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Abstract—This paper introduces a general approach to design
a tailored solution to detect rare events in different industrial
applications based on Internet of Things (IoT) networks and
machine learning algorithms. We propose a general framework
based on three layers (physical, data and decision) that defines the
possible designing options so that the rare events/anomalies can
be detected ultra-reliably. This general framework is then applied
in a well-known benchmark scenario, namely Tennessee Eastman
Process. We then analyze this benchmark under three threads
related to data processes: acquisition, fusion and analytics. Our
numerical results indicate that: (i) event-driven data acquisition
can significantly decrease the number of samples while filtering
measurement noise, (ii) mutual information data fusion method
can significantly decrease the variable spaces and (iii) quantitative
association rule mining method for data analytics is effective
for the rare event detection, identification and diagnosis. These
results indicates the benefits of an integrated solution that jointly
considers the different levels of data processing following the
proposed general three layer framework, including details of the
communication network and computing platform to be employed.

Index Terms—cyber-physical systems, fault detection, indus-
trial IoT, Tennessee Eastman Process

I. INTRODUCTION

Detection and prediction of anomalies in industrial environ-
ments are important for both economic and security reasons.
However, these tasks are far from trivial since anomalies
are usually rare events within datasets so that most existing
algorithms fail to identify them with (ultra-)reliability, either
favoring false-alarms or misdetections [1], [2]. Even worse,
in the special cases where effective solutions can be found,
generalization is not straightforward. The challenge situation
becomes: general approaches usually lead to false alarms and
misdetections while effective solutions are very particular and
cannot offer direct guidelines to other cases.

In this paper we deal with this problem by proposing a
general frame to model a wide range of cases based on
the advances in Industrial Internet of Things (IIoT) networks
and Machine Learning (ML) algorithms [3]. In particular, we
approach the problem by using a theory that considers three
autonomous (but strongly dependent) layers of cyber-physical

systems (CPS), namely physical, data and regulatory. By doing
so, we are capable of analyzing in a more general way the
steps of data acquisition, transmission, fusion and analytic that
will allow an effective anomaly detection. Before going into
details, we provide next a brief review of the state-of-the-art
in industrial CPS and rare event detection.

Industrial CPS have been studied for many years, including
already several deployed solutions [4], [5]. Most of the current
research focuses on how to incorporate data flows so the
industrial physical processes can run in a more efficient
way, particularly focusing on multi-agent systems and the
concept of digital twins. The most promising solutions would
involve real-time monitoring and control [6], industrial edge
computing [7] and software-defined wireless communications
[8].

When dealing with CPS [9], three basic steps (in addition
to transmission) are taken in relation to data: acquisition,
fusion and analytics. In the data acquisition phase, sensors
map physical processes into data, which can be sampled
based on periodic measurements (e.g., sample every second),
or event-driven ones (e.g., sample every threshold crossing),
or a hybrid between both (e.g., [10]–[12]). In the fusion
phase, acquired data shall be structured, disseminated and
stored [13]. In this phase, heterogeneous data streams might
be compressed/aggregated via ML algorithms. This phase
includes possible issues related to communications and also
communication network technologies including low-power
networks, (beyond) 5G and IoT platforms [14], [15]. The
analytics phase is also related to the ML algorithms that are
now designed to detect or predict particular patterns or events
[16], [17]; in particular the algorithms based on associative
rules have been studied to identify anomalies and rare events
with high performance [18], [19]. Data fusion and analytics
are also related to the computing paradigm to be employed,
particularly cloud or edge [7].

This paper focus on the combination of these three basic
steps following a generalized framework that defines the
boundary conditions that the proposed solution for anomaly
detection shall be designed.
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Fig. 1: Three layer framework for rare event detection.

Our specific contributions are:
‚ Propose a general framework based on the 3-layer model

of CPS, as presented in Fig. 1, from where a set of
general questions related to the data acquisition, fusion
and analytic steps are defined (Sec.II).

‚ Employ the proposed framework in a well-known bench-
mark scenario from process engineering called Tennessee
Eastman Process (TEP) [17], [20], [21] (Sec. III).

