that they think is of most interest, and the participant
was not allowed to move their head during the experiment,
so that if there is an issue we can pause the experiment and
then recommence. The experiment took only ten minutes per
participant.

B. Eye Tracking and Mesh Saliency Ground Truth Results

In particular for ensuring that participants can concen-
trate while doing the study, we used different models from
the Stanford repository and the AIM@SHAPE-VISIONAIR
shape. Our goal is to include a variety of high-resolution
shapes (in terms of triangle counts) from benchmark datasets
to enable efficient prototyping and practical evaluation of real-
world and large-scale shape models. We select 20 shapes in
our study. This leads to 400 rendered images (20 views per
shape) at 1920 x 1080 pixel resolution. As described before,
each participant is shown 4 views of each shape, leading to a
total of 80 images. The eye tracking data of all users is then
fused to produce ground truth mesh saliency on 20 shapes. We
split the dataset into training and test sets, each containing 10
shapes. Note that although 20 shapes are not many, each shape
contains thousands of vertices, and thus it is sufficient for
training machine learning models when applied at the vertex
level.

We now show some examples demonstrating the effective-
ness of our fusion strategy for saliency from individual views.
As shown in Figure 2, the initial eye tracking data is captured
on individual views, which are then fused using our method
to produce a consistent saliency map on each mesh (with
a normalised saliency value assigned to each vertex of the
mesh). As shown, the fusion works well, with salient areas that
get a lot of attention from multiple different views enhanced
like both faces in the examples in Figure 2. Regions which
receive little attention from the participants correspond to those
boring/less distinctive areas of the model, and they have low
saliency values.

More examples of ground truth saliency maps from eye
tracking are shown in Figure 3. Similar trends are observed,
although for objects not including faces (e.g. the Falling
shape), salient regions tend to be more variable, and some
regions on the body are also relatively salient (although less
so than faces); see e.g. the Bulldog and Gargoyle shapes.

Participants paid most attention to models with visible facial
features. As shown in Figure 3, the saliency map of the
Falling mesh is rather different from those of the other models
where the head on them has a very high salience. This might
be because of the saliency values around the face greatly
outweigh any other values as each participant will look at the
face at some point. This means that there is a low salience
value for areas that are not in the facial region when the
saliency map is normalised O to 1. One way to circumvent this
would be to use a non-linear scaling to stop strong salient areas
from blocking out the rest of the shape. The other observation
is that, obviously, people first look at the most salient area of
an image. The most salient area in the case of these models
might be the head, but as participants have only 5 seconds



Fig. 2. Examples of 2D fixation maps, and the results of fusing them to form
consistent saliency maps on 3D models (rightmost column); red and yellow
are salient areas, while green and blue are non-salient areas.

Fig. 3. Examples of ground truth salient maps derived from eye tracking
data; red and yellow are salient areas, while green and blue are non-salient
areas. From left to right Falling, Bulldog and Gargoyle shapes.

to view each image, they may not have time to look at other
slightly less salient areas on the mesh. A possible solution
for this would be to reduce the exposure time of each object
and assign a higher saliency weight to fixations at the start
of a viewing so that the first objects viewed were given more
salience than a point viewed at the end of the viewing time.
This is left to explore as future work.

V. LEARNING NEW METHODS OF MEASURING 3D MESH
SALIENCY

A. Evaluation with Ground Truth Saliency Maps

Our collected ground truth saliency maps can be used to
evaluate the effectiveness of existing mesh saliency methods
in a quantitative way. To evaluate the existing methods of
measuring saliency, methods are required for comparing two
saliency maps on the same mesh, i.e. the ground truth gen-
erated by the eye tracking experiment and the saliency map
output by a saliency prediction method. The prediction method
performance is considered better if it has a closer distribution
to the ground truth.

A basic measure for the similarity between these maps is
Mean Squared Error (MSE), which is O if they are a perfect
match, and a high value if they are dissimilar. This measure is
simple, but it only works well when the absolute salient values
of two saliency maps are close. In practice, however, it is the
relative importance which is more important. For instance, if
one region is more important than another, it is hard to know

TABLE I
AVERAGE SSIM VALUE AND MSE FOR EACH EXISTING METHOD AND
OUR LEARNING BASED METHOD FOR EVALUATING THE QUALITY OF
PREDICTED SALIENCY MAPS AGAINST THE GROUND TRUTH DERIVED
FROM EYE TRACKING. ONLY TEST SET IS USED TO ENSURE FAIR
COMPARISON. FOR SSIM, LARGER IS BETTER, AND FOR MSE, SMALLER

IS BETTER.
Models SSIM | MSE
Existing | ot centre bias 0.620 | 0.020
models
Lee et al 0.629 | 0.016
Song et al. 0.751 | 0.010
Conformal factor 0.600 | 0.026
Gaussian curvature 0.616 | 0.022
Leamnt Least squares regression 0.906 | 0.004
models
Feedforward neural network 0.895 | 0.006
Support vector regression (SVR) 0.861 | 0.009

how much the salience value of the first region should be larger
than that of the second.

