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Abstract—Multi-label image classification is about predicting
a set of class labels that can be considered as orderless sequential
data. Transformers process the sequential data as a whole,
therefore they are inherently good at set prediction. The first
vision-based transformer model, which was proposed for the
object detection task introduced the concept of object queries.
Object queries are learnable positional encodings that are used
by attention modules in decoder layers to decode the object
classes or bounding boxes using the region of interests in an
image. However, inputting the same set of object queries to
different decoder layers hinders the training: it results in lower
performance and delays convergence. In this paper, we propose
the usage of primal object queries that are only provided at the
start of the transformer decoder stack. In addition, we improve
the mixup technique proposed for multi-label classification. The
proposed transformer model with primal object queries improves
the state-of-the-art class wise F1 metric by 2.1% and 1.8%; and
speeds up the convergence by 79.0% and 38.6% on MS-COCO
and NUS-WIDE datasets respectively.

I. INTRODUCTION

The task of predicting the presence of visual concepts
in images is known as multi-label classification. The visual
concepts in general refer to a set of objects, but could also
refer to other visual concepts such as attributes. Multi-label
classification is difficult because of the wide range of classes
that is typically considered, the wide variety of scales in which
these classes can occur, and the complex inter-dependencies
between classes [1], [2].

The field of multi-label image classification has seen much
progress in recent years. Earlier works exploited graphical
models to model label relations explicitly [3], [4]. Then,
CNN-RNN models were proposed [5]–[7] to capture label
correlations. Later, to learn label dependencies explicitly,
graph convolutional networks were proposed [8]. Even though
significant progress has been made in multi-label image clas-
sification in recent years, systems still suffer from problems
common to recursive methods (such as modeling long-term
dependencies) or fail to capture the complex relations between
the many visual concepts involved in multi-label classification.

Transformers were first proposed in [9]. Unlike recurrent
models, transformers process data simultaneously. In case of
recurrent models, if the decoding process is interrupted the
decoder is forced to output a termination token, which will
cause the not-yet attended classes to be missed. Due to the
non-sequential nature of transformers, they do not suffer from
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Fig. 1. Comparison between the primal object queries and object
queries. Primal object queries are given directly to the first decoder
layer instead of being added as positional encodings in every decoder
layer. This leads to faster convergence and better performance.

this problem. Therefore, although they were firstly used for
various NLP tasks [10]–[12], they became also widely used
for other tasks. The first visual CNN-transformer model for a
vision task was proposed for object detection [13]. Recently,
a novel and pure transformer model that uses a sequence
of image patches as input data was proposed for image
classification [14]. Lanchantin et al. [15] proposed the first
transformer model for multi-label image classification.

Carion et al. [13] introduced the concept of object queries.
As a set of learnable positional encodings, they are added to
query and key tensors in attention modules of every decoder
layer. However, using the same set of object queries in
different decoder layers is not optimal for training due to the
different set of relations learned by each of the layers. As we
empirically demonstrate in the experimental section, it leads
to lower performance and slower convergence. Therefore, in
this paper, we introduce primal object queries that differ from
standard object queries in the way that they are input to
a transformer decoder stack (see Figure 1). Moreover, we
improve the mixup technique for multi-label classification to
achieve significantly better results.

The main contributions in this paper are:
• We introduce primal object queries that obtain better

results and yield faster convergence than standard object
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queries by 79.0% and 38.6% on MS-COCO and NUS-
WIDE datasets respectively.

• We improve the mixup for multi-label classification and
show that it results in a significant improvement.

• Evaluation shows that we improve the state-of-the-art
class wise F1 score by 2.1% and 1.8% on the MS-COCO
and NUS-WIDE datasets respectively.

