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Abstract—In this paper, we focus on addressing the open-
set face identification problem on a few-shot gallery by fine-
tuning. The problem assumes a realistic scenario for face iden-
tification, where only a small number of face images is given
for enrollment and any unknown identity must be rejected
during identification. We observe that face recognition models
pretrained on a large dataset and naively fine-tuned models
perform poorly for this task. Motivated by this issue, we propose
an effective fine-tuning scheme with classifier weight imprinting
and exclusive BatchNorm layer tuning. For further improvement
of rejection accuracy on unknown identities, we propose a novel
matcher called Neighborhood Aware Cosine (NAC) that computes
similarity based on neighborhood information. We validate the
effectiveness of the proposed schemes thoroughly on large-scale
face benchmarks across different convolutional neural network
architectures. The source code for this project is available at:
https://github.com/1ho0jin1/OSFI-by-FineTuning

I. INTRODUCTION

Recently face recognition (FR) has achieved astonishing
success attributed to three factors in large. Deep convolutional
neural network (CNN) architectures [2], [3] that have strong
visual prior were developed and leveraged as FR embedding
models. Large-scale face datasets [4], [5] that cover massive
identities with diverse ethnicity and facial variations became
available. On top of these, various metric learning losses
[6]–[9] elevated the performance of deep FR models to an
unprecedented level.

The majority of FR embedding models have been evaluated
on numerous benchmarks with closed-set identification [7]–
[11]. The closed-set identification protocol assumes all probe
identities present in the gallery. However, in a realistic sce-
nario, an unknown identity that is not enrolled may be en-
countered. Another important but practical aspect to consider
is the scarcity of intra-class samples for the gallery identities
to be registered; namely, due to the expensive data acquisition
cost and privacy issue, only a very small number of samples
might be available for each gallery identity to register. In this
respect, open-set face identification (OSFI) with the small-
sized gallery is closer to a real scenario as it needs to perform
both known probe identity identification and unknown probe
identity rejection based on the limited information from the
small gallery set. Despite its versatile practical significance,
however, OSFI with a small gallery has been rarely explored.

Devising a model specific to OSFI with a small gallery
can be challenging in the following aspects: Firstly, an OSFI

(a)

(b)

Fig. 1. (a) Full fine-tuning all parameters severely degrades the OSFI
performance, while our method significantly improves the pre-trained model.
Detection & Identification Rate (DIR) [1] quantifies both correct identification
of the known probe identities and detection of the unknown. (b) An outline of
our proposed fine-tuning scheme: Given a model pretrained on a large-scale
face database, we initialize the gallery set classifier by weight imprinting,
and then fine-tune the model on a few-shot gallery set by training only the
BatchNorm layers. In the evaluation stage, a given probe is either accepted as
known or rejected as an unknown identity based on novel similarity matcher
dubbed Neighborhood Aware Cosine (NAC) matcher.

model performs both identifications of a known probe identity
but also correct rejection of unknown probe identity. Hence,
conventional FR embedding models devised mainly for closed-
set identification can perform poorly at the rejection of the
unknown. In fact, as observed in Fig. 1 (a), FR embedding
models pretrained on a large-scale public face database are
not effective for open-set identification, leaving room for
improvement. This suggests the need for fitting the pretrained
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model to be more specific to the given gallery set.
Secondly, due to the few-shot nature of the small-sized

gallery set, there is a high risk of overfitting for fine-tuning
the pretrained model. As shown in Fig. 1 (a), full fine-tuning
(i.e. updating all parameters) of the pretrained model results
in severe performance degradation. This drives us to devise an
overfitting-resilient parameter tuning scheme.

Moreover, an ordinary cosine similarity matcher used in the
closed-set identification might have a large tradeoff between
the known probe identity identification and unknown probe
identity rejection. As will be observed in Sec. III-D, the simple
cosine matcher has a severe drawback for the task at hand. This
motivates us to devise a robust matcher for OSFI.