‚ Evaluate numerically the benefits of: event-driven data
acquisition, mutual information data fusion and quantita-
tive association rule data analytics (Sec. IV).

‚ Discuss different aspects about communication networks
and computing paradigm usually considering perfect for
this kind of studies (Sec. V).

II. PROPOSED FRAMEWORK

There are several methods for detecting anomalies and faults
in industrial settings based on data. However, with the steep
growth of information and communication technologies, more
sensors with lower time granularity are becoming common-
place, generating the so-called big data. This, however, brings
a generalized misunderstanding: “the bigger data, the better".
In particular, in situations where the target is to reliably detect
rare events in the dataset, the situation becomes more critical
since the goal is to identify outliers with minimum chances of
false alarm and misdetection.

Under this new condition, the usual fragmentation between
data acquisition, fusion and analytic steps needs to be re-
viewed. For instance, the analytics algorithm requires struc-
tured good quality data (not necessarily “big data") to more
reliably detect anomalies. The structured (time stamped) data,
in their turn, is attained in the fusion step by disseminating,
aggregating and/or eliminating data based on the needs of the

rare-event detection algorithm. But, before data is fused, it
needs to be acquired by sensors that map different (usually
well-defined) physical processes; sensors may be located in
different places (spatial domain) and sampled (temporal do-
main) in potentially different ways (e.g., periodically or not).

Our main motivation here is then to build a tailored
integrated solution based on these three steps looking, for
example, data compression/reduction can offer to the analytics
algorithm better quality data to identify rare events. Notwith-
standing, the solution to be designed for particular shall be
derived from a general framework. In this case, the proposed
framework consists of modeling CPS using three interrelated
layers, namely physical, data, and decision. This approach was
proposed in [22], [23] to assess the dynamics of physical sys-
tems that are regulated based on a decision-making processes
that depend on data processing. The previous contributions
were mainly focused on theoretical toy-models, though. Here,
we will extend this approach to focus on realistic industrial
settings. Fig. 1 depicts the proposed 3-layer model, together
with the underlying communication network topology.

The proposed general framework is based on key questions
that must be answered before the specific solution for detecting
rare-events is designed. The questions are present in Table I.
The idea is to define the viable designing options that we
need to consider to have an effective solution for a particular
industrial processes, as well as practical limitations imposed by
industry itself (e.g., preference for private networks, or already
deployed wired communication system).

The questions are structured in steps that follow the three-
layer model. The first step is to identify the rare event(s) under
consideration, also considering whether the problem is known
beforehand. To have a quantitative evaluation of the related
physical processes related to the event, sensors are needed



TABLE I: Related questions that can be answered by the proposed framework

Q# Topic Related Question
Q0 Anomaly What is the problem? Is the Rare Event known or unknown?
Q1 Sensors What kinds of sensors will be used? How many of each can be used and where they can be located?
Q2 Sampling Which type of sampling will be used? Periodic, event driven or mixed (hybrid)?
Q3 Communication Which type of communication system (access and network technologies) will be used?
Q4 Data storage Where the data from sensors are stored and processed?
Q5 Data fusion How the data should be clustered/aggregated/structured/suppressed?
Q6 Event detection How to make the ultra-reliable rare event detection based on ML algorithms?

to map the physical to the data layer. Here the question is
what kind of sensors can be used? How many should be used
and where they should be located? After the locations are
confirmed, the next phase is the sampling strategy from those
sensors: it may be periodic, event-driven (non-periodic) or a
mix between them. We then need to determine the time granu-
larity and/or the event that trigger a sampling. The next phase
is to define the communication system to be used. Particularly,
the type of access technology (wireless or wired), the network
(internet or private network) and storage (local database, cloud,
private cloud). Once the data is stored, data should be aggre-
gated, as other variables are stored with the same timestamp.
Depending on the information of variables monitored, some
of them could be suppressed. The question here is how data
should be clustered/aggregated/structured/suppressed (fused)?
The information gathered after the data fusion will be used to
detect the event, when adding variables that monitor physical
condition of the grid. Here the question arises is how to make
the ultra-reliable rare event detection for our problem? In
the following section, we will briefly present the Tennessee
Eastman benchmark process and then apply the proposed
approach on it.

