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Fig. 1: Example of high speed HDR video generation using video interpolation. From a sequence of alternating exposure LDR
frames at T = 0, 1, 2, 3, we generate multiple intermediate HDR frames between T = 1 and T = 2. Video frame interpolation
allows us to augment the dynamic range at each timestamp, and recursively upscale the video frame-rate manifold. Our method
can generate high quality HDR videos at arbitrarily high frame rates. More results are presented in the supplementary video.

Abstract—Due to hardware constraints, standard off-the-shelf
digital cameras suffers from low dynamic range (LDR) and low
frame per second (FPS) outputs. Previous works in high dynamic
range (HDR) video reconstruction uses sequence of alternating
exposure LDR frames as input, and align the neighbouring
frames using optical flow based networks. However, these meth-
ods often result in motion artifacts in challenging situations. This
is because, the alternate exposure frames have to be exposure
matched in order to apply alignment using optical flow. Hence,
over-saturation and noise in the LDR frames results in inaccurate
alignment. To this end, we propose to align the input LDR frames
using a pre-trained video frame interpolation network. This
results in better alignment of LDR frames, since we circumvent
the error-prone exposure matching step, and directly generate
intermediate missing frames from the same exposure inputs.
Furthermore, it allows us to generate high FPS HDR videos by
recursively interpolating the intermediate frames. Through this
work, we propose to use video frame interpolation for HDR video
reconstruction, and present the first method to generate high
FPS HDR videos. Experimental results demonstrate the efficacy
of the proposed framework against optical flow based alignment
methods, with an absolute improvement of 2.4 PSNR value on
standard HDR video datasets [1], [2] and further benchmark our
method for high FPS HDR video generation.

Keywords—Computational Photography, High Dynamic
Range, Video Processing

I. INTRODUCTION

Digital videos are extremely rich sources of information that
can convey meaningful stories through the lens of easily acces-
sible and portable handheld cameras devices. Two roadblocks
stand in the way of achieving this full potential - low dynamic
range and sub-optimal frame rates. Due to limits in memory
resources of the digital sensors, standard off-the-shelf cameras
can capture only a narrow spectrum of light intensity levels
(dynamic range) in a natural scene and only at limited frame
rate.

Low dynamic range of standard camera sensors leads to
loss of pixel information in the high and low illuminance
regions of a scene, resulting in overexposed or underexposed
images. And low frame rate cameras are unable to capture the
swift movements of a scene and lose temporal precision. High
speed (FPS) HDR videos can therefore widely benefit vision
systems for autonomous vehicles, movie production, hand-held
cameras for recording personal moments, and much more.

Recent works have explored many variations in convolu-
tional neural networks (CNNs) for reconstructing artifact-free
HDR images from multi-exposure bracketed images [3], [4],
[5], [6] and even from single exposure LDR input images
[7], [8], [9], [10]. These methods have been able to perform

ar
X

iv
:2

21
0.

04
42

9v
1 

 [
ee

ss
.I

V
] 

 1
0 

O
ct

 2
02

2



exceedingly well and generate high quality HDR images. The
problem of HDR video reconstruction has however not been
sufficiently explored, except for a few works [11], [12], [13],
[14], [15]. Mainly all the previous works follow a common
approach of matching the exposure of neighbouring frames to
perform image alignment, and merging the aligned frames to
generate an HDR video. Due to the alternating exposure nature
of the source LDR frames, the high exposure frames generally
have oversaturated regions and the low exposure frames have
high frequency noise. Therefore, even after exposure matching,
images have missing regions, which results in inaccurate
alignment of the LDR images. This results in motion blur
in the final HDR video.

In this work we show how in the right setting, HDR recon-
struction can benefit from synthesising intermediate frames
using video frame interpolation. We propose a novel approach
for augmenting dynamic range by generating intermediate
alternating exposure frames and merging them using an
attention-based merge network. The pre-trained video inter-
polation network transfers knowledge from large scale pre-
training on high FPS video datasets, and significantly improves
motion compensation. This not only facilitates better HDR
video synthesis, but can also be used to recursively increase
the frame-rate of the generated HDR videos during inference.

So far, generating high FPS HDR videos has only been
possible using event cameras [16] [17]. However, they suffer
from low spatial resolution, and are very expensive and
therefore less accessible. Our approach, however, can be used
to convert an alternating exposure video captured from off-
the-shelf cameras into a high FPS HDR video.

