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Abstract—Over the last few years, Unsupervised Domain
Adaptation (UDA) techniques have acquired remarkable im-
portance and popularity in computer vision. However, when
compared to the extensive literature available for images, the
field of videos is still relatively unexplored. On the other hand,
the performance of a model in action recognition is heavily
affected by domain shift. In this paper, we propose a simple and
novel UDA approach for video action recognition. Our approach
leverages recent advances on spatio-temporal transformers to
build a robust source model that better generalises to the target
domain. Furthermore, our architecture learns domain invariant
features thanks to the introduction of a novel alignment loss
term derived from the Information Bottleneck principle. We
report results on two video action recognition benchmarks for
UDA, showing state-of-the-art performance on HMDB<«UCF,
as well as on Kinetics—NEC-Drone, which is more challenging.
This demonstrates the effectiveness of our method in handling
different levels of domain shift. The source code is available at
https://github.com/vturrisi/UDAVT.

I. INTRODUCTION

The standard setting for visual learning tasks relies on
the assumption that training and testing data belong to the
same domain, i.e., they are drawn from the same distribution.
However, in practice, this often does not hold, as many real-
world scenarios require models to be tested on very different,
yet related, domains. This often leads to poor performance
in the domain of interest, especially when the domain shift
is significant. To address this issue, Unsupervised Domain
Adaptation (UDA) techniques have been developed with sev-
eral approaches achieving remarkable results on image-related
tasks. However, much less attention has been devoted to
videos, which poses a greater challenge given the significant
increase in complexity that arises when the temporal aspects
come into play.

Action recognition [1]], [2], [3l], [4] is one of the most
popular tasks when it comes to video analysis. This task is
particularly challenging due to some inherent characteristics
of sequential visual data, mostly related to the significant
variability that arises due to the many different ways in which
a certain human activity can be carried out, with variations in
terms of speed, duration, relative movement between camera
and actor(s), occlusion, etc. These issues, along with many
others, have been tackled in several previous works [1], [2],
[3], [4] that demonstrated remarkable performance exploiting

different deep architectures. Nevertheless, many open prob-
lems still exist when domain shift arises in video analysis.
In this work, we tackle the problem of UDA in video action
recognition by proposing a novel approach that exploits a new
information theoretic-based domain alignment loss on top of
a transformer-based feature extractor. In particular, our archi-
tecture is built upon a shared encoder derived from the STAM
[S] visual transformer coupled with a domain alignment loss
inspired by the Information Bottleneck (IB) principle [6]], [7].
The encoder is composed of a spatial transformer, e.g. ViT [8],
that processes individual frames and a temporal transformer,
e.g. a simple multi-layer transformer as in [9], that aggregates
spatial features to process a whole video. In this paper, we
propose a two-phase process for training, where we first fine-
tune the whole transformer using only source data as in [10],
and then we freeze the spatial transformer and fine-tune only
the temporal one with the novel IB loss, which promotes
domain distribution alignment. The seamless integration of the
transformer with our adaptation strategy leads to improved
recognition accuracy (see Sec. that stems from a better
spatio-temporal action localisation. As an example, Fig.
depicts a 16-frame sequence and the associated frame-level
attention values for a validation video, comparing the model
trained only on source data (a) and the same model trained
with our UDA approach (b). From the picture, it is possible
to see that our method enables the network to better focus
on the frames where the handshake action takes place. We
called our method UDAVT (Unsupervised Domain Adaptation
for Video Transformers in Action Recognition). We evaluate
our approach on two popular UDA benchmarks for action
recognition, namely HMDB<»UCF [11] and Kinetics—NEC-
Drone [12], and show that UDAVT outperforms previous UDA
methods.
Contributions. Our contributions are as follows: (i) we pro-
pose a novel UDA approach for video action recognition
that exploits class label information within a novel IB do-
main alignment loss; (ii) we show, for the first time, that a
transformer-based feature extractor can be successfully em-
ployed in UDA for building a robust source model that is
more resilient to domain shift than traditional architectures
for video analysis; (iii) we provide an extensive evaluation of
our method and show that UDAVT outperforms state-of-the-art
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Fig. 1. Temporal attention visualisation: comparison between a source-only model (a) and UDAVT (b). Most and second most attended frames are highlighted.

UDA approaches on all considered datasets.