III. TENNESSEE EASTMAN PROCESS

The dataset material consists of several faulty cases of
an industrial plant, as produced by the Tennessee Eastman
problem [24]. The process has five major equipments, namely
a condenser, a vapor-liquid separator, a reactor, a product
stripper, and a recycle compressor (Fig. 2). Its objective is
to obtain the products G and H from the reactants A, C, D
and E. This is reached by a set of four chemical reactions,
in which components B and F are, respectively, an inert and
a byproduct. More details can be found in [25], [26]. This
benchmark is suitable to evaluate process monitoring schemes
and control strategies based on data driven analysis. Besides
the normal operation, 21 abrupt or incipient faulty conditions
caused by common disturbances in practice are simulated
[20]. There are 52 monitoring variables or features, being
11 manipulated variables and 41 measured variables. Once a
faulty condition occurs, all are generally affected with changes
in their respective values.

The Tennessee dataset was generated in a process simu-
lator that has been widely used by the process monitoring
community1. It is composed by 22 subsets named dXX_te.dat,
where XX = 0, 1, 2, ¨ ¨ ¨ , 21. The file d00_te.dat refers to the
normal operating condition. Each of the other ones regards to

1https://github.com/camaramm/tennessee-eastman-profBraatz

Fig. 2: Process flow diagram of the Tennessee Eastman problem [26].

TABLE II: Proposed framework applied in TEP

Q# Answer
Q0 Lack of accuracy to detect anomalies (21) from measurements
Q1 Each of the 52 variables are sensors, no other can be added
Q2 Periodic sampling; all 52 variables are sync (3 min.)
Q3 It can be considered as in [27]
Q4 Not constrained; freedom to test as in [7]
Q5 Open question; focus of research in the field
Q6 Open question; focus of research in the field

a particular fault, that is, a different shift from this reference
condition. The subsets consist of 960 observations of the 52
variables, which are sampled every 3min with a Gaussian
noise. The faults are introduced after 8 simulation hours. Table
II presents the proposed framework applied in TEP, which
provides the boundary conditions of the anomaly detection
design.

IV. NUMERICAL RESULTS

A. Event-driven data acquisition

The main idea of an event-driven approach for this appli-
cation is to perform data compression in order to transmit
the meaning of information from the data acquisition point
to the data fusion point. This approach can be described
using the following steps: (1) input data from all 52 sensors
(N ); (2) variable average estimation and margin selection
(90% of lowest/highest values) from normal operation; (3)
at every time slot (k) for each variable, if the values are
out of the margins the sample is transmitted, otherwise, if
nothing is received at the data fusion point the variable will
maintain the average value estimated from the previous step;
(4) compression rate calculation for each variable. The limit
values for margin selection for each variable were chosen
arbitrarily. An example of this approach is seen in Fig. 3 where

https://github.com/camaramm/tennessee-eastman-profBraatz
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Fig. 3: Signal from variable 1 at data acquisition point (before transmission)
for fault number 2 of Tennessee Eastman dataset.
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Fig. 4: Signal from variable 1 at data fusion point (after transmission) for
fault number 2 of Tennessee Eastman dataset.

the signal obtained from the sensors is shown with its limits.
The samples transmitted are only the ones that are out of the
upper and lower limits as seen in Fig. 4.

This setup allows to transmit less data via any communica-
tions system. In the example mentioned above the compression
rate is 92.60%, this means only about 7.4% of the samples
are transmitted. The pre-processed time series based on the
proposed event-driven method will serve as inputs to the data
fusion and analytics, where anomalies should be detected,
identified and diagnosed.