In summary, our key contributions are:
1) We present a novel HDR video reconstruction frame-

work for augmenting dynamic range by interpolating
LDR video frames, instead of relying on error-prone
exposure matching and image registration techniques for
image alignment.

2) We present the first deep learning framework for HDR
video frame interpolation, which can generate high res-
olution HDR videos at arbitrarily high frame-rates.

3) We present both quantitative and qualitative experiments
to validate the superiority of the proposed HDR video
generation method at both standard and high frame-rates.

II. RELATED WORKS

a) HDR imaging: HDR image generation has been
extensively studied in the last few decades. Two major ap-
proaches have been adopted - 1) motion pixel rejection ([18],
[19], [20], [21]) and 2) image alignment before merging ([22],
[23], [24], [25], [26]). However these approaches either lose
important information, when rejecting pixels, or fail to account
for large motions in challenging cases, while performing image
alignment. In the last few years, many deep convolutional neu-
ral network (CNN) architectures have been utilised to compose
high quality HDR images. Methods like [3], [4], [6], [27],
[28], [8], [29] have been successful in generating high quality
HDR images using multi-exposure input images and have

been able to outperform classical approaches. The abilities
of these deep networks have also been extended to generate
decent HDR images from single LDR images [7], [30], [31],
[32], [9], [10], [33], [34]. Recently, an attention-based network
was proposed by [6] to eliminate motion discrepancies among
multi-exposure images with large displacements to generate
ghosting-free HDR images.

b) HDR video generation: Pioneer works in HDR video
reconstruction, such as [11], [12] and [13], generated HDR
video frames from alternating exposure input by using classi-
cal flow based approach to align neighbouring images to the
reference image. [14] proposed to avoid exact correspondence
estimation and use a maxium aposteriori estimation (MAP)
resulting in superior performance over flow based methods.
This process, however, entails heavy computation load. Some
works like [35], [36] focus on generating HDR videos from
singly exposed LDR videos. These methods exploit single
image HDR generation methods and extend them to work
with videos. Lately, works like [37], [38], [39] solve a closely
related problem of SDRTV-to-HDRTV where HDR video
is generated with HDR display in pixel domain unlike the
standard LDR to HDR video generation in linear domain.

Recently, [15] proposed a deep CNN to generate HDR
videos from alternating exposure LDR sequences. They were
able to outperform existing methods and reduce the processing
time by several orders using a CNN based flow-based network
followed by an HDR merge network. Their merge network
predict the weights of input LDR images to merge. Their
approach is, however, unable to generate good results in chal-
lenging conditions with complex motion and high saturation
(see Figures 6 and 7). Authors of [40] used the same flow and
HDR merge network proposed by [15] and add deformable
convolution module to improve the alignment.

In contrast to previous works, we propose to replace image
alignment and registration based motion compensation with
video frame interpolation which is used to generate alternate
exposure images at each timestamp. Then, we merge the im-
ages using an attention-based merge network that synthesises
HDR images from scratch instead of predicting weights of the
input images.

III. METHOD

A. Overview

Given a video sequence of alternating exposure LDR im-
ages, IH1 , IL2 , IH3 , IH4 , .., IHn , our goal is to generate cor-
responding ground truth HDR video sequence, H1, H2, H3,
H4, .., Hn. Here IHt and ILt denote the high and low exposure
LDR images respectively at time step T = t.

Having a triplet of consecutive alternating exposure images
[IHt−1, ILt , IHt+1], the middle one being used as the reference,
we aim to generate an HDR image Ĥt that is aligned with
the reference LDR frame at time T = t. To achieve this, we
require both the high and low exposure frames at the reference
timestamp. Since we already have the reference image, ILt
at the base exposure, we artificially generate the alternate
exposed image at the same instance t, i.e. ÎHt . We do so



Fig. 2: Overview of the proposed method

by using a video frame interpolation network to generate ÎHt
from the similarly exposed input neighbouring frames, IHt−1

and IHt+1. Now that we have two alternately exposed images
at time T = t, we propose to fuse them using an attention-
based HDR merge network to generate an HDR image Ĥt.
The end-to-end framework can be visualised in Figure 2.