Based on these observations, we propose an efficient fine-
tuning scheme and a novel similarity-based matcher for OSFI
constrained on a small gallery set. Our fine-tuning scheme
consists of weight initialization of the classifier governed by
weight imprinting (WI) [12] and training only BatchNorm
(BN) layers [13] for overfitting-resilient adaptation on the
small gallery set. Moreover, for both effective detection of
the unknown and identification of the known probe identities,
a novel Neighborhood Aware Cosine (NAC) matcher that
respects the neighborhood information of the learned gallery
features, and hence better calibrates the rejection score is
proposed. Our contributions are summarized as follows:

1) To effectively solve the OSFI problem constrained on a
small gallery set, we propose to fine-tune the pretrained
face embedding model. Since full fine-tuning deterio-
rates the embedding quality, we search for the optimal
method.

2) We demonstrate that the combination of weight imprint-
ing and exclusive BatchNorm layer fine-tuning excels
other baselines.

3) We recognize that the commonly used cosine similarity
is a sub-optimal matcher for rejection. We propose a
novel matcher named NAC that significantly improves
the rejection accuracy.

II. RELATED WORKS

A. Open Set Face Identification (OSFI)

[14], one of the earliest works in OSFI, used their proposed
Open-set TCM-kNN on top of features extracted by PCA and
Fisher Linear Discriminant. [15] proposed their own OSFI
protocol and showed that an extreme value machine [16]
trained on the gallery set performs better than using cosine
similarity or linear discriminant analysis for matchers. [17]
trained a matcher composed of locality sensitive hashing [18]
and partial least squares [19]. [20] applied OpenMax [21]
and PROSER [22], two methods for open-set recognition of
generic images, on top of extracted face features.

All previous works propose to train an open-set classifier
(matcher) of some form, but all of them use a fixed
encoder. To the best of our knowledge, we are the first to
propose an effective fine-tuning scheme as a solution to OSFI.

B. Cosine Similarity-based Loss Functions

[23] proposed to l2-normalize the features such that the
train loss is only determined by the angle between the feature
and the classifier weights. [7] further extended this idea by
applying a multiplicative margin to the angle between a feature
and its corresponding weight vector. This penalized the intra-
class features to be gathered while forcing inter-class centers
(prototypes) to be separated. A number of follow-up papers
such as [8]–[11] modify this angular margin term in different
ways, but their motivations and properties are generally simi-
lar. Therefore, in our experiments we only use CosFace loss [8]
as a representative method. For comprehensive understanding
of these loss functions, refer to [24].

III. APPROACH

Our proposed approach is two-fold: fine-tuning on the
gallery and open-set identification evaluation. In the fine-
tuning stage, the classifier is initialized by weight imprinting
to initiate learning from optimal discriminative features, and
the model is fine-tuned by updating only the BatchNorm layers
to avoid overfitting on the few-shot gallery data. In evaluation,
we utilize a novel matcher NAC that computes a neighborhood
aware similarity for better-calibrated rejection of the unknown.
We demonstrate that the combination of these three methods
significantly outperforms all other baselines.

A. Problem Definition and Metrics

Formally, in an OSFI problem, we assume the availability
of an encoder φ pretrained on a large-scale face database (FR
embedding model), which is disjoint from the evaluation set
with respect to identity. The evaluation set consists of a gallery
G = {(xGi , yGi )}Cmi=1 and a probe set Q. The probe set Q is
further divided into the known probe set K = {(xKi , yKi )}
and the unknown probe set U = {(xUi , yUi )}. G and K has no
overlapping images x but shares same identities y ∈ {1, ..., C}
whereas U has disjoint identities, i.e., YU ∩ {1, ..., C} = Ø.
m refers to the number of images per identity in G, which
we fix to 3 to satisfy the few-shot constraint. We allow the
encoder to be fine-tuned over the gallery set.

The evaluation of OSFI performance uses the detection
and identification rate at some false alarm rate (DIR@FAR).
FAR=1 means we do not reject any probe. Note that unlike
the general case shown in [1], here we only consider rank-
1 identification rate for DIR. Therefore, DIR@FAR=1 is the
rank-1 closed-set identification accuracy.

