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Abstract—The multi-energy management framework of indus-
trial parks advocates energy conversion and scheduling, which
takes full advantage of the compensation and temporal avail-
ability of multiple energy. However, how to exploit elastic loads
and compensate inelastic loads to match multiple generators
and storage is still a key problem under the uncertainty of
demand and supply. To solve the issue, the energy management
problem is constructed as a stochastic optimization problem.
The optimization aims are to minimize the time-averaged energy
cost and improve the energy efficiency while respecting the
energy constraints. To achieve the distributed implementation in
real time without knowing any priori knowledge of underlying
stochastic process, a distributed stochastic gradient algorithm
based on dual decomposition and a fast scheme are proposed.
The numerical results based on real data show that the industrial
park, by adopting the proposed algorithm, can achieve social
welfare maximization asymptotically.

Index Terms—Multi-energy management framework, indus-
trial park, distributed implementation, stochastic gradient algo-
rithm

I. INTRODUCTION

With the increasing industrial production scale, energy con-

sumption has grown rapidly, which is the main driving force of

industrial parks to tackle the serious problems of low energy

efficiency and increasing operating cost. To solve these issues,

multi-energy generation plants (MEGPs), including combined

heat and power (CHP) units, photovoltaic panels, energy

storages and boilers, are integrated into the industrial park. By

shifting supply/demand across spatiotemporal scales among

multi-energy networks, MEGPs can improve energy efficiency

and income [1]. MEGPs can gain schedule complementarity

and flexibility by control and optimization of multi-energy

networks, which can achieve enhanced reliability, high energy

utilization, and increased efficiency.

This work was supported by the National Key Research and Development
Program of China (2018YFB1702300) and the National Natural Science
Foundation of China under Grant 61731012.

Many studies have been done on the multi-energy manage-

ment of industrial parks. In [2], a novel method of adopting

the hydraulic inertia of steam heating network is proposed

to improve the flexibility of multi-energy industrial parks. In

[3], a generalized multi-energy demand-response interaction

optimization model is established to realize the interaction

among users and the power grid in an industrial park. In

[4], a multi-energy industrial park’s management framework is

established, and the energy conversion and interaction between

CHP unit owners and users are considered to realize the peak

load shifting. However, most of the existing studies mainly

address the issues of interaction between demand response

and supply side without considering the combination of multi-

energy storage and stochastic nature of the scenario.

Although renewable energy and energy storage is an ef-

fective way to release the unbalance of supply and demand,

the time-varying and stochastic nature of renewable energy

generation should be taken into account. A large number of

studies aim to solve the stochastic problem of energy man-

agement. In [5], dual decomposition and stochastic gradient

are proposed to address the optimization problem through

appropriate scheduling, that is, shifting the peak energy de-

mand by pricing tariffs as incentives. In [6], the interaction

among prosumers is formulated as a stochastic game, and a

novel distributed algorithm is proposed to achieve the optimal

payoff. In [7], a day-ahead scheduling model of an energy

sharing provider is built to improve the power profile and in-

crease the operating profit via stochastic programming. These

works mainly concentrate on electricity scheduling and do not

consider multi-energy complementary utilization. Moreover,

the aforementioned works do not consider the convergence

rate improvement of proposed algorithm, which is important

for real-time implementation.

To solve the energy management problem, this paper

presents a distributed stochastic gradient algorithm based on

http://arxiv.org/abs/2110.14209v4


the dual decomposition and a fast scheme. The dual decom-

position is applied to achieve distributed implementation with

temporally-coupled constraints, and the fast scheme can ensure

real-time implementation. The main contributions in this paper

are listed as follows.

• A multi-energy management framework is presented for

an industrial park, where MEGPs supply energy to indus-

trial users. Compared with other methods, this framework

fully mobilizes the coordination mechanism of energy

supply, elastic load (EL), inelastic load (IL) and storage

with a more comprehensive model.