II. RELATED WORK

Transformers. Transformers were first proposed in [9], and
since became the state-of-the-art approach for sequence-to-
sequence tasks such as machine translation and visual question
answering. The transformer self-attention module attends all
the sequential data at once, hence handling the long sequences
better than RNNs, which struggle with long-term dependen-
cies. A challenging aspect of transformers is the large number
of parameters they require, which require large amounts of
data to fit properly. Since such large-scale training datasets
are scarce, and an important limitation to use transformer
models in many practical applications, Devlin et al. [10]
proposed a way of training transformers in an unsupervised
manner on readily available large unsupervised text corpus,
and showed that with a simple fine-tuning procedure state-of-
the-art results could be achieved on various tasks. This led
to a wider popularization of transformer models, and usage
in areas different than the originally proposed ones, such as
image captioning [11], [12] and object detection [13]. Carion
et al. [13] introduced the new concept of object queries to
be given input for the transformer through the training. These
object queries are learned through the training, and according
to the analysis done by the authors, each object query learns to
focus on different areas of images and box sizes. Dosovitskiy
et al. [14] proposed the first pure transformer model for image
classification. They split an image into smaller patches and
convert it to a sequential data (which also consists of tokens)
to be processed by transformer encoder layers. Although they
showed that transformers can give promising results for pure
vision tasks, they still fell behind other convolutional models.
Yuan et al. [16] proposed a new tokenization system that
reduced the number of parameters and achieved comparable
results with other convolutional models. Recently, Lanchantin
et al. [15] introduced the first transformer model for multi-
label image classification. They exploited self-attention mod-
ules to learn label dependencies for the purpose of predicting
a set of labels given a set of masked label embeddings and
image features.

Multi-label Classification. Multi-label classification seeks to
predict a variable number of labels for every single image, ide-
ally capturing all the relevant visual concepts, such as objects
or attributes, that appear on the image. Traditional methods
for multi-label classification ignore label correlation, which
can help boost the performance of certain under-represented
classes. The few early works that tried to leverage label corre-
lations for multi-label classification exploited graphical models
such as Conditional Random Fields (CRFs) [3] or Dependency

Networks [4]. More recently, the idea to exploit RNN models
to capture label correlations was proposed in [17] and [5],
where the low dimensional internal state of the network was
used to model label dependencies. Wang et al. [5] combined
CNN and RNN architectures, and learned a joint image-label
embedding space to learn label dependencies. However, since
LSTMs produce sequential outputs, a fixed order was imposed
to the labels, and the model learned to predict the output
in the same order. This led to problems such as skipping
predictions for classes that appear earlier in the sequence but
less relevant in the image. Yazici et al. [7], proposed a CNN-
RNN model which they trained with an orderless loss function
to avoid the drawbacks of imposing a fixed label order in
RNN. Finally, ML-GCN [18], exploited graph convolutional
networks to capture label dependencies.
Mixup. Zhang et al. [19] proposed to blend images and their
associated labels randomly to improve generalization of the
models. It was shown that the mixup was beneficial to avoid
overconfident predictions in several tasks such as image classi-
fication [19], [20], object detection [21], text classification [20]
and semantic segmentation [22]. Verma et al. [23] proposed to
combine hidden states of paired samples in addition to their
images and labels. Islam et al. [22] conditioned the mixup on
the labels of paired samples. If the mixup is done without any
constraints, then the majority of the pairs will mostly include
the most frequent classes. To avoid the model to have a strong
bias for frequent classes, they combined images based on a
uniform distribution across categories. Wang et al. [24] is the
first work that exploited the mixup technique for multi-label
image classification. Although the authors did not report any
improvement over the baselines in case of single models, they
noted that an ensemble of models trained with mixup achieved
better results.

III. METHOD

Our method for the multi-label classification is based on a
transformer architecture. We try different strategies to assign
labels to the decoder output. In this section, we briefly
introduce some transformer concepts, explain our proposed
architecture with different losses and, finally, present our
different adaptations of the mixup technique.