B. Data fusion based on Mutual Information

In order to further reduce the amount of processing required
for fault detection, on top of the time-series compression as
proposed by the event-driven approach, the proposed frame-
work determines how the process variables are related to
each other to discover and exploit their dependencies. The
interdependencies between the process variables are deter-
mined automatically from the sampled measurements in the
Tennessee datasets. Specifically, Mutual Information (MI) en-
tropy reduction technique is used to infer how variables are
correlated. The MI quantifies the amount of information that
each variable contains about the other ones [28].

The tools used to determine correlations among the variables
used in this work represents the distances between variables
in terms of their statistical closeness, then it quantifies the
correlation by providing links between the variables. Finally, it
assigns directionality to the links [29]. Fig. 5 shows that aside
form the auto-correlation, strong cross-correlation is present
between a high number of variables; in fact, a high correlation
above 80% is present in 23% of the variables (12 out of 52)
while a modest correlation above 50% is present in 65% of
the variables (34 out of 52).
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Fig. 5: Correlation between Process Variables

As an example of statistical closeness, Fig. 5 presents
the correlation for the 52 process variables in the Tennessee
datasets. This result showcases that not every single variable
needs to be observed at every given moment but, depending on
the fault under investigation, it is possible to observe variables
carrying a high amount of MI with other variables involved
in the process. This reduces both data and computational load
considerably.

C. Quantitative association rule method for anomaly detection

Quantitative association rule mining is a natural extension of
classical qualitative association rule mining where the difficult
task is the extraction of frequent itemsets from a dataset
containing transactions. The extracted rules are statistical rules
of the form Item1ANDItem2...ANDItemk ùñ Itemn,
that hold with certain support and confidence values (or other
metrics) that are above user-defined thresholds. Association
rule mining is one of the most heavily researched areas in
data mining to this date. In our context, items correspond to
the features in our dataset, and transactions are in one-to-one
correspondence with the rows of the dataset; the consequent
item (Itemn) in particular is constrained to always be the
target variable in our dataset. The problem then becomes one
of quantifying each item in each (qualitative) rule extracted
from the dataset by constraining its value to lie in a specified
interval, so that the target variable assumes a particular value.
This is achieved by a modified parallel Breadth-First Search
(BFS) algorithm, called QARMA, which guarantees that all
(and none other) non-dominated quantitative association rules
that hold in the dataset will be found (see [30]).

In the case of the Tennessee dataset in particular, the dataset
is fully dense in the sense that every row contains values
for every dataset feature, which makes the application of the
qualitative association rule mining part useless. Instead, we
construct all itemsets of size less than 4, and quantify each
one of them separately, and in parallel, making sure that all
itemsets of size s are fully processed before starting to process
itemsets of size s`1. To take into account the time-dependent
nature of the data, whereby the values of any feature in the
dataset are to some degree dependent on the values at the
immediate previous times, we expanded the data to include
for each feature, the difference between the feature’s value and



the feature’s value in the previous 2 time-steps, resulting in a
dataset having 156 different fully dense features. The QARMA
algorithm took several days to run on this expanded Tennessee
dataset, producing a total of 63008 non-dominated rules, that
could predict all different modes of operation except mode 0
(normal operation), and hard-to-detect faults 3, 9 and 15 (none
of the 63008 rules imply faults 3, 9 or 15). The distribution of
the rules among the faults is also highly skewed: faults 6 and
18 are implied by 23624 and 23884 rules respectively, whereas
faults 5, 10 and 21 are implied by 9, 3, and 8 rules respectively.
During testing, an instance for which more than 10 rules fire,
is predicted to belong to the fault that is specified by the
majority of rules firing on that instance. Using this majority
vote rule ensemble, we obtained an overall rule-accuracy that
exceeds 62% on the test set. This accuracy is significantly
better than the one reported by decision trees (J48), or artificial
neural networks (MultiLayerPerceptron) as implemented in the
WEKA ML/DM software suite, all of which reported accuracy
less than 50% on the test set.

