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Abstract— Quantum computer programming is emerging as a 

new subject domain from multidisciplinary research in quantum 

computing, computer science, mathematics (especially quantum 

logic, lambda calculi, and linear logic), and engineering attempts 

to build the first non-trivial quantum computer. This paper 

briefly surveys the history, methods, and proposed tools for 

programming quantum computers circa late 2007.  It is intended 

to provide an extensive but non-exhaustive look at work leading 

up to the current state-of-the-art in quantum computer 

programming. Further, it is an attempt to analyze the needed 

programming tools for quantum programmers, to use this 

analysis to predict the direction in which the field is moving, and 

to make recommendations for further development of quantum 

programming language tools. 

 
Index Terms— quantum computing, functional programming, 

imperative programming, linear logic, lambda calculus 

 

I. INTRODUCTION 

HE importance of quantum computing has increased 
significantly in recent years due to the realization that we 

are rapidly approaching fundamental limits in shrinking the 
size of silicon-based integrated circuits (a trend over the past 
several decades successfully described by Moore’s Law).  
This means that as we attempt to make integrated circuit 
components ever smaller (e.g. below 25nm in feature sizes), 
we will increasingly encounter quantum mechanical effects 
that interfere with the classical operation of the circuits. 
 Quantum computing offers a path forward that specifically 
takes advantage of quantum mechanical properties, such as 
superposition and entanglement, to achieve computational 
solutions to certain problems in less time (fewer 
computational cycles) than is possible using classical 
computing paradigms.  Certain problems have been shown to 
be solvable exponentially faster on a quantum computer than 
has been achieved on a classical computer [1]. Furthermore, 
quantum parallelism allows certain functions that have thus far 
proven to be computationally intractable using classical 
computation to be executed in reasonable time (e.g. factoring 
large numbers using Shor’s algorithm).  Quantum algorithms 
may contain both classical and quantum components (as does 
Shor’s algorithm), and can thus leverage the benefits of each. 
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 However, existing classical (non-quantum) programming 
languages lack both the data structures and the operators 
necessary to easily represent and manipulate quantum data. 
Quantum computing possesses certain characteristics that 
distinguish it from classical computing such as the 
superposition of quantum bits, entanglement, destructive 
measurement, and the no-cloning theorem.  These differences 
must be thoroughly understood and even exploited in the 
context of quantum programming if we are to truly realize the 
potential of quantum computing.  We need native quantum 
computer programming languages that embrace the 
fundamental aspects of quantum computing, rather than 
forcing us to adapt and use classical programming languages 
and techniques as ill-fitting stand-ins to develop quantum 
computer algorithms and simulations.   Ultimately, a 
successful quantum programming language will facilitate 
easier coding of new quantum algorithms to perform useful 
tasks, allow or provide a capability for simulation of quantum 
algorithms, and facilitate the execution of quantum program 
code on quantum computer hardware. 
 

II. ORIGINS AND HISTORY OF QUANTUM COMPUTING 

Prior surveys of quantum computing and quantum 
programming [2], [3] trace the origins of quantum computing 
and quantum programming to Feynman’s 1982 proposal for 
constructing a quantum computer as a means of simulating 
other quantum systems, noting that a quantum computer may 
efficiently simulate a quantum system, whereas a classical 
computer simulation of a quantum system would require 
exponential resources both in memory space and 
computational time [4].  Preskill credits Paul Benioff [5] with 
making this proposal concomitantly with Feynman. However, 
the roots of quantum programming go far deeper than this, 
through the field of quantum information theory, in the work 
of Birkhoff and von Neumann on quantum logic in 1936 [6]. 
This work also formed the basis for quantum mechanics as it 
is currently practiced today. 