B. Classifier Initialization by Weight Imprinting

Due to the few-shot nature of the gallery set where we
fine-tune on, the initialization of model parameters and, in
particular, of classifier weights is crucial to avoid overfitting.
The most naive option is a random initialization of the
classifier weight matrix W . Another commonly used strategy
is linear probing [25], i.e., finding an optimized weight W
that minimizes the classification loss over the frozen encoder
embeddings φ(x).



We experimentally find that, as seen in Fig. 2, both of these
initialization schemes do not induce discriminative structure
for the encoder embedding φ(x). In particular, during fine-
tuning, each weight vector wc in the classifier acts as a center
(or prototype) for the c-th class (i.e. identity). Fig. 2 shows that
neither random initialization nor linear probing of wc derives
optimally discriminative weight vectors wc, resulting in low
quality of class separation of gallery features.

Motivated from this issue, we propose to initialize by weight
imprinting (WI), which induces the optimal discriminative
quality for the gallery features:

wc =
ŵc
‖ŵc‖2

, ŵc =
1

m

∑
yGi =c

φ(xGi ) (1)

where ‖·‖2 is the l2 norm, and the embedding feature φ(x) is
unit-normalized such that ‖φ(x)‖2 = 1.

As expected, Fig. 2 verifies that fine-tuning from the weight
imprinted initialization achieves a much higher discriminative
quality. This shows the superiority of weight imprinting com-
pared to random initialization and linear probing.

Note that weight imprinting has been frequently used in FR
embedding models [8], [9]. However, the critical difference
is that those models utilize weight imprinting only to prepare
templates before evaluation. In our case, the WI initialization
is utilized particularly for fine-tuning.

C. BatchNorm-only Fine-Tuning

Choosing the appropriate layer to tune is another important
issue for fine-tuning. Moreover, due to the extremely small
number of samples for each gallery identity, there is a risk
of overfitting as suggested by the classical theory on the vc
dimension [26]. In fact, a recent study [25] suggests that full
fine-tuning hurts the pretrained filters including the useful
convolutional filters learned from a large-scale database.

To minimize the negative effect of this deterioration, we
fine-tune only the BatchNorm (BN) layers along with the
classifier weight:

min
W, θBN

L(WTφθ(x), y), θ = [θBN , θrest] (2)

where θ refers to all parameters in the encoder φ = φθ and
θBN and θrest respectively refers to BatchNorm parameters
and the rest. During fine-tuning, θrest is fixed with no gradient
flow. The loss function L can be a softmax cross-entropy, or
widely used FR embedding model losses such as ArcFace [9]
and CosFace [8].

Due to selective fine-tuning of only the BN layers (and clas-
sifier weight), the convolutional filters learned from the large-
scale pre-train database are simply transferred. The BN-only
training is thus computationally efficient as it occupies only
0.1-0.01% of the total parameters in the CNN. Nevertheless,
its model complexity is sufficient to learn a general image task
as guaranteed by [27].

Fig. 2. The Intra-class variance (left) and inter-class separation (right) of
classifiers that are initialized by different schemes. NormFace [23], CosFace
[8] and ArcFace [9] loss are used for linear probing initialization. The weight
imprinting initialization does not require training, thus stays constant.

Fig. 3. An unknown
feature u placed be-
tween gallery proto-
types of class i and
j. ε is some small
positive constant.

TABLE I
AVERAGE ANGLE (DEGREES) BETWEEN IJB-C
PROBE FEATURE VECTORS AND THEIR TOP-K
CLOSEST GALLERY PROTOTYPES. THE THIRD

COLUMN REFERS TO THE AVERAGE OF TOP-2 TO
TOP-16.

Encoder top-1 top-2 2∼16

Res50 K 50.7◦ 64.0◦ 69.1◦

U 63.8◦ 66.0◦ 69.7◦

VGG19 K 53.4◦ 66.2◦ 71.4◦

U 65.9◦ 68.2◦ 72.1◦

D. Neighborhood Aware Cosine Similarity

The cosine similarity function is the most predominant
matcher for contemporary face verification and identification.
Denoting the probe feature vector as p and the gallery pro-
totypes as {gj}Cj=1, where gj := 1

m

∑
yGi =j φ(xGi ) is the

mean of all the normalized gallery feature vectors of class
j, identification is performed by finding the maximum class
index c = arg maxj=1,...,C cos(p, gj). On the other hand, in
the extension to OSFI, the decision of accepting as known or
rejecting as unknown can be formulated:

max
j=1,...,C

cos(p, gj)
Accept
≷

Reject
τ (3)

where cos(p, q) = p
‖p‖2
· q
‖q‖2

is the cosine similarity between
two feature vectors, τ is the rejection threshold.