A. Transformers

The main component of transformers is a self-attention
module [9] which uses a set of weights W to compute the
query (Q), key (K) and value (V ) vectors with the input vector:

Q =WQX, K =WKX, V =WVX (1)

Then, these three vectors are combined to compute the output
of the self-attention layer:

A = softmax(
QKT

√
D

)V (2)

The result of the dot product between the query and the key
is divided by the square root of the dimensionality D to have
smoother softmax values. Many encoder layers, consisting of



TABLE I
COMPARISON OF THE PERFORMANCES OF DETR, DETR* AND

T-POQ MODELS WITH DIFFERENT NUMBER OF DECODER LAYERS
ON MS-COCO.

# of decoder layers
2 3 4

C-P C-R C-F1 C-P C-R C-F1 C-P C-R C-F1
DETR 75.9 64.7 69.9 74.9 64.6 69.4 76.8 64.2 69.9

DETR* 75.9 65.9 70.5 75.9 66.1 70.7 76.5 65.4 70.5
T-POQ 76.6 66.0 70.9 76.5 66.1 70.9 73.8 67.1 70.3

a self-attention and a feed-forward neural network are stacked
in the encoder part of the network, and the output of the final
encoder layer (A) is passed to the cross attention module in
every decoder layer. The cross attention module has the same
structure as the self attention module, with the only difference
that the output of the final encoder layer is used as the key and
value vectors for every decoder layer during the forward pass,
while the query is obtained from the input of the decoder.

The input of the transformer decoder stack depends on
the task and design of the architecture. In case of an NLP
task, it might be class embeddings [12] or masked output
embeddings [9]. In case of a vision-based task, it might be
a set of object queries [13]. In [13], the object queries are
added to the query input of each decoder layer (the query
input of the first decoder layer consists of zeros as can be
seen in Figure 1). The fact that object queries are provided
to all decoder layers complicates their training: we conjecture
that the requirement to be useful at multiple hierarchical levels
(and therefore at different semantic levels) is hard to fulfill.
In order to verify this, we conduct several experiments where
we compare the approach in [13] (denominated as DETR)
with inputting unique sets of object queries to each decoder
layer (denominated as DETR*). The first two rows of Table I,
show the performance of the two models with different number
of decoder layers. DETR* obtains significantly better results
than DETR which confirms our assumption that inputting the
same set of object queries to different decoder layers is not
optimal. However, although learning a separate set of object
queries for each decoder layer improves the results, it might be
computationally redundant and not feasible when the number
of decoder layers increases.

B. Overview of architecture

Our architecture consists of two parts: a backbone that
processes the input image, and a transformer, which can be
further divided into encoder and decoder (see Figure 2).

a) Backbone: We use a convolutional neural network
to obtain a feature representation of the input image, but
since the transformer requires sequential data, we linearize the
feature map of the last convolutional layer of the backbone
network along the spatial dimensions, and use them as the
input sequence for the encoder. More precisely, let the last
convolutional layer of the CNN output a feature map of size
H ×W ×C, where H and W are the spatial dimensions, and
C the number of channels, we reshape it to HW×C to obtain
a sequence of feature vectors with dimension C.

Backbone features
H × W × C
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Fig. 2. The overall transformer architecture used in this paper.

b) Transformer encoder and decoder: In the transformer
encoder, the linearized feature map is passed through the self-
attention and linear layers, and then the result is passed to the
cross attention module of every decoder layer. The initial linear
layer reduces the dimension to D. We do not add learnable
or fixed positional encodings to encoder features since it
does not give any improvements. We attribute this to using
semantically strong features that do not require additional
spatial information for the task of multi-label classification. We
quantitatively verified that adding positional encodings is only
beneficial when features from earlier layers are used, however,
that also leads to lower results.