Deutsch [7] investigated the computational power of 
quantum computers and proposed a quantum version of the 
Turing machine.  He proposed one of the earliest quantum 
algorithms as a means of demonstrating the solution of a 
problem that would be difficult to solve using a classical 
computer yet would be quite easy to solve using a quantum 
algorithm. 
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The difficulty of solving certain problems using computers 
is often characterized by analogy with hypothetical Turing 
machine based solutions [8].  Alan Turing showed that the 
capability of any general purpose computer could be simulated 
with a Turing machine.  By studying the time (# 
computational cycles) and space (memory requirement) 
complexity of problems, we can classify problems according 
to their Turing complexity (e.g. deterministic polynomial (P), 
non-deterministic polynomial (NP), exponential (EXP)). The 
Deutsch-Jozsa algorithm [1] was designed in 1992 to 
maximally illustrate the computational advantage of quantum 
computing over classical computing.  The algorithm 
determines a property of a binary input string (either constant 
or balanced) in a single step, whereas determining this 
property on a classical computer grows exponentially in 
computational complexity with the length of the bit string. 
Unfortunately, this result has not yet resulted in the creation of 
any particularly useful quantum algorithms for typical data 
processing needs. 

Since that time, substantial effort has been made to 
characterize the complexity of problems using quantum 
Turing machine models versus classical Turing machine 
models.  While there is still some question regarding certain 
complexity equivalence classes (e.g. does BQP=NP?), there is 
widespread agreement amongst researchers in this area that 
quantum computing has not yet been proved to generally 
move problems from one complexity class under classical 
computing to a lower complexity class under quantum 
computing [9].  However, this does not mean that nontrivial 
quantum computers once built will not allow substantial 
computational gains for solving certain problems over 
currently known techniques using classical computers.  An 
important thread in quantum computing research is to define 
problem classes and applications that result in significant 
speed-ups using quantum instead of classical computers. 

The invention of linear logic by Girard in 1987 [10] has also 
played a significant role in the formulation of recent quantum 
programming languages, specifically those based upon lambda 
calculus (described in section III.b).  Linear logic differs from 
classical logic in that assumptions (states, or inputs) and 
hypotheses are considered resources that may be consumed.  It 
provides a means for resource control. Linear logic differs 
from usual logics such as classical or intuitionistic logic where 
the governing judgement is of truth, which may be freely used 
as many times as necessary. 

For example, suppose A represents water, B represents cold 
(or a freezing process), and C represents ice.  Then A  B  

C.  But after the process is applied, resource A is consumed 
and is no longer available. Research in using linear logic is 
still quite active, and linear logic is important element to many 
current quantum programming language development efforts. 

The first practical steps toward formulating a quantum 
programming language were made by Knill in 1996 in his 
proposal for conventions for a quantum pseudocode [11], and 
his description of the quantum random access machine 
(QRAM) model of a quantum computer. The QRAM model is 
built upon the (probably accurate) assumption that any 

practical quantum computer will in fact be a classical machine 
with access to quantum computing components, such as qubit 
registers.  QRAM defines a set of specific operations to be 
performed on computer hardware including preparation of 
quantum states (from classical states), certain unitary 
operations, and measurement.  Knill’s quantum pseudocode 
provides a syntax for describing qubits, qubit registers, and 
operations involving both classical and quantum information.  
While extremely useful, Knill’s proposal falls short of 
possessing all of the needed characteristics of a real quantum 
programming language due to its informal structure, lack of 
strong typing, and representation of only some of the quantum 
mechanical properties needed. 

A variety of tools have been created for simulating quantum 
circuits and modest quantum algorithms on classical 
computers using well-known languages such as C, C++, Java, 
and rapid prototyping languages such as Maple, Mathematica, 
and Matlab. A good on-line reference for these simulators is    

http://www.quantiki.org/wiki/index.php/List_of_QC_simulators  
While simulators may provide an excellent means for 

quickly learning some of the basics concepts of quantum 
computing, they are not substitutes for actual quantum 
programming languages since they are designed to run only on 
classical computer architectures, and will not realize any of 
the computational advantages of quantum computing. 

III. A TAXONOMY OF QUANTUM PROGRAMMING LANGUAGES 

Quantum programming languages may be taxonomically 
divided into (A) imperative quantum programming languages, 
(B) functional quantum programming languages, and (C) 
others (may include mathematical formalisms not intended for 
computer execution).  In addition, Glendinning [12] maintains 
an online catalog of quantum programming languages, 
simulation systems, and other tools.  Finally, a slightly more 
dated but at the time quite comprehensive and still useful 
survey of quantum computer simulators was provided by Julia 
Wallace in 1999 [13]. 

Early quantum programming language development efforts 
focused on exploring the Quantum Turing Machine (QTM) 
model as proposed by Deutsch [7].  While interesting and 
informative from the standpoint of understanding 
computational complexity of problem classes with respect to 
quantum computing, it did not result in practical tools for 
programming quantum computers.   