We also implemented another modified BFS algorithm to
search to find a minimum cardinality set of variables that
contain all the variables necessary for an appropriate subset
of the discovered rules to cover 85% of all instances that the
entire set of rules cover; we say that "rule r covers instance
i" if and only if in the instance i the values of the features
that form the antecedents in rule r are within the intervals
specified for them by the rule, and the instance indeed belongs
to the operation mode (fault number) that is predicted by the
rule. Interestingly, only 14 of the 156 variables are enough to
"explain" 85% of the entire dataset covered by the rules found;
this result implies that possibly a much smaller set of variables
need be monitored in order to derive safe conclusions about
the state of the process. The total rules found covered more
than 70% of the training set.

We consider our first results as encouraging in that rules us-
ing only up to 2 features at a time are able to form an ensemble
of rules that outperformed other well-known ML algorithms in
test-set performance. We expect that dimensionality reduction
will allow larger number of antecedent features to be examined
and eventually provide much higher accuracies measured by
detection rates/false alarm rates per class.

V. DISCUSSIONS

A. Industrial communication networks in the TEP benchmark

Liu et al. proposed in [31] a description of how a communi-
cation network could be applied in TEP. They also proposed a
more complete analysis of Industrial IoT settings, exemplified
by TEP, in [27]. Other recent work focusing on how 5G could
be employed in TEP for fault detection and diagnosis [32]. We
expect to extend those works based on the proposed 3-layer
model, where we can focus on the following aspects.

Physical layer: It presents mostly the communication be-
tween sensors and aggregators. In order to reach a possible
massive number of sensors, wireless technologies seem to be
an obvious choice, in special machine-type communications
(MTC) [33]. Besides cellular massive MTC solutions [34],

Long Range Low Power Networks (LPWAN) (e.g. LoRa,
Sigfox, NB-IoT) recently gained attention for industrial indoor
applications [27]. See that its high link budget is suitable
for the coverage of industrial environments, where we find
many floors, walls, and machinery that mitigates the signal
propagation [35]. From this category, we see LoRa and Lo-
RaWAN with great potential for industrial scenarios. Since
LoRaWAN presents an open MAC protocol, it is easier to
deploy aggregators (gateways) inside factories and thus have
control over the whole network. Moreover, it enabled several
works that evaluated LoRa’s performance [36]–[38]. Even
though we plan on a massive communication approach for
mostly of sensors, there might be cases where they do not
attend the reliability or latency requirements. Then, cellular
ultra-reliable low-latency communications (URLLC) might
come as a solution.

Data layer: The communication is based on the aggregators
storing their data into a centralized unit, preceding the data
fusion process. Since aggregators serve a massive number of
sensors, there is a huge amount of traffic within this layer [34].
Thus, we plan most traffic to be enhanced Mobile BroadBand
(eMBB). Similar to layer 1, we can rely on URLLC when there
is reliability and latency constraints. Note that the packet size
for URLLC is very limited, thus producing a small impact on
the total aggregated traffic. Coexistence of MTC traffic can be
mitigated by non-orthogonal solutions as in [39], or through
network slicing [40] where orthogonal resources are dedicated
to meet each service requirement (e.g., eMBB, URLLC and
mMTC). Considering that communication in TEP is mostly
done in uplink, the customization of grant-free access based
on diversity scheduling of URLLC resources as proposed in
[41], [42] could be optimized in terms of reliability and users
density. Finally, we could alternatively employ wired/optical
connection where aggregators are local to the storage unit.

Decision layer: It is highly dependent on the system
topology. After the data fusion stage, the aggregator must
send all compressed data to a decision controller. This is
a sensitive stage, where losing one packet means giving up
many compressed others. Moreover, it can lead to an inaccu-
rate detection decision. Finally, the decision results can give
automatic feedback to the machinery; thus, URLLC should be
predominant.