II. RELATED WORK

Action recognition. In the last few years, several approaches
and architectures have been proposed for video action recog-
nition. For instance, two-stream networks were proposed in
[1l], jointly exploiting RGB and optical flow sequences. The
Temporal Relation Network was proposed by Zhou er al. [2]]
to model temporal relations across the sequence by employing
a specific pooling layer. Other works opted for 3D CNNs
to learn spatio-temporal features [3], [4]. Recently, some
works proposed contrastive-learning-based methods in order to
extract efficient motion representations for action recognition
(131, [14], [13], [16]. In order to model the temporal aspects,
fusion methods have been proposed [17], [18]], as well as,
combinations of recurrent and convolutional networks [19].
Bai et al. [20] introduced an approach based on multi-range
feature interchange to capture short-range motion features and
long-range dependencies. Finally, advanced transformer-based
approaches have been proposed for action recognition [21]],
31, [22], [231, [24], [25]], often exploiting skeleton points
[26], [271, [28], [29], [30]. Different from our work, these
approaches consider a standard supervised setting, where all
data is labelled and there is no domain shift between training
and evaluation datasets.

UDA for images. Existing UDA methods differ from the strat-
egy adopted to address the domain shift. One option consists
of matching statistical moments of the source and target data
distributions [31]], [32], (33], [34], [33], eventually integrating
label information in the alignment loss [36]. Another com-
mon approach is based on adversarial learning [37], [38]],
[39], [40] and aims at learning discriminative and domain-
agnostic feature representations by combining implementing a
domain discriminator. Another possibility is to use Generative
Adversarial Networks [41]], [42], [43] to generate target-like
instances from source data that are then employed to train the
model. Furthermore, self-supervised learning has been recently
exploited for DA, in particular when devising auxiliary tasks,
such as predicting rotations or image patches permuta-
tions [43], to learn domain-invariant feature representations.

Finally, recent works proposed to employ transformer-based
architectures in the scope of domain adaptation [46], [47].
However, all these methods were proposed for images.

UDA for action recognition The challenging problem of do-
main shift for video action recognition has been addressed by a
limited number of works [48]], [49], [111], [12], [50], despite the
several possible applications it finds in real-world scenarios.
Chen et al. [11] proposed TA3N (Temporal Attentive Adversar-
ial Adaptation Network), which employs a temporal relation
module to jointly perform alignment between the source and
target domains and learn the temporal relation across the video
sequences. Pan et al. proposed TCoN (Temporal Co-
attention Network), a deep architecture integrating a cross-
domain attention module in order to match the distributions of
source and target domain between temporally aligned feature
representations. Choi et al. proposed two methods based on
adversarial learning [[12] and on an attention mechanism [50],
respectively. Kim et al. [51] proposed an UDA approach
based on learning cross-modal contrastive features, while in
[48] an approach was introduced based on self-supervised
and multimodal learning (RGB + optical flow). Song et al.
[52]] proposed a method for spatio-temporal contrastive domain
adaptation. Lastly, Turrisi da Costa et al. [53] proposed CO?A,
an approach for UDA that relies on a contrastive loss to
perform domain alignment, in addition to stabilising training
by making a classification and a contrastive head agree. Our
proposed approach presents similarities with previous self-
supervised based frameworks [54]], [55]], but introduces novelty
in employing an Information Bottleneck loss to align domains
rather than to learn better feature representations. Additionally,
our work is also the first to exploit transformers for UDA in
the context of action recognition.

III. PROPOSED METHOD

Problem setting and notation. The paper tackles the prob-
lem of UDA for action recognition. Given a source dataset

= {X5,y”1Ys of videos and associated annotations, and
an unlabelled target dataset 7 = { X7} % where X, € X and
ye ), ¥Y={12,...,K} (K denotes the number of action
categories), we aim to learn a function Fyp : X — ) with



parameters 6 that maps an input video X to a class label y and
perform well on target data. Note that this is not a trivial task,
since source and target data are sampled from two different
distributions, P°(X) # PT(X). To tackle this problem, we
propose a novel approach called UDAVT that combines two
main components: a spatio-temporal transformer architecture
and a novel distribution alignment scheme derived from the
IB principle [6].