The input of the first decoder layer are primal object queries
which differ from the object queries proposed in [13] in the
way that they are given to transformer decoder stack. In our
model, primal object queries are given directly to the first
decoder layer instead of being added as positional encodings
in every decoder layer. In this way, we avoid the drawbacks
of the standard object queries which were mentioned in the
previous section. In Table I, we also added the results of our
method (T-POQ) and it can be seen that without the overhead
of learning separate object queries for each decoder layer
(as does DETR*) our method obtains equal or better results.
Interestingly, in the experimental section we will also show
that T-POQ obtains a significant speed-up in training when
compared to the DETR model. Finally, the number of primal
object queries is O while the dimension of the queries is D.
Then, a linear layer outputs a tensor whose shape is O × c
where c is the number of classes.

c) Training losses: Using object queries for multi-label
classification is a new concept. Previously, e.g. in CNN-RNN
models, the labels are ordered either dynamically [7] or an
imposed fixed-order is applied [5]. The forward pass is done
in a recursive way, therefore the length of the output tensor
of the RNN is bounded by the number of labels of an image
that has the most labels. However, in case of transformers, the



forward pass is not done recursively which gives the flexibility
of determining the size of the output tensor. We will consider
two ways to train transformers for multi-label classification.

Firstly, we consider the case where we align each object
query with a specific class. In this case O = c and each object
query specializes in detecting a single object class. In case of
non-existent labels, empty tokens are assigned to the object
queries that are in charge of these labels. We call this the
exhaustive model. Here is the loss equation for the exhaustive
model:

Sji =
exji∑c
i=1 e

xji
, Lexh = − 1

O

O∑
j=1

c∑
i=1

yji logSji

subject to yji ∈ {0, 1},∑
j
yji = 1 ∀ i ∈ L and

∑
j
yji = 0 ∀ i /∈ L

(3)

where yji ∈ NO×c, xji and L are the class labels, output
tensor and set of class labels, respectively. A drawback of
the exhaustive approach is that it scales linearly with the
number of classes, and might be infeasible for datasets with
many labels. However, reducing the number of object queries
requires one object query to be in charge of multiple labels,
which results in an assignment problem. Therefore, we employ
an orderless loss inspired by the one proposed in [7]. We call
this model the aligned model and it no longer requires to scale
linearly with the number of classes in the dataset:

Lalign = min
y

c∑
i=1

yji logSji

subject to yji ∈ {0, 1}, yji = 1 if l̂j ∈ L and i = l̂j ,∑
j
yji ≥ 1 ∀ i ∈ L

∑
j
yji = 0 ∀ i /∈ L

(4)

where l̂j is the class predicted by the model at object query
j. The order of the labels in y is chosen in such a way that it
gives the minimum cross entropy loss. This label assignment
problem can be solved with the Hungarian algorithm. In
addition, we impose the constraint, which was proposed in [7],
that assigns the class l̂j to object query j if l̂j belongs to L.
Therefore, the same class may be assigned to several object
queries.

C. Mixup
Mixup was proposed in [19] and was found to significantly

improve results for image classification, object detection and
NLP tasks [19]–[21]. We consider three ways of adapting the
mixup technique to the training: soft, hard and restricted hard.

To train the model, a dataset with pairs of images and
sets of labels is used. Let (I, T ) be the pairs in a batch
containing N images I = {i1, i2, ..., iN} and labels T =
{t1, t2, ..., tN}, ti ∈ {0, 1}c where c is the number of classes
in the dataset. For the soft mixup, which is the original mixup
as proposed in [19], we sample random weights from a beta
distribution λ ∼ Beta(α, α), α ∈ (0,∞) to use them to mixup
images and their associated labels:

im = λii + (1− λ)ij
tm = λti + (1− λ)tj

(5)

where ii and ij are randomly selected images, and im is the
mixed up version.

The soft mixup makes sense for single class image classifi-
cation where the last layer is typically a softmax. However, for
multi-label image classification multiple labels can be present
in the image. Therefore, we use the mixup proposed in [24]
and denominate it as hard mixup where the union of labels is
taken instead of the average. As proposed by the author, we
alternatively enable and disable the application of mixup in ev-
ery epoch and we use the ratio of 0.5 : 0.5 for images. In order
to apply the mixup in all epochs and have both mixed and non-
mixed images in a batch we consider the restricted hard mixup
as a final setup, where we apply the mixup in every epoch and
restrict it by applying it only to half of the images in the batch.
We use the last half of the batch to mix with the first half.
For instance, if we set the batch size to 4, after the mixup the
images and labels become I = {(i1+i3)/2, (i2+i4)/2, i3, i4}
and T = {t1 ∪ t3, t2 ∪ t4, t3, t4} respectively.