The quantum circuit model quickly became the driving 
force in quantum programming. The Deutsch-Jozsa algorithm, 
Quantum Fourier Transform, Shor’s factoring algorithm, and 
Grover’s algorithm were all described using the quantum 
circuit model [8].  In order to build this into a language 
(instead of just designing circuits), Knill [11] proposed a 
quantum programming pseudocode that, along with adapted 
imperative programming languages such as C and C++, 
resulted in the first imperative quantum programming 
languages (e.g., QCL).  These languages built upon the 
QRAM model of quantum computation, assumed classical 
flow control with both classical and quantum data, and 
allowed interleaved measurements and quantum operations. 
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The use of imperative quantum programming languages 
gave way to a multitude of functional quantum programming 
languages such as QFC, QPL, and QML (described below), 
mostly based upon the QRAM model, but also increasingly 
utilizing the work in mathematical logic to define better 
operational semantics for quantum computing, and also 
including the tool of linear logic discussed previously. 

A. Imperative Programming Languages 

Imperative programming languages, also known as procedural 
languages, are fundamentally built upon the use of statements 
to change the global state of a program or system of variables.  
Common classical imperative languages include FORTRAN, 
Pascal, C, and Java. These may be contrasted with functional 

(or declarative) languages such as Lisp, APL, Haskell, J, and 
Scheme, in which computation is based upon the execution of 
mathematical functions. 

Imperative quantum programming languages today are 
largely descendents of Knill’s proposed quantum pseudocode 
and the QRAM model of quantum computing.  Arguably the 
first “real” quantum programming language [2] was QCL, 
developed and refined from 1998-2003 by Bernhard Ömer 
[14]-[18].  QCL (Quantum Computation Language) utilizes a 
syntax derived from C, and also provides a full quantum 
simulator for code development and testing on a classical 
computing platform.  In support of the classical+quantum 
model of computation as envisioned with the QRAM virtual 
hardware model, QCL also provides a full classical 
programming sublanguage. High-level quantum programming 
features include automatic memory management, user defined 
operators and functions, and computation of the inverse of a 
user defined operator.  QCL may be downloaded from the web 
at http://tph.tuwien.ac.at/~oemer/qcl.html 

Betelli et al. [19] devised an imperative language based 
upon C++. The language was created in the form of a C++ 
library, and thus can be compiled. It is also maintained as a 
downloadable source code through http://sra.itc.it/people/ 

serafini/qlang/ 

Important features of this language include construction and 
optimization of quantum operators at run-time, classes for 
basic quantum operations like QHadamard, QFourier, QNot, 
QSwap, and Qop.  The language also supports user definition 
and construction of new operators.   Another important feature 
offered by this language is simulation of the noise parameters 
in the simulator. 

This language is occasionally called Q Language by the 
authors, but another perhaps more prominent functional 
language exists with the same name, (for which the Q stands 
for eQuation), thus use of this name should probably be 
avoided in at least one of the two contexts.  

Another imperative quantum programming language, called 
qGCL (quantum Guarded Command Language), was proposed 
by Sanders & Zuliani [20] as a derivative of Dijkstra’s 
guarded command language, intended more for algorithm 
derivation and verification rather than programming. 

Most recently (October 2007) Mlnarik [21] introduced the 
imperative quantum programming language LanQ which uses 
C-like syntax and supports both classical and quantum process 
operations, including process creation and interprocess 

communication. Mlnarik provides full formalized syntax for 
the language, operational semantics, proves type soundness 
(eliminating type errors) for the non-communicating part of 
the language, and can be used for proving correctness of 
implemented quantum algorithms. The author also provides a 
publicly accessible simulator for LanQ at 

http://lanq.sorceforge.net/ 

B. Functional Quantum Programming Languages 

Functional (or declarative) programming languages do not 
rely upon the update of a global system state, but instead 
perform mathematical transformations by executing mappings 
from inputs to outputs.  Most recent developments in quantum 
programming have focused on the use of functional rather than 
imperative languages. The languages in this category are 
based upon the concept of a lambda calculus.  Lambda calculi 
are constructions from mathematical logic used to investigate 
the properties of functions, such as computability, recursion, 
and stopping.   