Overview. An overview of UDAVT is shown in Fig[2] We
propose a two-phase training pipeline where the model is
first trained with source data and subsequently adapted using
source and target data. Our model is defined as Fy = C o H,
where H represents a video transformer encoder [5] and C
represents a linear classifier. H is composed by two main
parts, a spatial transformer H that extracts frame-level feature
representations and a temporal transformer H, that aggregates
the frame-level features to produce video-level representations.
In particular, Hj is the vision transformer ViT [8], whereas H;
is a simple multi-layer transformer as in [9]. An auxiliary MLP
projection head P is also used in the second phase. Finally,
the complete model also has a queue () that is responsible
for keeping the most recent feature representations of source
data. The two main phases of our approach are described as
follows.

Phase I: Source-only fine-tuning. The training process of
this phase starts from a model H pretrained on the Kinetics
dataset [56]] and consists of fine-tuning the entire model Fj
using only the source data S. As in [5], we consider 16
frames uniformly sampled to represent a source video X*
as input to Fy. The first part of the model H, divides each
frame into 16x16 patches that are then projected into feature
vectors. H consists of ViT, which receives as input the
projected patches together with a classification token [CLS]®
as in [57]. Each frame is processed individually, extracting
feature representations ff = [C'LS]® that consists of the
classification token linked to that specific frame. During the
forward pass, [CLS]® will collect all important information
from the image patches. The frame-level features ffls are
then forwarded through H; together with a new classification
token [CLS]T which, after processing, produces the video-
level feature representations f = [CLS]T. In this step, H,
and H, are fine-tuned following the strategy proposed in [[10],
which consists of freezing all parameters except the positional
encoding, the input embeddings, the classification tokens and
the affine transformations inside the layer normalisations [58]].
While [10] studied the problem of partially fine-tuning a
transformer for handling different modalities, in this work,
we show that this strategy can be successfully applied to the
problem of domain adaptation. Finally, the video level features
are then fed to a linear classifier C. The entire model is trained
with a supervised cross-entropy loss L€, defined as:

L% = ~E(xyyes Y yn log o(Fp(X)), M)

where o is the softmax operation. Due to lack of space, the
reader is referred to [S] and [8]] for more details about the
transformer architecture.

Phase II: Target Adaptation. In this phase, the spatial
transformer H, is frozen, while the parameters of H; are
trained to exploit both labelled source and unlabelled target
data. Note that both H, and H; are initialised with the
weights after Phase I. This choice is motivated by the need
of reducing computational resources, while still performing
adaptation at the temporal level. Freezing part of the model
enables us to increase the batch size, which is fundamental
for the proposed domain alignment strategy (Eqn. [3). To train
our model, 16 frames are sampled from both source X S and
target X7 videos, as in the previous phase. Video-level feature
representations f° and f7 are then produced for videos of
both domains. Subsequently, the temporal features of source
videos f* are provided as input to the linear classifier C. To
perform adaptation, we rely on the Information Bottleneck (IB)
principle [6], [[7]. Fig. 3| shows how the IB principle is applied
to our problem. First, we assume that there exists a domain
transformation g ~ G that maps a target instance X’ to a
source instance X that has the same label. Unlike [59]], which
considers that one instance is mapped to a perturbed version
of the same instance via some type of data augmentation, we
map a single target instance X’ to multiple different X in
the same iteration. We experimentally show that this is indeed
beneficial since by increasing the number of source instances
via the usage of a queue, and consequently the number of pairs,
we observed a large boost in performance. As annotations
are not provided for the target domain, we resort to pseudo-
labels for matching source and target instances. The model H

maps X to the feature representation YS. According to the
IB principle, we want the model H to learn a representation
?s which encodes as much information as possible about
the original instance X7T. This objective is carried out by
maximising the Mutual Information [ (?S,X 7). Then, the

second objective consists of minimising I(f , X ) to make
the model H invariant to the transformation of the sample
X7 into a different domain. The overall loss function can be
written as:
L* = 1(7°X%) - p1(F°, X7) )
Since optimising for mutual information in a high di-
mensional space is difficult, previous works have proposed
different ways to approximate Eqn. 2] In this work, we derive
a loss function similar to that used in the Barlow Twins method
[59], where it was proved that, under certain conditions, Eqn.
can be approximated as:

d d d
LB = Z(l —Ci)® + A Z Z(Cij)27

3)

i i g
where C' is a cross-correlation matrix computed over a batch
of B data obtained through a feature extractor {z1,...,2p}
and their corresponding transformed version {z{,...,z5},

where ¢ is the feature index and d is the total num-
ber of features. Each element of C is defined as Cj; =
> Zi,bz;,b

\/Zb(zi,b)z\/Zb(Zé,b)Q ’

where z; and z] are mean centred.
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Fig. 2. Overview of UDAVT. Our approach is articulated in two steps. In phase 1 (left), source data are fed to a video transformer H (composed of a spatial
transformer H and a temporal transformer Hy) followed by a classifier C. The overall model is finetuned with a supervised cross-entropy loss LE€ similarly
to [10]. In phase 2 (right), the weights of H, are frozen, while H; is fine-tuned. Source and target data are fed to the backbone and the proposed IB-based
loss LZB performs domain alignment, while LE€ further trains the action classifier. A queue @ is added in order to increase the number of source instances

considered while computing LZ5.