IV. EXPERIMENTS

Datasets and setting. We evaluate our models on MS-COCO
[25] and NUS-WIDE [26] datasets. MS-COCO consists of
82,081 training and 40,137 test images for 80 object cate-
gories. NUS-WIDE consists of 269,648 images with a total
number of 5,018 unique labels. However, annotations for 81
labels are more trustworthy and used for evaluation. After
removing images that do not belong to the 81 labels, 209,347
images remain.
Evaluation metrics. We use per-class and overall precision,
recall and F1 scores. For the MS-COCO, we also report the
mean average precision (mAP) score.
Network training. The number of object queries is set to
25 for all datasets. The internal dimension of the transformer
is 512. The backbone network, which is pre-trained on Ima-
geNet [27], uses an SGD optimizer with learning rate 0.001
and momentum 0.9. The rest of the model is trained with the
ADAM optimizer with a learning rate 0.0001 for 40 epochs.
The batch size is 32, and random affine transformations and
contrast changes are applied as data augmentation. The batch
norm layers in the backbone are frozen during the training1.

A. Ablation

All the ablation studies are done on MS-COCO dataset. and
are repeated three times. The final result is the average of the
three experiments. For validation we use 25% of training data
and the rest as train set. The snapshot that gives the highest
score on the validation set is evaluated on the test set. The
input image size is 288. Unless stated otherwise, the used
transformer model is the aligned model.

In Table II, LSTM and transformer models with different
encoder and decoder layers are compared. The LSTM model is
trained with an orderless loss [7] and has the same backbone
and hidden size as the transformer model. From the results
it can be seen that adding encoder layers does not yield

1https://github.com/voyazici/visual-transformers-classification

https://github.com/voyazici/visual-transformers-classification


any significant improvement. When we evaluate the attention
maps generated by the self-attention module in the encoder,
unlike in [13], the encoder does not separate instances which
is not crucial for multi-label classification unlike for object-
detection. On the other hand, more decoder layers do lead to
improvement in the recall metric. Moreover, our transformer
model slightly increases the total number of parameters and
computational cost (55.2M and 27.1 GFLOPS) compared to
the backbone model (44.6M and 25.9 GFLOPS).

TABLE II
COMPARISON OF LSTM AND DIFFERENT TRANSFORMER

MODELS.

Model # of enc. # of dec. mAP C-P C-R C-F1 O-P O-R O-F1
LSTM - - 75.3 76.2 66.7 71.1 78.8 71.3 74.9
Trans. 0 1 78.0 79.6 67.9 73.3 81.8 71.9 76.5
Trans. 1 1 77.6 77.9 68.8 73.1 80.2 72.6 76.2
Trans. 1 2 78.3 79.6 68.2 73.5 80.8 72.4 76.3
Trans. 2 2 78.2 78.2 69.3 73.5 80.2 73.1 76.5
Trans. 2 3 77.9 77.4 69.6 73.3 79.3 73.6 76.4

TABLE III
SUBTRACTION OF LSTM SCORES FROM TRANSFORMER SCORES

ON DIFFERENT NUMBER OF LABELS PER IMAGE.

Number of labels per image
1 2 3 4 5 6 7 8 9 +10 Avg

precision 2.1 1.5 1.5 2.4 1.3 1.8 1 -0.5 0.7 0.0 0.8
recall 0.5 1 1.1 1.7 1.2 1.5 1.2 2 2.5 2.1 1.7

F1 1.5 1.3 1.3 2 1.3 1.6 1.1 1.1 1.9 1.5 1.5

In Table III, we compare the performance of the LSTM
and transformer model (the one with one encoder and two
decoder layers) on images that have different number of
labels. The values are the subtraction of average LSTM scores
from average transformer scores. When the number of labels
increases, the transformer model misses fewer classes that
leads to fewer false negatives and higher recall.