• The variation of multi-energy loads, renewables and

energy prices is considered to construct a stochastic

optimization problem. Instead of paying barely attention

to the electricity storage, the paper also takes into account

the heat storage, time-varying price and stochastic multi-

energy demand and supply.

• To reduce the influence of multi-energy coupling,

stochastic demand and renewable energy generation, a

distributed algorithm and a fast scheme are proposed. The

fast scheme ensures real-time coordination of instanta-

neous scheduling.

The remainder of the work is listed as follows. The system

model in the industrial park is introduced in Section II. Section

III proposes the stochastic energy optimization and distributed

realization methods. The simulation results based on real data

are shown in Section IV. Finally, the conclusion is given in

Section V.

II. SYSTEM MODEL

This paper considers a system consisting of an industrial

park, an electricity utility company, and a gas utility company,

where three types of energies are supplied, i.e., electricity, heat

and natural gas, as shown in Fig. 1. The industrial park is

composed of users and MEGPs [8]. The MEGPs include CHP

units, photovoltaic panels, batteries, water tanks and boilers.

The park has K = {1, 2, ...,K} MEGPs. The energy devices

in next subsection are modeled for MEGP k, k ∈ K. Here, a

time slot is one hour to coordinate with the simulation.

A. Multi-energy Generation Plant

In this subsection, the models of energy storage systems k,

CHP unit k and boiler k in MEGP k are introduced.

1) Energy Storage Systems: The electricity and heat storage

models are denoted as

Bk(t+ 1) = Bk(t) + ηckeCke(t)−
1

ηdke
Dke(t) (1)

Wk(t+ 1) = Wk(t) + ηckhCkh(t)−
1

ηdkh
Dkh(t) (2)

Bk,min ≤ Bk(t) ≤ Bk,max,Wk,min ≤ Wk(t) ≤ Wk,max

(3)

0 ≤ Cke(t) ≤ Cke,max, 0 ≤ Dke(t) ≤ Dke,max (4)

0 ≤ Ckh(t) ≤ Ckh,max, 0 ≤ Dkh(t) ≤ Dkh,max (5)
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Fig. 1: Energy flows of the industrial park

where Bk(t), ηcke, Cke(t), ηdke and Dke(t) denote the stored

electricity, charging efficiency, charging rate, discharging ef-

ficiency and discharging rate of the battery. Wk(t), ηckh,

Ckh(t), ηdkh and Dkh(t) denote the stored thermal energy,

charging efficiency, charging rate, discharging efficiency and

discharging rate of the water tank.

2) CHP: A CHP unit generates heat and electricity simul-

taneously, which can be denoted by

EkCHP (t) = ηkpgGkCHP (t), HkCHP (t) = ηkhgGkCHP (t)
(6)

0 ≤ EkCHP (t) ≤ EkCHP,max, 0 ≤ HkCHP (t) ≤ HkCHP,max

(7)

where EkCHP (t), ηkpg , GkCHP (t), HkCHP (t) and ηkhg
are the electricity generation, electricity generation efficiency,

natural gas consumption, heat generation and heat generation

efficiency of the CHP unit at time slot t, respectively.

3) Boiler: A boiler generates heat by consuming gas, which

is

Hkb(t) = ηkbgGkb(t) (8)

0 ≤ Hkb(t) ≤ Hkb,max (9)

where Hkb(t), ηkbg and Gkb(t) are the heat generation, heat

generation efficiency and natural gas consumption of the

boiler, respectively.

B. Energy Trading with the Utility Companies

For the industrial park, the electricity and natural gas

purchased from the utility companies are denoted by E(t) and

G(t), respectively. In addition, the park can sell redundant

electricity Eo(t) to the electricity utility company. There

are maximum constraints of trading energy with the utility

companies during a time slot.