Fig. 3. Information Bottleneck diagram showing the proposed flow of
information to perform adaptation.

While in [59] the cross-covariance matrix is computed con-
sidering the original images and their augmented versions, in
this paper we propose to re-purpose it for domain alignment
using corresponding samples across the two domains. The loss
in Eq is a trade-off between two objectives, the first term that
pushes the learned representation to be domain invariant and a
second term that decorrelates the different components of the
embedding. To build C, we introduce a projection head P,
similar to the one in [59], mapping f° and f” to 2 and 27
Then, each source instance representation z: is paired with all
target instance representations zyT where the label of instance
i and the pseudo-label of instance j are equal. Note that the
same instance ¢ or j can appear in more than one pair. We also
introduced a queue () to keep recent z°, effectively increasing
the number of possible instances that are paired with z7 in the
minibatch. After forming this list of pairs, the cross-correlation
matrix can be computed between the source instances and the
target instances of all pairs. This process makes the model
invariant to instances of different domains and enables tackling
the domain adaptation setting. Our final loss, introducing a
weighting factor ¢, is then defined as follows:

L =L +ars™B %)

IV. EXPERIMENTS

Datasets. We conduct an extensive evaluation of UDAVT
on two benchmarks for UDA in action recognition, namely
HMDB<+UCF |11] and Kinetics—NEC-Drone [12]. The for-
mer setting comprises videos from the HMDB51 [60] and
UCF101 [61] action recognition datasets, which both contain
real videos downloaded from Youtube. In this case, the do-
main shift is therefore present, but limited. Kinetics—NEC-
Drone, consists of videos from the large scale Kinetics dataset
[62], that contains sequences from Youtube, and the NEC-
Drone [12]] dataset, which consists of video sequences taken
from moving drones in an indoor environment. Furthermore,
the video sequences of NEC-Drone comprise high-resolution
frames (1920x1080), and the action is often relegated to the
corner of the frame and in many cases, the view is extremely
slanted. Understandably, this setting is characterised by a
significantly more challenging domain shift that consequently
induces all the tested state-of-the-art methods to perform
poorly on the original data. To alleviate this problem, we
employed a pre-processing step exploiting a pretrained YOLO-
based [63] human detection model using AlphaPose [64] to
identify and locate the human actor(s) and then crop around
the humans with a minimal resolution of 224x224. Table
reports an overview of the boost observed when applying
different models to the cropped version of the dataset. As
it can be seen, our pre-processing enables a consistent and
significant improvement in performance for all methods, with
the gain ranging from 14% to 50%. The Table also includes the
performance of SAVA [50], which proposed by the researchers
who originally released the datase and our best competitor
CO?A [53]]. In the following experiments, we used the cropped
version of the NEC-Drone dataset.

Implementation details. Our method was implemented using
Pytorch [[65]. The model was fine-tuned in phase 1 starting

I'The original code for SAVA was not available so the result for the cropped
version of Kinetics—NEC-Drone was obtained with our implementation.



TABLE I
EFFECT OF PRE-PROCESSING ON ACCURACY FOR Kinetics—NEC-Drone

Method | Original data | Cropped data
Source only 15.0 29.4 (+14.9)
SAVA [50] 31.6 42.5 (+10.9)
CO?A [53] 33.2 47.9 (+14.7)
UDAVT 16.0 65.3 (+49.3)
UDAVT - supervised 30.0 78.9 (+48.9)