In Table IV, aligned and exhaustive models (one encoder
and two decoder layers) are compared. The results of the
models are comparable. However, for the comparison with the
state-of-the-art models, we will use the aligned model. It is a
more compact model and the overhead cost of the alignment
step (0.9 ms per image) is negligible. Also in Table IV,
different mixup setups are compared. The α value for the
soft mixup is 0.4. Mixup improves the results considerably.
The best result is obtained with the restricted hard mixup.
Higher precision and mAP scores show that the restricted hard
mixup model has more confident predictions. We attribute the
superiority of the restricted hard mixup over the soft mixup to
soft labels being detrimental for modelling label correlations;
and the superiority over the hard mixup to lower variance

TABLE IV
COMPARISON OF EXHAUSTIVE AND ALIGNED MODELS AND

MIXUP METHODS.

mAP C-P C-R C-F1 O-P O-R O-F1
Exhaustive 78.3 77.5 69.5 73.2 79.8 73.3 76.4

Aligned 78.1 77.6 69.4 73.3 79.9 73.3 76.4
Aligned + soft mixup 78.6 79.1 69.8 74.2 80.9 73.7 77.1
Aligned + hard mixup 79.0 79.7 69.4 74.2 81.4 73.3 77.1

Aligned + restr. hard mixup 79.6 80.2 69.7 74.6 82.1 73.5 77.5
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Fig. 3. Comparison of the proposed and DETR approaches with
different number of decoder layers on MS-COCO.

during the gradient update due to having mixed and non-mixed
samples in the same batch.

B. Object Queries

In Figure 3, we compare our primal object queries with
the object queries in DETR [13]. We show the change of C-
P, C-R and C-F1 metrics with different number of decoder
layers. For simplicity, we do not employ the mixup and the
image size is 224 × 224. We set the learning rate of the
backbone to 0.0001 for the DETR model to make the model
converge during training. It can be seen that our approach
yields significantly higher C-F1 scores in every setup. Also,
with more decoder layers it achieves higher recall. In addition,
the model with one decoder layer already performs comparable
with the models that have more decoder layers. On the other
hand, the model with the DETR approach requires at least
two decoder layers to achieve comparable performance. We
attribute this superiority to the residual connection after the
cross attention module which enables the propagation of our
primal object queries to the next layer. We empirically confirm
this by disabling the residual connection and obtaining the
same results as the DETR model in the case that the number of
decoder layers is one. The same fact causes 79.0% and 38.6%
faster convergence on MS-COCO and NUS-WIDE datasets
respectively. In order to compare the convergence between the
two models, we determine the epoch number at which C-F1
stops improving for both models. Then, we calculate the per-
centage change of the epoch number for setups that have up to
three decoder layers. Finally, we average the percentages from
different setups to get the relative change in the convergence
speed. In Figure 4, the DETR model starts to converge much
later than our model (the setup with three decoder layers).
Moreover, due to the lack of the propagation of the object
queries, the DETR model starts from a significantly lower
point compared to our model. Consequently, when we compare
the best models, we achieve improvements over the DETR
approach by 1.2%-1.5% in all metrics.

Next, we analyze what the primal object queries of the
aligned model learn when they must account for multiple
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recognizes a subset of classes.

classes with the orderless loss. In Figure 5 (darker shades
indicate higher values), we display the normalized counts of
the predicted classes for each object query. Each object query
learns to recognize a subset of classes. Since each of them
can only make one prediction during one forward pass, the
subsets consist of classes that are not likely to exist together.
For example, the fourth object query learns to recognize bear,
cow, suitcase, and wine glass.