Lambda calculi may be considered the smallest universal 
programming languages. They consist of a single 
transformation rule (variable substitution) and a single 
function definition scheme. They are universal in the sense 
that any computable function can be expressed and evaluated 
using this formalism. It is thus equivalent to the Turing 
machine formalism. However, lambda calculi emphasize the 
use of transformation rules, and do not care about the actual 
machine implementing them.  

Lambda calculi were first proposed by Alonzo Church and 
Stephen Cole Kleene in the 1930s, and used by Church in 
1936 [22], [23] to address the decision problem 
(entscheidungs-problem) challenge proposed by David 
Hilbert. Lambda calculi can be used to define what a 
computable function is.  The question of whether two lambda 
calculus expressions are equivalent cannot be solved by a 
general algorithm. This was the first question, even before the 
halting problem, for which undecidability could be proved. 
Since their invention, lambda calculi have greatly influenced 
classical functional programming languages such as Lisp, ML 
and Haskell. 

In 1996 Maymin [24] proposed a quantum lambda calculus 
to investigate the Turing computability of quantum 
algorithms.  While Maymin’s lambda calculus was found to 
efficiently solve NP-complete problems, it was unfortunately 
found to be more expressive than any physically realizable 
quantum computer [25]. 

In 2004 van Tonder [26] defined a quantum lambda 
calculus for pure quantum computation (no measurements take 
place), analyzed the non-duplicability of quantum states 
through use of linear logic, and argued that the language has 
the same equivalent computational capabilities as a quantum 
Turing machine.  Quantum algorithms are implemented in a 
quantum simulator built upon the Scheme programming 
language. 

Also in 2004 Selinger [27] proposed a functional quantum 
programming language called QFC (Quantum Flow Charts) 
which represents programs via functional flow charts, and an 
equivalent form which utilizes textual syntax called QPL 
(Quantum Programming Language).   These languages rely 
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upon the notion of using classical control and quantum data, 
and build upon a lambda calculus model to handle both 
classical and quantum data within the same formalism.  These 
languages may be compiled using the QRAM virtual quantum 
computer model. However, they still lack many desirable 
aspects including higher-order features and side-effects.  

In 2004 Danos [28] studied a one-way (non-reversible) 
model of quantum computation that included notation for 
entanglement, measurement, and local corrections. 

In 2005 Perdrix [29] defined a type system that reflects 
entanglement of quantum states. This too was based upon a 
lambda calculus. Altenkirch and Grattage [30], [31] developed 
a functional quantum programming language called QML in 
which control as well as data may be quantum. QML is based 
upon a linear logic [10] (described previously in Section II), 
but focuses on the elimination of weakening (discarding a 
quantum state) instead of contraction (duplication of quantum 
state). Several researchers have proposed domain-specific 
functional quantum programming languages implemented in 
Haskell, following in the style of Selinger’s QPL, using linear 
logic and lambda calculi, and building upon the 2001 work of 
Mu and Bird [32] in which quantum programming is modeled 
in Haskell through definition of a data type for quantum 
registers. Sabry [33] extended this model to include 
representation of entangled states.  Other related efforts in this 
vein include the work of Vizzotta and da Rocha Costa [34], 
Karczmarczuk [35], and Skibinski [36]. 

 

C. Other Quantum Programming Language Paradigms 

A substantially different approach to quantum programming 
was offered by Freedman, Kitaev, and Wong [37] based upon 
the simulation of topological quantum field theories (TQFT’s) 
by quantum computers.  TQFT’s   provide a more robust 
model of quantum computation by representing quantum 
states as physical systems resistant to perturbations. Quantum 
operations are determined by global topological properties, 
such as paths that particles follow.  This radically different 
approach to quantum computing may provide new insights 
and lead to the creation of new types of quantum algorithms.  
However, as currently formulated it only deals with evolution 
of state and does not include a measurement process. 

A number of efforts have been made in recent years to 
define languages to support quantum cryptographic protocols, 
and specifically focus on the inclusion of communication 
between quantum processes.  Such processes may be local or 
nonlocal, thus giving rise to distributed quantum programming 
specifications. A prime example of this is Mauerer’s [38] 
specification of the cQPL language, based upon Selinger’s 
QPL, but with extensions added to support communication 
between distributed processes.   