0 ≤ E(t) ≤ Emax, 0 ≤ G(t) ≤ Gmax, 0 ≤ Eo(t) ≤ Eo,max

(10)



C. Energy Balance

The energy balance in the industrial park is

Etot(t) =
∑

k∈K

Ek(t) + E(t)− Eo(t) (11a)

Gtot(t) = G(t) −
∑

k∈K

[GkCHP (t) +Gkb(t)] (11b)

Htot(t) =
∑

k∈K

Hk(t) (11c)

Ek(t) = EkCHP (t) +Dke(t)− Cke(t) +Rk(t) (11d)

Hk(t) = HkCHP (t) +Hkb(t) +Dkh(t)− Ckh(t) (11e)

where (11a), (11b) and (11c) denote the balance of electricity,

gas and heat, and (11d) and (11e) denote the electricity and

heat supplied by MEGP k. Etot(t), Gtot(t) and Htot(t) are

the total available electricity, gas and heat, respectively. Ek(t)
and Hk(t) are the electricity and heat generation of MEGP k.

Rk(t) is the renewable energy generation of MEGP k.

For each industrial user, electricity loads are divided into

IL and EL. For simplicity, heat and gas loads are considered

as EL. Suppose there are I = {1, 2, ..., I} users for IL and

Q = {1, 2, ..., Q} types of EL. The available energy domain

of MEGP k can be denoted as:

0 ≤ xk(t) ≤ xk,max (12)

xk(t) =
∑

i∈I

xki(t) +
∑

q∈Q

xkq(t) (13)

where xk(t) is the total energy generation of MEGP k for

energy x ∈ X at time slot t, and X = {E,H,G}, i.e., the

set of electricity, heat and gas. xki(t) is the amount of IL for

user i satisfied by MEGP k. xkq(t) is the amount of EL q for

users satisfied by MEGP k.

Supposing that some electricity IL can be cut down when

necessary. When there are high energy demands or power

outages, the industrial park offers incentive price pi(t) for

user i to reduce their electricity IL by an amount Xir(t)
without compromising the basic needs. User i sets its reduced

electricity IL by solving the following problem

max
0≤Xir(t)≤ηXi(t)

pi(t)Xir(t)− aiX
2
ir(t)

where aiX
2
ir(t) is the unsatisfactory cost. η is the ratio of

maximum load reduction, and Xi(t) is the original electricity

IL of user i. When the incentive price satisfies

0 ≤ pi(t) ≤ 2aiηXi(t) (14)

the optimal solution can be obtained by Xir(t) = pi(t)/2ai,
which means that pi(t) and Xir(t) are linearly dependent for

user i, and the linear coefficient is 2ai.
When incentive price pi(t) is given, the actual electricity IL

of user i is denoted as
∑

k∈Ki

xki(t) = Xi(t)− pi(t)/2ai (15)

where Ki ⊆ K denotes the set of MEGPs supplied to user i.

III. ENERGY MANAGEMENT SCHEME

The objective of energy management is to minimize the

time-averaged energy cost, subject to energy constraints. For

simplicity, all variables of randomness are collected into

r(t) = {R(t), X(t)}, and all variables of optimization are

collected into M(t)={xki(t), xkq(t), xk(t), Dke(t), Cke(t),
Dkh(t), Ckh(t), Eo(t), E(t), G(t), Xir(t)}. The cost of the

industrial park at t is denoted by

φ(t) = E(t)pe(t) +G(t)pg(t)− Eo(t)po(t)

+
∑

i∈I

[pi(t)Xir(t)− Ui(t)]−
∑

k∈K

∑

q∈Q

Ukq(t) (16)

pe(t) and pg(t) are the prices of the industrial park purchasing

energy from the electricity and gas utility companies, respec-

tively. po(t) is the price of the industrial park selling energy to

the electricity utility company. Ui(t) is the satisfaction revenue

of IL for user i, and Ukq(t) is the satisfaction revenue from

EL q supplied by MEGP k.