C. Comparison with the SOTA

We compare our results with several recent models: CNN-
RNN [5], SR CNN-RNN [6], Chen et al. [28], Li et al. [29] and
PLA [7] are models that include RNNs either to model label
relations or recursively generate attention maps. SRN [30]
proposes a Spatial Regularization Network that generates
attention maps for all labels. ACfs [8], proposes a two-branch
network with an original image and its transformed image as
inputs and imposes an additional loss to ensure the consistency
between attention maps of both versions. DER [31] proposes to
train a detection model in three steps in which it learns class-
aware attention maps, models label correlations explicitly and
measures similarity between label embeddings. ML-GCN [18],
exploits graph convolutional networks to capture label depen-
dencies. C-Tran [15] is the only transformer model that we
compare with. It exploits self-attention layers in a transformer
encoder to learn label correlations given image features and
a set of masked label embeddings and does not include any
transformer decoder layer unlike our model. For MS-COCO

TABLE V
COMPARISON WITH STATE-OF-THE-ART ON MS-COCO.

Methods Image
size mAP C-P C-R C-F1 O-P O-R O-F1

SRN [30] 224 77.1 81.6 65.4 71.2 82.7 69.9 75.8
ACFs [8] 288 77.5 77.4 68.3 72.2 79.8 73.1 76.3
PLA [7] 288 - 80.4 68.9 74.2 81.5 73.3 77.1

ML-GCN [18] 448 83.0 85.1 72.0 78.0 85.8 75.4 80.3
DER [31] 448 82.9 84.7 71.6 77.6 86.0 74.9 80.0

C-Tran [15] 576 85.1 86.3 74.3 79.9 87.7 76.5 81.7
T-POQ 224 77.9 79.5 67.4 73.0 81.5 71.3 76.1
T-POQ 288 80.6 80.9 70.9 75.6 82.5 74.4 78.2
T-POQ 448 84.5 82.9 75.8 79.2 84.4 78.4 81.3
T-POQ 576 86.2 84.1 77.9 80.9 85.0 80.6 82.8

TABLE VI
COMPARISON WITH STATE-OF-THE-ART ON NUS-WIDE.

Methods C-P C-R C-F1 O-P O-R O-F1
CNN-RNN [5] 40.5 30.4 34.7 49.9 61.7 55.2
Chen et al. [28] 59.4 50.7 54.7 69.0 71.4 70.2

SR CNN-RNN [6] 55.7 50.2 52.8 70.6 71.4 71.0
Li et al. [29] 44.2 49.3 46.6 53.9 68.7 60.4
LSEP [33] 66.7 45.9 54.4 76.8 65.7 70.8
PLA [7] 60.7 52.4 56.2 72.0 72.8 72.4
T-POQ 66.0 52.7 58.6 74.7 71.8 73.2

SRN [30] 65.2 55.8 58.5 75.5 71.5 73.4
DER [31] 64.2 57.9 60.9 75.5 73.0 74.2

T-POQ 66.5 56.0 60.8 75.1 73.2 74.1
T-POQ* 66.8 57.8 62.0 75.6 74.3 74.9

experiments ResNet-101 architecture is used for the backbone,
and for NUS-WIDE we run experiment with both ResNet101
and VGG16. For the comparison with SOTA models, we
use the aligned transformer model with one encoder and two
decoder layers. We also employ the restricted hard mixup.

We outperform all the state-of-art on MS-COCO (see Ta-
ble V). The performance superiority is more apparent in the
recall metrics, since the transformer model is less likely to
miss classes. The results on the NUS-WIDE dataset can be
seen in Table VI. The results on the top part of the table use
the split proposed by [32] with a VGG16 backbone, while the
ones on the lower part use the original split and a ResNet-101
backbone. For the T-POQ* model, we resize the input image
to 448× 448 to make the comparison fair with the DER [31].
For the T-POQ model, we resize it to 224× 224 to make the
comparison fair with SRN [30]. We surpass all other models,
especially in the class-wise metrics which are more relevant,
since NUS-WIDE is an unbalanced dataset.

V. CONCLUSIONS

We introduced the primal object queries that achieved
significantly better results and a large speed-up of training
convergence for both MS-COCO and NUS-WIDE datasets.
Our model is unique in that it achieves to learn long-term
dependencies, adapts and integrates the mixup technique for
multi-label classification successfully, and obtains state-of-the-
art results for multi-label classification on the MS-COCO and
NUS-WIDE datasets by a large margin.
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