Now, consider an example illustrated in Fig. 3. The cosine
matcher will assign the probe u to the identity i with the
acceptance score 0.866, which is fairly close to the maximum
score 1. This value alone might imply that the probe is a
known sample as it is close to the gallery identity i. However,
the probe feature vector is placed right in the middle of the
identities i and j. The in-between placement of u suggests
that the probe can be possibly unknown and thus should be
assigned with a lesser value of the acceptance score.

Motivated by this intuition, we propose the Neighborhood
Aware Cosine (NAC) matcher that respects all top-k surround-
ing gallery features:

NAC(p, gi) =
exp(cos(p, gi)) · 1[i ∈ Nk]∑

j∈Nk
exp(cos(p, gj))

(4)



Fig. 4. The distributions of scores for known (K) and unknown (U) probes
of IJB-C dataset using cosine similarity (left) and NAC with k = 16 (right).
The scores are min-max normalized and τ is set such that FAR=0.01 for both
cases. DIR=48.05% (left) vs DIR=54.53% (right). ResNet-50 was used as the
encoder.

Here, Nk is the index set of k gallery prototypes that are
nearest to the probe feature p, and 1 is the indicator function.
The main goal of the NAC matcher is to improve the unknown
rejection. Table I shows that known probe features are much
closer to their closest prototype than the second-closest proto-
type, unlike unknown probes. By exploiting this phenomenon,
the NAC matcher is able to assign a much smaller score to
unknown probe, as shown in Fig. 4.

IV. EXPERIMENTS

A. Datasets

We use VGGFace2 [4] dataset for pretraining the encoders,
and CASIA-WebFace [28] and IJB-C [29] for evaluation. Us-
ing MTCNN [30], we align and crop every images to 112x112
with equal parameters for all datasets. For VGGFace2, we
remove all identities overlapping with the evaluation datasets.
The evaluation datasets are equally split into two groups
such that the number of known and unknown identities are
equal. Then we randomly choose m=3 images of the known
identities to create the gallery (G), and the rest are known
probes (K). All images of unknown identities are unknown
probes (U). Table II summarizes the statistics of the datasets
we use. Note that we chose every known identity to have more
than 10 images such that there can be at least 7 probe samples.
Also note that IJB-C dataset consists of still images and video
frames (video frames typically have poorer image quality). We
sample the gallery from still images and probes from video
frames, which makes this dataset much challenging. We note
that the protocol devised here can be regarded as an extension
of that in [15].

B. Baselines

1) Classifier Initialization: Along with Weight Imprinting
(denoted WI), we report the results of using random ini-
tialization and linear probing initialization as described in
Sec. III-B.

2) Encoder Layer Fine-Tuning: Along with BatchNorm-
only fine-tuning (denoted as BN), we explore tuning other
layers of the encoder. The simplest one is tuning every layer
(i.e. all parameters of a model), which we denote as full. The
second is freezing the early layers and training only the deeper
ones, which we denote as partial. We also consider the parallel
residual adapter [31], which adds additional 1x1 convolutional

TABLE II
DATASET STATISTICS. THE NUMBER INSIDE THE PARENTHESES REFERS
TO THE AVERAGE NUMBER OF IMAGES PER IDENTITY. FOR EVALUATION

DATASETS, KNOWN IDENTITIES CONSIST OF THE GALLERY (G) AND
KNOWN PROBE (K), WHERE THE GALLERY HAS 3 IMAGES PER IDENTITY.