The optimization problem of the industrial park is to find a

scheduling policy to minimize the time-averaged cost, which

can be expressed as a long-term optimization problem:

max
M(t)

lim
T→∞

1

T

T−1∑

t=0

E{φ(t)} (17)

s.t. (1)− (15)

where the expectation considers all random variables. How-

ever, the battery and water tank dynamics in (1) and (2) couple

the optimization variables, which is not directly solved in

most case. In addition, the knowledge of r(t) is causal, it

is generally intractable to solve the optimization problem with

the coupling across time. To solve the problem, it is essential to

relax the time-coupling constraints (1) and (2), that is, replace

them with average constraints.

A. Stochastic Energy Optimization

Combining (1)-(3), the average energy charging and dis-

charging in the long term should satisfy the following condi-

tions

lim
T→∞

1

T

T−1∑

t=0

E{Cke(t)} = lim
T→∞

1

T

T−1∑

t=0

E{Dke(t)} (18a)

lim
T→∞

1

T

T−1∑

t=0

E{Ckh(t)} = lim
T→∞

1

T

T−1∑

t=0

E{Dkh(t)} (18b)

In this way, (18) ensures that the electricity charged equals

the electricity discharged for a long period. The same situation

is applied to the water tank. According to (18), a relaxed

version of (17) is denoted by

max
M(t)

lim
T→∞

1

T

T−1∑

t=0

E{φ(t)} (19)

s.t. (4)− (15), (18)



To handle the coupling introduced by (18), Lagrange multi-

pliers λke and λkh are introduced to associate with (18). The

Lagrangian function of (19) is

L(M(t),λ) = E{φ(t)} +
∑

k∈K

E[λke(Cke(t)−Dke(t))]

+
∑

k∈K

E[λkh(Ckh(t)−Dkh(t))]

(20)

Its Lagrange dual function is

Γ(λ) = min
M(t)∈M̃(t)

L(M(t),λ) (21)

where M̃ (t) expresses the feasible set defined by the con-

straints (4) - (15). The dual problem of (19) can be denoted

by

max
λ

Γ(λ) (22)

For dual problem (22), a gradient algorithm can be applied

to get the optimal λ∗. That is, the multipliers λ(t + 1) at

iteration t+ 1 are denoted as

λke(t+ 1) = λke(t) + ρ(Cke(t)−Dke(t)) (23a)

λkh(t+ 1) = λkh(t) + ρ(Ckh(t)−Dkh(t)) (23b)

where Cke(t), Dke(t), Ckh(t) and Dkh(t) are obtained by

solving

Φ∗ = min
M(t)

Φ(t) = min
M(t)

φ(t) +
∑

k∈K

[λke(t)(Cke(t)

−Dke(t)) + λkh(t)(Ckh(t)−Dkh(t))]

(24)

s.t. (4)− (15)

Owing to the dual decomposition of optimization variables

across time, the stochastic iterations are feasible. There are

two additional benefits for the stochastic iterations in (23) and

(24). Firstly, the solution for (24) can be made close to the

solution for (19). Secondly, the solution for (24) is feasible to

the original problem (17) when properly initialized.

B. Distributed Fast Implementation

To obtain the optimal solution and lower computational

complexity, dual decomposition methods are used again to

dualize the constraint (13) in (24), which couples EL and

IL. The IL must be served per time instant t, which means

the distributed algorithm must run some iterations at micro-

slots per time instant. Thus, there are two timescales for the

optimization algorithm. The instantaneous Lagrange function

can be denoted as

L(M , τ ) := Φ(t) +
∑

k∈K

τk(
∑

i∈I

xki +
∑

q∈Q

xkq − xk) (25)

where τ = {τ1, ..., τK} are the corresponding instantaneous

Lagrange multipliers, and dual variable λ(t) in Φ(t) is updated

in a slow time scale, which means that λ(t) can be treated as

constants when solving the problem (24). The dual function

of (24) is denoted by

Γ(τ ) := min
M∈M

L(M , τ ) (26)

where M is the feasible set subject to the constraints (4) -

(13). Then, the dual problem of (24) is denoted as

max
τ

Γ(τ ) (27)

Different from the problem (22), which aims to achieve the

stochastic estimate, the goal of (27) is to make each user and

each MEGP schedule its energy in a fully distributed way.