from a STAM model pretrained on Kinetics-400. Subse-
quently, the partial fine-tune was carried out for 20 epochs
with SGD, cosine learning rate decay, learning rate 0.001,
weight decay of 1e~? and batch size 8. In the second phase,
the model was trained for an additional 20 epochs using the
same optimiser, learning rate scheduler and weight decay,
however, with a learning rate of 0.005 and a batch size of
64 instances per domain. Additionally, the projection head P
was not trained, as we found that using a fixed random non-
linear projection made the model more resilient to bad pseudo-
labels. Since this results in fewer parameters to optimise,
we hypothesise that this makes training more consistent. For
HMDB<+UCEF, we set a = 0.01 and the queue size to 1024.
For Kinetics—NEC-Drone, we used o = 0.025 and a queue of
size 2048. First, o needs to be set to a small value due to the
sheer difference in magnitude between £¢€ and £75. Second,
« controls the strength of decorrelating feature representations
of two different instances across domains that share the same
label (pseudo-label for the target domain). Intuitively, it needs
to be set higher the larger the domain gap is.

Baselines. We compare our results with those obtained by
state-of-the-art methods for UDA in video action recognition,
namely TA3N [11], TCoN [49], SAVA [50] and CO?A [53].
For a fair comparison, the results of TAN are also reported
after replacing their ResNet backbone with I3D. Also, as
a transformer-based baseline, we report the results obtained
by replacing our proposed UDAVT loss with three differ-
ent domain alignment strategies, namely: a Maximum Mean
Discrepancy (MMD) domain alignment component [31]], an
adversarial approach relying on a domain classifier as in [66]
and a Maximum Classifier Discrepancy (MCD) based com-
ponent [67]. MCD aligns domains by employing task-specific
decision boundaries that maximise the discrepancy between
the output of two distinct classifiers to detect target samples
lying far from source support and minimise the discrepancy
of the transformer, so it learns how to produce target features
closer to source support. The adversarial-based approach [66]]
consists of adding an MLP-based domain classifier that is
responsible for predicting the domains of the instances given
their video-level feature representations. We added a target
cross entropy based on the pseudo-labels to all baselines was
we found that this improved performance.

A. Results

Table |lI| presents the results on HMDB<«UCF. Along with
the scores achieved with our proposed method, we report the
ones obtained by previous approaches in the same settings.

As it can be observed, all transformer-based models signifi-
cantly outperform previous methods (except for CO%A [53])
in both directions, suggesting that transformer-based methods
are more robust to domain shift even without any domain
adaptation strategy. In particular, we achieve an accuracy
of 96.8% and 92.3% in the two directions, outperforming
the current best competitor (CO2%A [53]) by 1% and 4.5%,
respectively. Results also show that our method outperforms
MMD with a transformer-based architecture. Also, the pro-
posed MCD and adversarial-based baselines are outperformed
(in just one of the two directions for the case of MCD).
Finally, we report, as upper bounds, the scores obtained
with the supervised version of UDAVT, i.e., the case where
ground truth target labels are used instead of pseudo-labels
to compute the cross-correlation matrix. Table reports
the scores obtained on the Kinetics—NEC-Drone benchmark.
This setting corresponds to a more significant domain shift
since the target video sequences are shot by drones in a
specific indoor environment. For this reason, it is easy to
observe that the absolute value of all the reported scores is
significantly lower when compared to the accuracy obtained
in the previous benchmarks. However, the results clearly show
how the transformer-based approaches strongly outperform the
baselines achieving a score of 65.3%, which is about 17 points
more than the best competitor. In addition, the proposed loss
achieves more than 10 points when compared to the MMD-
based transformer. The gap is wider when it comes to the MCD
and adversarial-based baselines, which are outperformed by 27
and 25 points. These experiments show that (i) the transformer-
based backbone proves effective when applied to cases where
a higher domain shift is present and (ii) the proposed UDAVT
alignment method addresses the domain gap more efficiently
leading to a significant increase in accuracy on the target
domain.

One question that might arise is: what if the pseudo-
labels have poor quality? We want to show that the domains
are aligned even if the pseudo-labels are initially causing
clusters of different classes to form. Since UDAVT is strongly
inspired by the IB principle, commonly employed for self-
supervised learning, we also perform an additional evaluation
re-purposing other methods, i.e., SImCLR [71] and VICReg
[72], for domain adaptation. Both methods have been proposed
for unsupervised representation learning and, to adapt them
for UDA, we used the same procedure employed to construct
pairs in UDAVT, i.e., we replaced distorted versions of the
same instances with pairs of source and target instances with
corresponding label/pseudo-label. VICReg is similar to Barlow
Twins but explicitly avoids the collapsing problem. It employs
different terms to maintain invariance to data augmentation, di-
versifies feature representations for different data, and enforces
different features to encode different information. SimCLR
relies on the concept of positive and negative pairs and, by
using the InfoNCE loss [73]], it performs an optimisation
procedure that consists of pulling the feature representations
of positives closer together whereas those of the negatives are
pushed farther away. We adapted this loss for DA using a
similar formulation to [74], in which multiple positives can



TABLE 11
RESULTS ON HMDB<>UCF.