Pretrain # IDs (images / ID)
VGGFace2 7,689 (354.0)

Evaluation Known (G + K) Unknown (U)
CASIA-WebFace 5,287 (3+20.0) 5,288 (16.5)

IJB-C 1,765 (3+15.3) 1,765 (13.9)

TABLE III
THE TOTAL NUMBER OF PARAMETERS AND NUMBER OF FINE-TUNED

PARAMETERS FOR EACH ENCODER FINE-TUNING SCHEME. ‘+’ REFERS TO
THE NUMBER OF ADDED PARAMETERS FOR THE PARALLEL ADAPTER.

# Params (million)
VGG19 Res50

Pretrained 32.88 43.58
Full fine-tuning 32.88 43.58

Partial fine-tuning 4.72 4.72
Parallel Adapter +2.22 +3.39

BN-only fine-tuning 0.01 0.03

filters to the original convolutional layers. During fine-tuning,
only these additional filters are trained to capture the subtle
difference in the new dataset. Note that the authors in [31]
apply this technique to ResNet [3], hence the name residual
parallel adapter. But this idea can be generally applied to
CNNs without residual connection, hence we also apply this
to a VGG-style network. We denote this as PA, referring to
Parallel Adapter.

3) Matcher: During OSFI evaluation, the vanilla cosine
similarity matcher is adopted as the baseline matcher. When
the NAC matcher is used, we denote by NAC. For comparison,
we also use the extreme value machine (EVM) proposed by
[15]. We train the EVM on the gallery set with the best
parameters found by the authors.

In summary, classifier initialization methods we consider are
{Random, Linear probing, WI}, fine-tuning layer configu-
rations are {Full, Partial, PA, BN}, and matchers are {cos,
EVM, NAC}. We test the OSFI performances among different
combinations of these three components. Our proposed OSFI
scheme is to use WI+BN+NAC jointly.

C. Training Details

We choose VGG19 [2] and ResNet-50 [3] for the encoders
with the feature dimension 512. We pretrain these encoders
on the VGGFace2 dataset with CosFace with scale=32, mar-
gin=0.4 as loss function until convergence.

Then we fine-tune the encoder with different classifier
initialization schemes and encoder layer configurations. When
using the linear probing initialization, we train the classifier
until the training accuracy reaches 95%.

We follow the encoder layer finetuning in Sec. IV-B. For
the partial fine-tuning, we only train the last 2 convolutional
layers (Conv-BN-ReLU-Conv-BN-ReLU). Table III shows the
number of total and updated parameters for each fine-tuning
scheme.



Fig. 5. The OSFI performance of cosine similarity and NAC with different values of k on IJB-C dataset, using VGGNet-19 (left) and ResNet-50 (mid) as the
encoder. The square markers refer to cosine similarity and star marks the optimal k for different layer fine-tuning methods. To summarize the OSFI performance
into a single number, we used the area under the curve (AUC, %) of DIR@FAR curve. (Right) DIR@FAR curve of Pretrained and BN configuration using
cosine similarity and NAC (k=16) as the matcher. Numbers in the legend show the AUC values. When k = 1, NAC is replaced by cos.

We fix the number of epochs to 20 and batch size to 128
for every method. We again use CosFace loss for consistency.
For the optimizer we use Adam [32] with cosine annealing.
The initial learning rate is set to 1e-4 for full and PA, and 1e-
3 for partial and BN, which we find as the optimal learning
rate for each method. For data augmentation, we use random
horizontal flipping and random cropping with the random scale
from 0.7 to 1.0. The cropped images are resized to the original
size.

D. Optimal k for NAC

Since the gallery set is too small, we cannot afford a separate
validation set to individually optimize k for each dataset.
Instead, we attempt to find a global value that has optimal
performance regardless of the fine-tuning method, if one exists.

We first fine-tune the encoders with different layer con-
figurations, which gives us five different encoders includ-
ing one without any fine-tuning; pretrained, full, partial,
PA, and BN. Then we search the best parameter k for the
NAC matcher by grid search strategy, where the grid is
[2,4,8,16,32,128,256,512,1024,C], and C is the total number
of identities. Note that k = 1 refers to using cosine similarity
instead of NAC, which we added for comparison. Since a
single-value objective is preferred, we use the area under the
curve (AUC) of the DIR@FAR curve instead of DIR value
at different FAR values. We repeat this process with different
datasets and encoder architectures.