In the following sections, two different gradient methods are

proposed to solve the problem (27).

First, the dual gradient algorithm is used to obtain Lagrange

multipliers τ , and the iteration of τ can be denoted as

τ (n+ 1) = τ (n) + σ∇Γ(τ (n)) (28)

where n is the iteration index of the micro-slot, and σ is the

stepsize. Then, the gradient for τ (n) is denoted by

∇Γ(τi(n)) =
∑

i∈I

xki(n) +
∑

q∈Q

xkq(n)− xk(n) (29)

Based on (26), the industrial park can acquire an energy

allocation M (n) by solving

min
M(n)

E(n)pe(n) +G(n)pg(n)− Eo(n)po(n) + λke(n)(Cke(n)

−Dke(n)) + λkh(n)(Ckh(n)−Dkh(n))− τk(n)xk(n)

+
∑

k∈Ki

τk(n)xki(n) + pi(n)Xir(n)− Ui(n)

+ τk(n)xkq(n)− Ukq(n)
(30)

s.t. (4)− (12), (14)− (15)

where Xir(n) = pi(n)/2ai according to Section II. Since

(24) is convex and satisfies the Slater condition, the solution

of the dual problem (27) yields the solution of the original

problem (24). When constant σ is selected, gradient iterations

(28) will converge to a neighborhood of τ ∗, and the value of

the primal variables will be made tight approximation to the

optimal solution [9].

Although the dual gradient algorithm is used widely, its

convergence rate is slow. To solve the issue in real time, a

fast scheme based on the fast iterative shrinkage-thresholding

algorithm (FISTA) [10], which realizes fast convergence than

that of the dual gradient algorithm, is proposed.

Different from the dual gradient algorithm in (28), the fast

scheme introduces an iteration τ (n) by combining the two

recent iterations τ (n) and τ (n− 1), which is denoted by

τ (n) = (1− ǫ)τ (n) + ǫτ (n− 1) (31)

where ǫ = (1 − θτ (n − 1))/θτ (n), and the weight θτ (n) is

updated by

θτ (n) = (1 +
√
1 + 4θ2τ (n− 1))/2 (32)



The Lagrange multiplier τ (n) is obtained by a gradient

ascent iteration based on τ (n)

τk(n+1) = τk(n)+σ(
∑

i∈I

xki(n)+
∑

q∈Q

xkq(n)−xk(n)) (33)

The implementation process of fast scheme is on display

in Algorithm 1. By using the two recent iterations, the “com-

bined” iteration τ(n) reduces the undesirable fluctuation of the

gradient ascent iteration to achieve convergence.

Algorithm 1 : Fast Scheme

1: Initialize: τ (0), τ (1), weight θτ (0) and stepsize σ.
2: for n = 1, 2, ... do

3: Update θτ (n) according to (32).
4: Perform τ (n) based on (31).
5: MEGPs send τ (n) to users.
6: Each MEGP and user calculate the solution M(n) using τ = τ

based on (30).
7: Update τ (n+ 1) according to (33).
8: end for

Then, the distributed stochastic gradient algorithm proposed

in this paper integrates the dual gradient algorithm and the fast

scheme, which is on display in Algorithm 2.

Algorithm 2 : Distributed Stochastic Gradient Algorithm

1: Initialize: λ(0), and stepsize ρ.
2: for t = 1, 2, ... do

3: Obtain τ∗(t) according to (28) or Algorithm 1.
4: Perform M(t) using τ∗(t) by solving (30).
5: Based on the solution Cke(t), Dke(t), Ckh(t) and Dkh(t), MEGP

k updates λke(t + 1) and λkh(t + 1) according to (23).
6: end for

Due to limited space, the performance analysis is not given

here.

IV. SIMULATION RESULT

In this section, the numerical results based on realistic data

are presented to evaluate the proposed algorithm.