B. Video frame interpolation and HDR merge network

For synthesising intermediate frames, we use the Depth
Aware Video Interpolation (DAIN) method [41]. DAIN is a
deep network that leverages depth information to formulate
occlusion reasoning. This allows it to emphasise sampling of
closer objects and facilitates robust frame interpolation. After
generating an intermediate frame, the next part of the process
is to merge the reference and the interpolated frame using an
attention-based HDR merge network.

Attention networks for HDR reconstruction have proven to
be state-of-the-art for learning attention maps to guide HDR
image generation [6]. These learned soft attention maps are
adept in dealing with misaligned LDR images and also help in
picking appropriately exposed, unsaturated regions from each
exposure variant.

The authors of [6] generate attention for high and low
exposure images with respect to a reference exposure image.
We instead do so in an alternate exposure setting. as shown
in Figure 3, we generate attention directly between the high
and low exposure images. We learn two attention units for
attending to high exposure and low exposure images with
respect to each other, and use that information to drive HDR
reconstruction in a way that reduces saturation and alignment
artifacts. For more details on DAIN and attention based HDR
merge network, we refer the interested readers to [41] and [6].
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Fig. 3: Architecture of the attention-based HDR merge
network (HDRV). Given two alternate exposure LDR images,
we first use the attention network to generate attention maps.
These maps are then applied on the extracted features of the
input LDR image. After concatenating the attention applied
features and originally extracted features, these are propagated
to the deep merge network.

C. High FPS Video Generation

In this section, we explore how the aforementioned net-
works can come together to generate high FPS HDR videos
during inference. For example, to generate an intermediate
HDR frame at time T = 2.5, we first generate the LDR images
of the missing exposure at time T = 2 and T = 3 as shown
below.

ÎH2 = finterp(I
H
1 , I

H
3 ) (1)

ÎL3 = finterp(I
L
2 , I

L
4 ) (2)

Now we have both exposure images at time T = 2, i.e. (ÎH2 ,
IL2 ) and T = 3, i.e (IH3 , ÎL3 ). We can use similar exposure
frames at both instances (ÎH2 , IH3 and IL2 , ÎL3 ) to generate
intermediate frames of both exposures at T = 2.5, as shown
below.

ÎH2.5 = finterp(Î
H
2 , I

H
3 ) (3)

ÎL2.5 = finterp(I
L
2 , Î

L
3 ) (4)

We can then merge the generated intermediate LDR frames
(IH2.5 and IL2.5) to obtain the final HDR image, Ĥ2.5 at time
T = 2.5, as shown below.

Ĥ2.5 = fHDR(Î
H
2.5, Î

L
2.5) (5)

This procedure can be extended to generate intermediate
HDR frames recursively and can thus increase the frame-rate
of HDR video.

IV. IMPLEMENTATION DETAILS

A. Dataset

The aforementioned network is trained on two publicly
available HDR video datasets - [1] (13 scenes) and [2] (8
scenes). Just like [15], we reserve four scenes for the test set -
CAROUSEL FIREWORKS, FISHING LONGSHOT, POKER
FULLSHOT, and POKER TRAVELLING SLOW-MOTION.
We prepare the dataset using the same approach described
in [15]. From three consecutive HDR frames we generate 3
LDR images in an alternating exposure setting, with exposures



Fig. 4: HDR video frames generated from the proposed approach.

separated by one, two, and three stops. Where we choose
a low exposure time randomly selected from a base high
exposure. The HDR image is delinearised using γ = 2.2.
We create randomly cropped patches from each video of size
256×256. We also apply geometric transformations like 90
degrees rotation and flipping to augment the training data.
Training data consists of about 21000 patches.

B. Loss functions

We calculate an L1 loss between the tonemapped generated
HDR frame and the tonemapped ground truth HDR frame. It
is imperative to tonemap the HDR images before calculating
the loss because HDR loss is likely to be misrepesented due
to the dominance of the highly illuminated regions in images
with higher dynamic range.

As suggested by [3], we use µ law for tonemapping because
of it’s differentiable nature. µ law brings the HDR data in the
log domain, as shown below.

T (Ĥt) =
log(1 + µĤt)

log(1 + µ)
(6)

Here, T represents the tonemapping function and µ repre-
sents the amount of compression to be applied. We set µ as
5000 for our implementation.