The results are shown in Fig. 5. We did not include
the results of CASIA-WebFace as it shows a similar trend.
Excluding k = 1 which is not NAC, the results show a smooth
unimodal curve with a peak at k = 16 or 32. This shows
that the NAC matcher indeed has a globally optimal k value
that is robust against different datasets, encoders, and fine-tune
methods. Thus we choose k = 16 (k = 32 also gives similar
results) as the global parameter throughout this paper.

Note that when k = C, NAC becomes equivalent to softmax
function with cosine similarity logits. However, this is notably
inferior compared to k = 16, which implies that considering
only the k-nearest is superior to considering every gallery
prototype.

E. Comparison of Fine-Tuning Methods

We compare the OSFI performances of the pretrained model
(non-fine-tuned) with six different combinations of classifier
initialization schemes and layer finetuning configurations: ran-
dom+full, linear probing+full, WI+full, WI+partial, WI+PA,
WI+BN. The matcher is fixed to cosine similarity. These
correspond to row 4-9 in Table IV.

First, to compare different classifier initialization schemes,
we fix the fine-tuning scheme to full. When using random
initialization, rejection accuracy (DIR@FAR=0.001,0.01,0.1)
and closed-set accuracy (DIR@FAR=1) severely drops. For
linear probing, rejection accuracy improves while closed-
set accuracy drops. Only WI clearly improves the encoder
performance, supporting the superiority of weight imprinting.

Now we fix the classifier initialization to WI and compare
different layer finetuning configurations. full clearly has the
worst performance. While PA is better than partial in closed-
set accuracy, partial clearly outperforms PA in rejection ac-
curacy. BN outperforms all others in closed-set accuracy with
a large margin but sometimes falls behind partial in rejection
accuracy.

With the aid of the NAC matcher, our method WI+BN+NAC
outperforms all other methods in every aspect. Compared
to original, this gains 4.60%, 8.11%, 4.57%, 1.68% higher
DIR in average with respect to FAR of 0.001, 0.01, 0.1, 1.0,
respectively.

F. Analysis on Discriminative Quality of Different Fine-tuning
Methods

How do different layer finetuning configurations affect the
final OSFI performance? To analyze this, we adopt three
different metrics; inter-class separation, intra-class variance,
and Davies-Bouldin Index (DBI) [33]. The definitions of the
first two metrics are identical to that of Fig. 2. DBI is a metric
for evaluating the clustering quality, where DBI ≈ 0 means
perfect clustering. We compute these metrics on the gallery
features after fine-tuning, and the results are shown in Table
V.

Here we can easily separate these configurations into two
groups: full and partial vs PA and BN. The first group has



TABLE IV
DIR@FAR OF DIFFERENT METHODS ON CASIA-WEBFACE DATASET AND IJB-C DATASET, USING VGGNET-19 AND RESNET-50 AS THE ENCODER.

DIR@FAR=1 (100%) IS THE CLOSED-SET ACCURACY. THE HIGHEST VALUE IN EACH COLUMN IS MARKED IN BOLD. FOR THE FIRST THREE ROWS THE
ENCODER IS NOT FINE-TUNED AND ONLY THE MATCHERS ARE CHANGED. THE LAST ROW (WI+BN+NAC) IS OUR PROPOSED METHOD.

Encoder
Method CASIA-WebFace IJB-C

Classifier
initialization

Fine-tuning
layers Matcher DIR @ FAR (%) DIR @ FAR (%)

0.1 1.0 10.0 100.0 0.1 1.0 10.0 100.0

VGG19

None None cos 25.23 52.97 70.07 80.89 28.35 45.55 61.71 73.80
None None EVM 37.57 57.75 71.03 80.78 35.03 53.64 63.34 73.70
None None NAC 25.15 55.68 71.41 80.89 36.73 51.92 64.27 73.80
Random Full cos 23.95 43.19 59.03 70.94 17.18 32.62 46.90 60.23
Linear probing Full cos 28.82 55.64 70.44 79.84 30.80 45.91 59.63 70.09
WI Full cos 27.63 57.58 72.02 80.94 35.49 50.52 63.56 73.53
WI Partial cos 28.91 57.31 72.29 81.16 34.81 51.98 64.53 73.89
WI PA cos 26.29 57.90 72.82 81.82 31.74 50.21 64.26 74.50
WI BN cos 25.39 56.65 72.54 82.14 32.19 48.74 63.87 74.43
WI BN NAC 25.94 58.01 72.92 82.14 38.09 53.08 65.30 74.43