Method | Encoder | H-U | U=H
Baselines
Source only [[11] 71.7 73.9
DANN [68] 76.3 75.2
JAN [69] 74.7 79.6
AdaBN [70] ResNet 72.2 77.4
MCD [67] 73.8 79.3
TASN [11] 81.8 78.3
Target only [11] 82.8 94.9
TCoN [49] \ 2D/3D CNN \ 89.1 \ 87.2
Source only [50] 88.8 80.3
TA®N [11] 13D 90.5 81.4
SAVA [50] 91.2 82.2
COZ2A [53] 95.8 87.8
Target only [S0] 95.0 96.8
Transformer-based
Source only 93.7 86.9
MMD [31] 96.5 87.9
MCD [67] 97.2 87.9
Adversarial [66] Transformer 96.6 87.6
UDAVT (ours) 96.8 92.3
UDAVT (ours) - supervised 97.2 94.4
Target only 97.9 95.8
TABLE III

RESULTS ON Kinetics—NEC-Drone.

Method | Encoder | Top-1 Acc
Baselines
Source only 15.8
TA3N [T1] Resnet 28.0
Source only 32.0
TASN [11] 13D 44.7
SAVA [50] 42.5
CO?%A [53] 45.8
Transformer-based
Source only 29.4
MMD [31] 54.4
MCD [i67] 38.1
Adversarial [66] Transformer 40.8
UDAVT (ours) 65.3
UDAVT (ours) - supervised 78.1
Target only 82.9

be considered for the same instance. In the proposed model,
positive instances are those from different domains that share
the same label or pseudo-label and negatives are instances
from a different domain, but without matching labels. To
avoid specialising within a domain, we did not consider inter-
domain pairs as neither negatives nor positives. Results for
these losses, compared to our UDAVT, are reported in Table
These results show that although re-purposing the con-
sidered self-supervised methods to DA produces competitive
performance in the target domain, our proposed UDAVT loss
outperforms both strategies. In particular, in the challenging
Kinetics—NEC-Drone setting the performance boost is more

TABLE IV
APPLICATION OF DIFFERENT SELF-SUPERVISED METHODS FOR DOMAIN
ALIGNMENT.
Method | Encoder | H—»U | U—H | K—N-D
Source only 93.7 86.9 29.4
SimCLR [71] Transformer 95.4 85.8 38.6
VICReg [72] 95.1 86.4 46.5
UDAVT (ours) 96.8 92.3 65.3

Random Labels Unsupervised - w/o Q
100

Accuracy

HMDB->UCF UCF->HMDB Kinetics->NEC Drone

Fig. 4. Ablation on the usage of the queue Q) and random labels for target
data instead of pseudo-labels for domain alignment.

than 16% higher than the second-best method.

Lastly, we report in Fig. {4} the ablation study that we carry
out to study the performance of the model concerning (i) the
usage of the queue () and (ii) the usage of target pseudo-
labels for the domain alignment component. For the first,
we removed (), while for the latter we used random labels
for target data. We can observe that the removal of @ is
detrimental to the overall performance of the model in the
supervised and unsupervised cases, respectively, except for the
supervised setting of Kinetics—NEC-Drone, where the model
behaves very similarly. Regarding the labels, results show that
the model always benefits from being provided with better
target labels.

V. CONCLUSIONS

We presented UDAVT, a simple and novel framework for
unsupervised domain adaptation in video action recognition,
which couples a powerful transformer-based feature extractor
with a domain alignment component that exploits the Infor-
mation Bottleneck principle to perform domain alignment.
We reported results on two popular benchmarks for domain
adaptation in action recognition, proving the effectiveness of
UDAVT by outperforming previous state-of-the-art models in
all settings, and further provided insight by exploring self-
supervised contrastive variants for domain alignment, all of
which proved effective, yet inferior to our proposed IB loss.
In future work, we plan on improving our approach by further
leveraging the capabilities of visual transformers for video
action recognition while devising more sophisticated domain
alignment strategies accordingly. Another research direction
would be adapting the model to open set domain adaptation.
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