Another thread of development has focused on the use of 
quantum process algebras, such as QPAlg (quantum process 
algebra) by Jorrand and Lalire [39] to describe interactions 
between classical and quantum processes.  Gay and Nagarajan 
[40] define the language CQP (communicating quantum 
processes) for modeling systems combining classical and 
quantum communication, with particular emphasis on 

applications such as quantum cryptography. CQP is designed 
specifically to provide complete protocol analysis, prove type 
soundness, and lead to methods for formal verification of 
systems modeled in the language.  Both QPAlg and CQP 
influenced the design of the imperative programming language 
LanQ described previously.  

Adão and Mateus [41] give a process calculus for security 
protocols built upon the QRAM computational model with an 
added cost model.  Udrescu et al. [42] describe a hardware 
description language for designing quantum circuits similar to 
those used for VLSI design. 

The use of Girard’s linear logic and lambda calculus has 
spurred a considerable amount of recent work in the 
formulation of mathematical formalisms for quantum 
computing that include such semantic features as 
entanglement, communication, teleportation, partial and mixed 
quantum states, and destructive measurement.  While exciting 
and worthwhile, these formalisms generally fall short of 
actually specifying specific programming languages with full 
syntax, well defined operators, and simulators and compilers 
needed to implement Shor’s or Grover’s algorithms or to 
create and test new quantum algorithms. These efforts do help 
to address shortcomings in quantum theory itself as discussed 
in the next section. 

 

IV. CHALLENGES IN QUANTUM PROGRAMMING LANGUAGE 

DEVELOPMENT 

The difficulties in formulating useful, effective, and in some 
sense universally capable quantum programming languages 
arise from several root causes.  First, quantum mechanics itself 
(and by extension quantum information theory) is incomplete.  
Specifically missing is a theory of measurement.  Quantum 
theory is quite successful in describing the evolution of 
quantum states, and even in predicting probabilistic outcomes 
after measurements have been made, but the process of state 
collapse is (with a few exceptional cases) not covered.  So 
issues such as decoherence, diffusion, entanglement between 
particles (or entangled state, of whatever physical 
instantiation), and communication (including teleportation) are 
not well defined from a quantum information (and by 
extension quantum computation) perspective.  Work with 
semantic formalisms and linear logic attempt to redress this by 
providing a firmer basis in a more complete logic consistent 
with quantum mechanics.  These logic-based formalisms 
(once validated) may then be combined with language syntax 
and other programming language features to more accurately 
and completely reflect the potential capabilities of quantum 
computing. 

A second key source of difficulty is the lack of quantum 
computing hardware for running quantum algorithms.  Given 
no specific set of quantum operations (e.g. specific quantum 
gates, ways that qubits are placed in superposition or 
entangled), then no guidance is available to computer 
scientists designing quantum programming languages as to 
what data structures should be implemented, what types of 
operations to allow, what features to disallow (such as abiding 
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by the no-cloning theorem), and how to best design the 
language to do what quantum computing does best (e.g., is an 
imperative language like C or Java a better place to start, or a 
functional language like LISP or APL?). A third source of 
difficulty is the paucity of practical applications for quantum 
computing. Shor’s algorithm generated tremendous 
excitement over the potential of quantum computing in large 
part because most educated individuals could immediately 
recognize the value of the contribution, at least in the context 
of code breaking.  Grover’s algorithm also provides a speed-
up over classical computation for a specific class of problems 
(searching unsorted lists), from O(N) to O(N1/2), which is still 
quite impressive, especially for large N.   Shor’s algorithm is 
capable of achieving its impressive speedup by exploiting the 
structure of the problem in the quantum domain, recasting the 
factoring problem as a period-finding problem which may 
then be solved in parallel.  Grover’s algorithm is arguably 
more general, and variants of Grover’s algorithm have been 
proposed for a variety of problems [43], [44]. 

Finally, there is much on-going research to understand the 
quantum physics behind quantum information, and by 
extension quantum computing.  We have previously discussed 
several quantum computing conceptual models including 
QRAM, the quantum Turing machine, and the quantum circuit 
model. However, recent work by in the area of adiabatic 
quantum computing by Dorit Aharonov [45] and weak 
measurements by Jeff Tollaksen [46] and Yakir Aharonov 
[47] arguably falls under none of these categories, yet these 
methods represent potentially exciting new directions for 
realizing quantum computing.  But this wealth of models also 
serves to further complicate the process of establishing a set of 
practical tools for writing quantum programs, namely quantum 
programming languages. 