B. Imperfect wireless medium

In industrial CPS empowered by wireless connectivity, the
unreliable nature of the wireless medium introduces uncer-
tainties in the achieved TEP fault detection performance and
efficiency [43]. The complex fading conditions in indoor
factory plants – usually rich in metallic surfaces and physical
obstructions which result in high network dynamics and a
harsh radio propagation environment – involving numerous
IIoT components may significantly affect the accuracy of the
transmitted sensor observations to the fusion center and result
in transmission failures due to the high distortion levels. Al-
though the millimeter-wave (mmWave) technology is continu-
ously gaining momentum in industrial indoor environments for



providing high data rate, low-latency and high-reliability [44],
mmWave frequencies (up to 100 GHz) are highly susceptible
to blockage, diffraction, and scattering effects. In practical
industrial deployments where no line-of-sight connectivity is
possible, the installation of reconfigurable intelligent surfaces,
capable of adaptively shaping the impinging radio waves based
on the actual channel conditions, appears as a promising
solution to circumvent the unreliability of high-frequency
channels.

C. Communication-Computation Trade-off

The reliability and latency concerns related to Industrial IoT
in addition to the increasing density deployment precipitate
the need for new communication and computation paradigms
in such environments. The increasing number of sensors and
the heterogeneity of the datasets being collected pose new
challenges during the data fusion and analysis. For example,
the large number of sensors collecting information about the
industrial processes have to transmit the collected datasets to
the data fusion point, which results in high communication
cost and affects the energy efficiency and computational
delay. There are multiple ways to approach this problem.
One approach is to move the data fusion points closer to the
sensors that are acquiring the measurements and to perform
the analysis in the cloud.

This approach results in lower communication overhead,
and reduce the amount of raw measurements being sent
throughout the network, which results in higher energy ef-
ficiency. However, there are problems associated with this so-
lution. For example, the sensors performing the data fusion are
potential single points-of-failure. These fusion points also use
more energy due to the computation and communication with
a large number of nodes. Therefore, depending on the energy
source being used for these nodes (e.g., battery), they could
potentially lead to parts of the network being disconnected
from the rest of the deployment. Another possible problem
with this solution is related to latency concerns. Since the
data analysis is happening in the cloud, the combined delay
associated with the communication and computation can not
be neglected. For this reasons, authors have been proposing
the idea of moving the processing from the cloud to the edge
of the network [45]. This approach relies on both, fusion
and analysis happening on the nodes that are very close to
the acquisition sensors. However, while reducing the latency
effect, this approach does not address the energy hole effect
(i.e., nodes closer to the centralized fusion point drain their
battery faster) [46].

The next logical step is to rely on in-network computing, in
which data processing is distributed among the nodes of the
network. An example is shown in [47], in which the authors
place the computational nodes of a neural network on the
physical sensor nodes. The placement relies on an optimized
mapping procedure that minimizes either the total transmit
power or the overall transmit time. Due to its flexibility, this
approach allows us to eliminate the single point-of-failure
problem, helps us to reduce the communication/computation

latency and enables us to distribute the energy consumption
across the IoT network. By taking advantage of the in-network
computing paradigms we can tweak the trade-off between
communication and computation.

D. Network Slices and Business Model

Nowadays, many wireless technologies are capable to re-
place wired communication in industrial applications. How-
ever, using these new technologies in real scenarios mean an
increase cost in terms of CapEx and OpEx. So, an appropriate
model that fairly distributes costs over multiple virtual oper-
ators, and also optimizes physical resource planning is intro-
duced in [48]. Here, a new model of 5G isolated network slices
of multitenant Mobile Backhaul (MBH) is proposed, based
on a novel pay-as-you-grow model that considers the Total-
Cost-of-Ownership (TCO) and the yearly generated Return-
on-Investment (ROI). So, new business models that are coming
with the wave of 5G and beyond have a big potential to boost
the application of novel wireless communication technologies
beyond the technical benefits.

VI. CONCLUSIONS

This paper shows the potential of the 3-layer approach to
design anomaly detection, where data acquisition, fusion and
analytics, together with the enabling communication network
and computation paradigm, are jointly studied as subsequent
steps. We presented initial results based on the TEP benchmark
and we plan to extend this study to other scenarios, including
a micro-grid and a car factory. All in all, we expect to
demonstrate that the proposed framework is general so that
it can be applied to provide ultra-reliable rare event detection
in a wide range of industrial applications.
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