Res50

None None cos 23.85 58.06 74.15 83.69 32.11 48.05 65.31 76.96
None None EVM 39.44 61.61 75.02 83.57 38.12 38.12 66.81 76.96
None None NAC 21.24 60.23 75.31 83.69 36.67 54.53 68.14 76.96
Random Full cos 25.31 45.43 60.80 72.44 14.88 32.05 49.39 61.88
Linear probing Full cos 28.35 60.11 74.63 82.73 30.35 46.42 61.90 72.34
WI Full cos 26.73 63.92 77.49 84.65 39.05 56.00 67.83 76.94
WI Partial cos 25.98 64.66 78.07 85.02 44.31 57.11 69.13 77.49
WI PA cos 24.89 63.85 77.58 85.01 36.69 54.86 68.30 77.63
WI BN cos 25.70 65.83 79.66 86.73 40.29 55.71 69.29 78.74
WI BN NAC 23.65 67.72 80.34 86.73 40.25 58.25 70.40 78.74

TABLE V
INTER-CLASS SEPARATION, INTRA-CLASS VARIANCE, DBI, AND AUC

GAIN BY USING NAC (REFER TO FIG. 5) FOR EACH LAYER FINETUNING
CONFIGURATION. THESE VALUES ARE AVERAGED ACROSS DATASETS AND
ENCODER ARCHITECTURES. ↑ MEANS THAT LARGER QUANTITY IS BETTER

AND VICE VERSA.

Inter (↑) Intra (↓) DBI (↓) ∆AUC (↑)
Pretrained Model 106.3◦ 34.5◦ 1.52 0.740

Full finetuning 106.7◦ 24.2◦ 0.87 0.025
Partial finetuning 106.4◦ 24.5◦ 0.90 0.058
Parallel Adapter 107.0◦ 31.8◦ 1.32 0.135

BN-only finetuning 107.3◦ 33.6◦ 1.46 0.335

similar inter-class separation with Pretrained and significantly
smaller intra-class variance, which leads to small DBI. This is
in stark contrast with the second group.

With this observation, we can conjecture the different opti-
mization strategies of each group. The first group was able to
easily reduce the training loss by collapsing the gallery fea-
tures into a single direction (shown by the small angle between
intra-class features). This was possible because both full and
partial directly updated the parameters of the convolutional
filters. On the other hand, all convolutional filters were frozen
for both PA and BN. This constraint may have prevented these
methods from taking the shortcut, i.e. simply collapsing the
gallery features, and instead led to separating the embeddings
of different identities. This explains why PA and BN have
higher closed-set accuracy.

This can also explain the AUC gain (∆AUC) when using
NAC instead of cosine similarity. Features become redundant
when they collapse, and so does the prototype. Therefore the
information from neighboring prototypes becomes less helpful
in rejecting unknown samples, leading to the marginal gain
from using NAC. This is why full and partial do not benefit
from using NAC matcher.

Fig. 6. The performance of our method against the baseline w.r.t. different
gallery size. AUC of DIR@FAR curve is used as the performance measure.

G. Performance with respect to Different Gallery Size

Fig. 6 shows the OSFI performance of our method against
the baseline (pretrained encoder with cos matcher) with respect
to different gallery size. We can see that our method consis-
tently improves upon the baseline, except for the extreme case
where only one image is provided for each identity.

V. CONCLUSION AND FUTURE WORKS

In this work we showed that combining weight-imprinted
classifier and BatchNorm-only tuning of the encoder effec-
tively improves the encoder’s OSFI performance without suf-
fering from overfitting. We further facilitated the performance
by our novel NAC matcher instead of the commonly used
cosine similarity. Future works will explore extending this idea
to the open-set few-shot recognition of generic images.
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