C. Training strategy

We incorporate the following settings for training the HDR
video network. For generating the intermediate LDR frames,
we incorporate DAIN [41] as the video interpolation network,
pre-trained on Vimeo90K dataset [42]. We only train the HDR
merge network while keeping DAIN freezed. We use AdaMax
optimizer [43] with β1 and β2 as 0.9 and 0.999 with the initial
learning rate set to 5e-4. We trained the model for 40 epochs,
with a batch-size of 6. It takes about 50 hours to train the
model on an Nvidia RTX 5000 GPU. After 30 epochs the
learning rate is reduced by half. At inference, it takes 5.6
seconds to generate one HDR frame of size 1900x1060.

V. EXPERIMENTS

We categorise the experiments into two parts (i) HDR
video synthesis and (ii) High FPS HDR video synthesis. In
the first subsection, we provide quantitative and qualitative
comparisons against [15] for HDR video synthesis. In the
second subsection, we evaluate our method for high FPS
HDR video generation. We use three standard metrics for
quantitative evaluation of the synthesized HDR data - PSNR,
HDR-VDP-2 [44], HDR-VQM [45]. PSNR is calculated on the
tonemapped HDR images using Equation 6, while the HDR-
VDP-2 and HDR-VQM scores are calculated directly on the
HDR frames. For displaying, we tonemap all the HDR images
using the method of [46] with modifications as suggested by
[11].

A. Evaluation of HDR video synthesis at standard frame rates

We evaluate our model on three seconds of the four publicly
available HDR video sequences from [1], as described in
section 4. For quantitative evaluation, we report the results of
[15] on the generated output provided by the authors. For fair
comparison, we choose the base high exposure of our input
similar to that of [15] and the low exposure to be separated
by three stops.

PSNR HDR-VDP-2 HDR-VQM

Kalantari[15] 40.67 74.15 85.51

Ours 43.03 79.76 89.58

TABLE I: Quantitative comparison of HDR video generation
at ground-truth frame-rate.

1) Quantitative comparison: A quantitative comparison
against the method of [15] for HDR video reconstruction
has been presented in Table I. All the values are computed
for each individual frame and averaged over all the frames
of the four video sequences. A notable improvement over
the previous method is observed across all the three metrics.



A higher PSNR score implies a higher pixel-level accuracy,
indicating that the generated HDR frames are properly aligned
with the ground truth HDR frames. HDR-VDP-2 and HDR-
VQM scores implies that the generated frames are visually
pleasing and temporally coherent.

Fig. 5: Comparison for HDR video reconstruction on the
POKER FULLSHOT scene. Kalantari et al’s method [15]
is unable to register the fast moving hand with the glass. In
contrast, our method reconstructs it accurately.

Fig. 6: Comparison for HDR video reconstrution on the
POKER FULLSHOT scene. Shape of the cards is distorted
in the image generated by Kalantari et al’s method [15]. On
the contrary, our approach accurately reconstruct the edges of
the cards.

Fig. 7: Comparison for HDR video reconstruction on the
CAROUSEL FIREWORKS scene. Due to the fast motion of
lady, Kalantari et al’s method [15] is not able to registered the
hand. On the contrary our method generates the image very
close to ground truth.

2) Qualitative comparison: We argue that by completely
eliminating the image registration process and by simply
interpolating the intermediate frames, we are able to deal with
large motions. As seen in Figure 5, Kalantari et al [15] is not
able to register the fast moving hand of the man. Also the glass

in his hand has not been synthesised accurately. In Figure 6,
the cards are distorted. Similarly, in Figure 7, hand of the lady
has not been reconstructed properly. This blur is a result of
inaccuracies of the image alignment process in scenes with
large motions. Our method, however, is able to preserve the
boundaries and spatial details more accurately and generate
sharp images, with minimum motion blur. More comparisons
and qualitative results are presented in the supplementary
video.

B. Evaluation of High FPS HDR Video Synthesis

To evaluate the proposed method for high FPS video
generation, and validate the generality of using video frame
interpolation for HDR video generation. We study the effects
of three video frame interpolation alternatives when combined
with our attention-based HDR merge network (HDRV) on high
frame rates.