 

V. A PATH FORWARD FOR QUANTUM PROGRAMMING 

LANGUAGE DEVELOPMENT 

Julia Wallace [13] in her quite thorough survey of quantum 
simulators notes that most of the simulators and even some of 
the languages developed could only really implement one 
algorithm, usually Shor’s (some could do Grover’s as well, 
and some could do more).  Selinger [2] comments  “each new 

algorithm seems to rely on a unique set of ‘tricks’ to achieve 

its goal”. The hope, of course, is that one can take a set of 
known quantum algorithms, such as Shor’s, Grover’s, 
Deutsch-Jozsa, and a few others, and from this set to grow a 
methodology for quantum programming, or at least generate a 
few new useful quantum algorithms.  Unfortunately, this set of 
examples is too small and specialized to grow a methodology 
for quantum programming, and generating useful new 
quantum algorithms has proven quite difficult.   

The work in operational semantics, lambda calculi, and 
linear logic (described above) and the inclusion of a complete 
programming grammar and syntax will undoubtedly yield 
multiple powerful languages for developing quantum 
algorithms.  These languages will probably be of the 
functional class, but they may take other forms as well.  

However, the question of what sorts of quantum programs will 
be written and what applications they will address is still open, 
and the answer to this question will serve as a major driving 
factor in shaping the quantum programming languages to 
come.  This is supported analogically by comparison with the 
numerous application domains for classical computing and the 
even larger number of classical programming languages 
created to develop products from them in the form of 
application programs. 

Perhaps the greatest potential for useful computational gains 
of quantum computing over classical computing may be found 
with the class of problems known hidden subgroup problems 
[48], [49].  The factoring problem that Shor’s algorithm 
addresses, as reformulated by Shor, falls within this class.  
One strategy, then, would be to try to understand which 
problems may be mapped into the hidden subgroup problem 
class, and then investigate those problems for development of 
quantum algorithms to address them. 

Finally, the realization of quantum computing hardware will 
significantly drive the design of quantum language operators 
and data structures for quantum programs to be run on that 
hardware.  We can already make some guesses about early 
hardware (e.g. superposition of a small number of locally 
contiguous qubits, preparation of states using Hadamard gates, 
rapid decoherence of quantum states).  But if qubits are 
represented by photons, such guesses may very well be wrong.   

When considering the need for quantum algorithms, and 
asking what kinds of quantum algorithms are needed, it is 
useful to think of a (classical) programmer as possessing a 
toolbox filled with a rich diversity of tools (algorithms) from 
which he/she can construct solutions (new programs) to client 
problems.  From this basis we can proceed cautiously to 
design small but interesting quantum algorithms, gradually 
expanding the universe of basic quantum functions and 
capabilities to put into our quantum programming toolbox.   

REFERENCES 

[1] D. Deutsch  and R. Jozsa, “Rapid solutions of problems by quantum 
computation,” in Proceedings of the Royal Society of London, Series A, 
vol. 439, pp. 553-558, 1992. 

 
[2] P. Selinger, “A brief survey of quantum programming languages,” in 

Proceedings of the 7th International Symposium on Functional and 

Logic Programming, volume 2998 of Lecture Notes in Computer 
Science, Springer, 2004. 

 
[3] S. Gay, “Quantum Programming Languages: Survey and Bibliography,” 

in Mathematical Structures in Computer Science, 16(4), Cambridge 
University Press, 2006. 

 
[4] R. Feynman, “Simulating physics with computers,” in International 

Journal of Theoretical Physics 21(6–7), pp. 467–488, 1982. 
 
[5] J. Preskill, “Lecture notes for physics 219: Quantum information and 

computation,” 1998.  Available from http://www.theory.caltech.edu 
/people/preskill/ph219 

 
[6] G. Birkhoff and J. von Neumann, “The Logic of Quantum Mechanics,” 

Annals of Mathematics, Vol. 37, pp. 823-843, 1936. 
 