To address this, we also utilise SSIM which is a method for
predicting the perceived quality when measuring the similarity
between two images. The SSIM values ranges between (-1
to 1), where 1 means perfect match the reconstruct image
with original one [29] and is known to be better correlated
to perceptual similarity and less sensitive to absolute value
differences. We extend the standard SSIM defined in the image
domain to 3D mesh heatmaps. Changing SSIM to operate on
3D heat maps requires adapting the neighbourhoods of the
standard SSIM. SSIM takes a window around each pixel when
working on 2D images, but this does not work directly for
meshes due to their irregular connectivity. We therefore replace
such windows with neighbourhoods on meshes within a certain
distance to the vertex of concern. For this purpose, a smaller
neighbourhood than that used in the eye tracking mapping is
more meaningful, and we set it to 0.02 X dy,,x Where dyax 1S
the farthest distances between pairs of vertices on the mesh.

Pixels are always spaced apart uniformly and are perfectly
uniform in size, neither of which is true with vertices. So
we developed a replacement window for 3D SSIM where the
neighbourhood is defined as vertices within a set distance from
the vertex of concern, if it can be reached via vertices also
within the distance through graph traversal. This ensures that
vertices which are close in 3D space but from disjoint parts are
not included. This is essentially very similar to the remapping
neighbourhood, except that a smaller neighbourhood size (2%
of dpmax rather than 5%).

B. Evaluation Results of Existing and Our Learning based
Methods

We now apply our evaluation methodology to existing
mesh saliency methods and our learning based methods. To
ensure fair comparison, in particular between existing methods
and learning based methods, we only report the average
performance on the test set. For existing methods, we test
representative methods Lee et al. [6], Song et al. [7] and
baseline methods Gaussian curvature, conformal factor, and
off-centre bias. Quantitative evaluation on our eye tracking
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Fig. 4. Examples of saliency results: (a) ground truth, (b,c,d) our learning based methods, (e,f) existing methods and (g,h) geometry feature based baseline

methods.

based test set is reported in Table I. As can be seen, Song et
al’s method achieves better performance than other existing
and baseline methods, according to both SSIM and MSE.
Other methods tend to give similar performance, with Lee’s
results better than the three baseline methods in both metrics.

In comparison, the three variants of learning based methods
all perform better than existing methods, according to both
SSIM and MSE metrics. In general we found that least-
squares regression outperforms more complicated methods
including feedforward neural networks and SVR. This is
probably because of the relatively limited data, and the simpler
linear model avoids overfitting and generalises better to unseen
data. Our learning based method achieves 0.906 SSIM and
0.004 MSE, which are significantly better than state-of-the-art
methods (0.751 SSIM and 0.010 MSE for Song et al. [7]).

Visual comparisons of different results on two shapes are
shown in Figure 4, along with SSIM values. As can be seen,
ground truth is generally plausible, and learning based meth-
ods, in particular the one based on least-squares regression,
predict saliency maps which are more similar to the ground
truth.

VI. CONCLUSION

Estimating saliency on meshes is a fundamental tool that
benefits many downstream applications. Existing methods
largely focus on developing dedicated formulae to achieve this,
but it is difficult to fully capture perceptual importance using
these methods. In this paper, we investigate a methodology
to produce ground truth saliency maps on meshes using eye
tracking data. In particular, we fuse saliency maps from
individual views to produce a single consistent saliency map
for a given mesh. The dataset will be made publicly available.
Based on this, we further develop learning based methods that
take existing saliency prediction results and geometric features
at each vertex as input to predict the local saliency value.
Qualitative and quantitative results show that our learning
based methods, in particular the model based on least squares
regression, outperform state-of-the-art methods. In future work
we would like to build a larger dataset and evaluate the
effectiveness of more machine learning methods, including
methods based on deep neural networks. Different eye tracking
data capture protocols will also be investigated, to identify a
more suitable one in the presence of highly salient regions.
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