1) Quantitative Evaluation: In this section, we review
the performance of our model in synthesising high FPS
HDR video from a sequence of alternating exposure LDR
frames. For this evaluation, we use the POKER TRAVELLING
SLOW-MOTION scene because this is the only high FPS
HDR video scene in the existing datasets. We report the
PSNR, HDR-VDP-2 and, HDR-VQM scores on six seconds
of this scene, for 1x, 2x, 4x, and 8x frame rates. We compare
the performance of the three video interpolation networks
combined with our HDRV network. 1) DAIN [41], 2) Super
SloMo [5] and, 3) Modified flow network of [15]. The flow
network proposed in [15] uses three input images and generate
two flow maps to align both the first and the third image to the
reference image. We modify it into an interpolation network.
To do so, we predict two output flow maps, and generate a
visibility mask to get the final interpolated image as done
in Super SloMo [5]. We then use these pre-trained networks
along with our HDR merge network.

FPS = 1x FPS = 2x FPS = 4x FPS = 8x

Kalantari[15] 44.07 40.41 37.01 33.54

Super SloMo[5] 45.42 43.33 40.18 35.57

DAIN[41] 46.54 45.26 42.22 37.82

TABLE II: PSNR scores on High FPS HDR video synthesis of
three video frame interpolation networks combined with our
HDRV network at FPS=1x, 2x, 4x, and 8x

FPS = 1x FPS = 2x FPS = 4x FPS = 8x

Kalantari[15] 76.35 69.67 61.2 56.4

Super SloMo[5] 81.07 75.56 68.6 61.25

DAIN[41] 84.27 80.51 73.59 65.46

TABLE III: HDR-VDP-2 scores at FPS=1x, 2x, 4x, and 8x

As seen in the Tables 2, 3, and 4, we are able to generate
high frame-rate HDR videos from all the three models with
good accuracy. We achieve the best results on (DAIN +



Fig. 8: Our results on the POKER TRAVELLING SLOW-MOTION scene at FPS = 8x. We generate seven HDR
intermediate frames between two input frames at T = 0 and T = 8. As can be seen, the interpolated HDR frames do not
suffer from any artifacts or motion blur.

FPS = 1x FPS = 2x FPS = 4x FPS = 8x

Kalantari[15] 84.11 82.51 80.76 77.89

Super SloMo[5] 84.94 83.88 82.43 80.09

DAIN[41] 86 85.58 84.59 82.74

TABLE IV: HDR-VQM scores at FPS=1x, 2x, 4x, and 8x

HDRV) model. As we move towards higher FPS, we see a
drop in the accuracy. This is due to the fact that interpolating
intermediate frames gets more difficult with more sparsely
sampled input. However, the videos generated are temporally
coherent and spatially sharp even for 8x frame rate upscaling.
As seen in Figure 8, seven intermediate frames have been
generated between the input frames at T = 0 and T = 8, using
(DAIN+HDRV) upscaling the frame rate to 8x. The generated
frames have smooth motion and are temporally coherent. This
experiment validates the generality of using video interpolation
for HDR video synthesis.

Fig. 9: Comparison for high FPS HDR video generation
on the CAROUSEL FIREWORKS SCENE. We show the
results on 4x upscaled frame-rate by generating three interme-
diate frames between T = 0 and T = 1.

2) Qualitative Evaluation: For qualitative evaluation, we
show our results on the POKER FULLSHOT and CAROUSEL
FIREWORKS scenes by upscaling the frame-rate to 4x. These
are low frame rate input videos with fast motion. It can be
seen in Figure 9 that (DAIN+HDRV) is able to interpolate
the fast moving swing of the ride with minimum motion blur.

Fig. 10: Comparison for high FPS HDR video generation
on the POKER FULLSHOT SCENE.

However, the interpolation networks of Kalantari et al. [15]
and Super SloMo [5] produce severe artifacts in large motions.
In Figure 10, we can see that the hand is distorted in Kalantari
et al. approach, while Super SloMo and DAIN generate much
better interpolations. This experiment suggests that the quality
of high FPS HDR video synthesis heavily relies on the video
frame interpolation model. More results on HDR video frame
interpolations at very high FPS upto 8x are presented in the
supplementary video.

VI. CONCLUSION

We present a novel HDR video reconstruction framework
from a sequence of alternating exposure LDR frames. We
propose to use video frame interpolation to generate the miss-
ing exposure frames instead of relying on image registration
techniques. We show that any video interpolation model pre-
trained on large scale high FPS LDR video datasets can
be directly used to reconstruct an HDR video. We validate
its generality by performing extensive experimentation using
various video interpolation methods. Moreover, we extend the
proposed framework to generate high FPS HDR videos by
recursively interpolating the LDR frames. This is the first
method to generate high FPS HDR videos from off-the-shelf
digital cameras.
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