[7] D. Deutsch, “Quantum theory, the Church-Turing principle and the 
universal quantum computer,” in Proceedings of the Royal Society of 

London A 400, pp. 97–117, 1985. 



Preprint, Proceedings of the Second International Conference on Quantum, Nano, and Micro Technologies (ICQNM 2008), 
IEEE Computer Society, pp. 66-71, 2008. 

[8] M. Nielsen and I. Chuang, Quantum Computation and Quantum 

Information, Cambridge University Press, 2000. 
 
[9] A. Kitaev, A. Shen, and M. Vyalyi, Classical and Quantum 

Computation, Number 47 in Graduate Series in Mathematics, AMS, 
Providence, RI, 2002. 

 
[10] J. Girard, “Linear logic,” Theoretical Computer Science, 50:1-102, 

Elsevier Science Publishers Ltd., 1987. 
 
[11] E. Knill, “Conventions for quantum pseudocode,” Technical Report 

LAUR-96-2724, Los Alamos National Laboratory, 1996. 
 
[12] I. Glendinning, “Quantum programming languages and tools,”  

http:// www.vcpc.univie.ac.at/ian/hotlist/qc/programming.shtml 
 
[13] J. Wallace, “Quantum Computer Simulation - A Review; ver. 2.1,” 

University of Exeter Technical Report, 1999. See also the web site 
http://www.dcs.ex.ac.uk/~jwallace/simtable.html, 2002. 

 
[14] B. Ömer, “A Procedural Formalism for Quantum Computing,” Master’s 

Thesis, Department of Theoretical Physics, Tech. Univ. of Vienna, 1998. 
 
[15] B. Ömer, “Quantum Programming in QCL,” Master’s Thesis, Institute 

of Information Systems, Technical University of Vienna, 2000. 
 
[16] B. Ömer, “Procedural quantum programming,” in Proceedings of the 

AIP Conference on Computing Anticipatory Systems, American Institute 
of Physics, 2001. 

 
[17] B. Ömer, “Classical concepts in quantum programming,” arXiv:quant-

ph/0211100, 2002. 
 
[18] B. Ömer, “Structured Quantum Programming,” Ph.D. thesis, Technical 

University of Vienna, 2003. 
 
[19] S. Bettelli, T. Calarco, and L. Serafini, “Toward an architecture for 

quantum programming,” in The European Physical Journal D 25, pp. 
181–200, EDP Sciences/Springer, 2003. 

 
[20] J. Sanders P. and Zuliani, “Quantum programming,” in Mathematics of 

Program Construction, volume 1837, LNCS, Springer, 2000. 
 
[21] H. Mlnarik, “Operational Semantics and Type Soundness of Quantum 

Programming Language LanQ,” arXiv:quant-ph/0708.0890v1, 2007. 
 

[22] A. Church, “An unsolvable problem of elementary number theory,” in 
American Journal of Mathematics, 58, pp. 345–363, 1936. 

 
[23] A. Church,  “A note on the Entscheidungsproblem,” in Journal of 

Symbolic Logic, 1, pp. 40–41, 1936. 
 
[24] P. Maymin, “Extending the lambda calculus to express randomized and 

quantumized algorithms,” arXiv:quant-ph/9612052, 1996. 
 
[25] P. Maymin, “The lambda-q calculus can efficiently simulate quantum 

computers,” arXiv:quant-ph/9702057, 1997. 
 
[26] A. van Tonder, “A lambda calculus for quantum computation, in SIAM 

Journal on Computing 33(5), pp. 1109–1135, 2004.  Also arXiv:quant-
ph/0307150. 

 
[27] P. Selinger, “Towards a quantum programming language,” in 

Mathematical Structures in Computer Science 14(4), pp. 527–586, 
Cambridge University Press, 2004. 

 
[28] V. Danos, E. Kashefi, and P. Panangaden, “Parsimonious and robust 

realizations of unitary maps in the one-way model,” in Physical Review 

A 72(064301), The American Physical Society, 2005.  Also arXiv:quant-
ph/0411071. 

 
[29] S. Perdrix, “Quantum patterns and types for entanglement and 

separability,” in Proceedings of the 3rd International Workshop on 

Quantum Programming Languages, Electronic Notes in Theoretical 
Computer Science, Elsevier Science, 2005. 