A. Setup

An industrial park consisting of two MEGPs and three

factories is considered. The ratio of maximum electricity IL

reduction is η = 0.15. The unsatisfactory coefficient is ai = 1,

and the price of gas is pg(t) = 0.4 ¥/kWh. Other related

parameters are listed in Table I. To verify the performance

of the proposed management framework, two cases were

adopted for comparison: Case 1 is based on a gradient method

without incentive price, and all electricity loads are ILs. Case

2 is a scenario without renewable energy, based on dual

gradient algorithm. To simulate real industrial scenes, the price

provided by the JiangSu Electric Power Company [11] is

shown in Fig. 2 (a). The data of photovoltaic systems provided

by Renewables.ninja [12] is shown in Fig. 2 (b). The hourly

load provided by PJM hourly load [13] is shown in Fig. 2 (c).
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Fig. 2: Data of the industrial park. (a) Electricity Price. (b) Renewable
Energy. (c) Electricity demand.

TABLE I: Related Parameters

ηkpg , ηkhg ηkbg ηcke, ηdke, ηckh, ηdkh
35% 80% 98%

Bk,max,Wk,max Cke,max , Dke,max Ckh,max, Dkh,max

4MWh 1MWh 1MWh

B. Performance Verification

Fig. 3 (a) and Fig. 3 (b) shows the convergence situation of

the solution for problem (24). Fig. 3 (a) shows the cumulative

distribution function (CDF) of iteration number for conver-

gence at t = 1. To show the comparison clearly, the simulation

time is extended to T = 480 slots, each slot is considered with

100 micro-slots at most. When the iteration number for (24)

is more than 100 or the difference of two iterations is less

than 0.01, the iterations are stopped. The iteration stepsizes of

the gradient algorithm (28) and the fast scheme (33) are both

σ = 0.2. Fig. 3 (b) shows that the fast scheme converges in

about 20 iterations, and the dual gradient algorithm converges

in more than 40 iterations mostly.

Fig. 4 (a) and Fig. 4 (b) show the total costs and the costs

across 24 time slots of the proposed algorithm, Case 1 and

Case 2. Case 1, which has no ELs and incentive revenue,

is sensitive to the variations of renewable energy, prices and

loads. Thus, the cost of Case 1 is higher than that of proposed

algorithm all day. Case 2, which has no renewable energy, is

sensitive to the energy price and needs to buy more energy in

daytime, and is close to the proposed algorithm at night. Both

of Case 1 and Case 2 incur high costs. Thus, the proposed

algorithm makes full use of IL, EL and incentive revenue to

schedule energy flexibly, and leverages renewable energy and

energy storage to reduce the cost in real time.
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The energy generation and consumption of the park are

shown in Fig. 5. Since the electricity price during 8:00-23:00 is

higher than other time, the park uses the CHP units to generate

more electricity instead of purchasing electricity at a high

price and simultaneously generate thermal energy for the heat

demand, which is shown in Fig. 5. The batteries are charged

at low-price time 12:00, 21:00 and 24:00, and discharged at

high-price time 8:00 and 17:00, which is on display in Fig. 5.

Fig. 5 shows that the EL is smaller when the electricity price

is high. When the electricity price is not fixed, a similar effect

can be obtained. Therefore, the proposed algorithm realize the

energy demand shift, energy trading with the electricity, and

energy supply by energy storage flexibly.

V. CONCLUSION

In this paper, a multi-energy management framework in an

industrial park including multi-energy generation plants and

users was presented, which fully mobilizes the coordination

mechanism of energy supply, demand and storage. The energy

demand management problem was constructed as a long-term
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Fig. 5: Electricity profiles of the industrial park using the proposed
algorithm. (a) Electricity generation. (b) Electricity consumption.

optimization problem to further consider the spatiotemporal

variation of loads, renewables and energy prices. A distributed

stochastic gradient algorithm based on dual decomposition and

a fast scheme were proposed to reduce the influence of multi-

energy coupling, time-varying renewable energy generation

and demand. At last, the simulation results based on realistic

data verified the performance of the proposed mechanisms.
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