[30] T. Altenkirch and J. Grattage, “A functional quantum programming 
language,”  in Proceedings of the 20th Annual IEEE Symposium on 

Logic in Computer Science,  IEEE Computer Society, 2005.   
 
[31] T. Altenkirch and J. Grattage, “QML: Quantum data and control,” 

manuscript, 2005. 
 
[32] S. Mu and R. Bird, “Functional quantum programming,” in Proceedings 

of the 2nd Asian Workshop on Programming Languages and Systems, 
Korea Advanced Institute of Science and Technology, 2001. 

 
[33] A. Sabry, “Modelling quantum computing in Haskell,” in Proceedings 

of the ACM SIGPLAN Workshop on Haskell, ACM Press, 2003. 
 
[34] J. Vizzotto and A. da Rocha Costa, “Concurrent quantum programming 

in Haskell,” in VII Congresso Brasileiro de Redes Neurais, Sessão de 

Computação Quântica, 2005. 
 
[35] J. Karczmarczuk, “Structure and interpretation of quantum mechanics — 

a functional framework,” in Proceedings of the ACM SIGPLAN 

Workshop on Haskell, ACM Press, 2003. 
 
[36] J. Skibinski, “Haskell simulator of quantum computer,” 2001.  

Available from http://web.archive.org/web/20010520121707/ 
www.numeric-quest.com/haskell. 

 
[37] M. Freedman, A. Kitaev, and Z. Wong, “Simulation of topological field 

theories by quantum computers,” arXiv:quant-ph/0001071/v3, 2000. 
 
[38] W. Mauerer, “Semantics and Simulation of Communication in Quantum 

Computing,” Master’s Thesis, University Erlangen-Nuremberg, 2005. 
 
[39] P.  Jorrand and M. Lalire, "From Quantum Physics to Programming 

Languages: A Process Algebraic Approach," Unconventional 

Programming Paradigms, LNCS Series, Vol. 3566, Springer, 2005. 
 

[40] S. Gay and R. Nagarajan, "Communicating quantum processes," in 
Proceedings of the 32nd ACM Annual Symposium on Principles of 

Programming Languages, pp. 145-157, ACM Press, 2005. 
 
[41] P. Adão and P. Mateus, “A process algebra for reasoning about quantum 

security,” in Proceedings of the 3rd International Workshop on 

Quantum Programming Languages, Electronic Notes in Theoretical 
Computer Science, Elsevier Science, 2005. 

 
[42] M. Udrescu, L. Prodan, and M. Vlâdutiu, “Using HDLs for describing 

quantum circuits: a framework for efficient quantum algorithm 
simulation,” in Proceedings of the 1st ACM Conference on Computing 

Frontiers, ACM Press, 2004. 
 
[43] M. Lanzagorta, R. Gomez, and J. Uhlmann, “Quantum Rendering,” in 

Proceedings of SPIE Vol. 5105, Quantum Information and Computation, 
E. Donkor, A. Pirich, H. Brandt (Eds.), SPIE Press, 2003. 

 
[44] M. Lanzagorta and J. Uhlmann, “Quantum Computational Geometry,” 

In Proceedings of SPIE Vol. 5436, Quantum Information and 

Computation II, E. Donkor, A. Pirich, H. Brandt (Eds.), SPIE, 2004. 
 
[45] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. 

Regev, "Adiabatic Quantum Computation is Equivalent to Standard 
Quantum Computation," arXiv:quant-ph/0405098, 2006. 

 
[46] J. Tollaksen and D. Ghoshal, “NP Problems, Post-selection and Weak 

Measurements,” in Proceedings SPIE, Defense and Security Conference, 
Florida, SPIE Press, 2006. 

 
[47] Y. Aharonov and D. Rohrlich, Quantum paradoxes: quantum theory for 

the perplexed, Wiley-VCH, 2005. 
 
[48] A. Kitaev, "Quantum measurements and the Abelian Stabilizer 

Problem," quant-ph/9511026, 1995. 
 
[49] S. Lomonaco (Jr.) and L. H. Kauffman, “Quantum Hidden Subgroup 

Algorithms: A Mathematical Perspective,” AMS CONM/305, pp. 139-
202, 2002. Also arXiv:quant-ph/0201095. 


