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Abstract— We describe a framework that combines a soft-
ware development paradigm, a software visualization technique,
and a tool for robot programming. This infrastructure is called
“Graphical State Space Programming” (GSSP), and allows
robot application programs to be decomposed and visualized
within state-dependent views. Our approach simplifies and
expedites the programming process for robot routines and
behaviors, and we examine the performance improvement that
ensues through a set of controlled user studies. The usability
and effectiveness of GSSP are also illustrated using a field
demonstration with an aerial robotic vehicle.

I. INTRODUCTION

This paper presents a software framework that facilitates
the programming of typical execution plans for mobile robots
by making geometric primitives explicit while using an
aspect-oriented representation and visualization of the code-
base. Our tool incorporates both a textual programming in-
terface and a graphical flow-chart editor, allowing the user to
specify robot routines using a combination of the procedural
programming style (i.e. “What sequence of actions should the
robot use to accomplish a specific task?”) and the declarative
programming style (i.e. “How should the robot react to a
specific event or an anomaly?”). We explore various aspects
and issues related to this programming methodology, some
of which have been investigated previously [1]. In addition,
we analyze this framework using a concrete implementation,
multiple field tests, and a user study.

The primary goal of our framework is to allow program-
mers to efficiently generate plans that address a sequence
of tasks while monitoring various constraints on the state of
the robot and of the environment. These robot plans often
encompass a desired path through the environment, a set of
activities to be carried out at specific locations or within
certain regions, and various other behaviors and failsafe
mechanisms to deal with unexpected events. We model all of
these three components as routines that are triggered when
certain conditions are satisfied.

As a concrete example that illustrates different components
in a plan, we often want our unmanned aerial vehicle (UAV),
seen in Fig. 1, to take pictures of specific events and locations
while travelling through a particular trajectory. We also want
to ensure that the vehicle remains within an operational range
and want it to constantly monitor factors that might affect
its normal operation, such as low battery levels and strong

The authors are with the School of Computer Science, McGill
University, 3480 University Street, Montréal, QC, Canada H3A 2A7
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Fig. 1. Our robotic platform is a commercial fixed-wing UAV with an
on-board autopilot microprocessor and a gimbal-mounted camera.

wind conditions. For each of these exception states, the robot
should either attempt to resolve the anomaly, or it should
return back to home base immediately. All of these regular
activities and failsafe mechanisms can be implemented as
conditionally-triggered routines.

Common robot programming interfaces include:
• a text-based programming environment for writing code

in a standard computer language
• a graphical editor for specifying the flow of execution

and the transfer of data
• a graphical user interface (GUI) for depicting the desired

motion path and for issuing location-specific commands
over a map of the environment

When using either of the first two types of interfaces, we
can employ conditional constructs, such as if-else statements
or graphical flow branch elements, to trigger individual
robot routines. We can also define an order of execution
by concatenating multiple conditional triggers together. Un-
fortunately, it is often difficult to embed failsafe behaviors
into the normal ordering of activities, since these reactive
mechanisms can be triggered at any time during execution.
Brute-force attempts to do so may result in hard-to-find logic
flaws in the execution flow.

In contrast, graphical control environments display the
motion path and the sequence of location-specific actions
over a map of the environment, which allows operators to
easily identify and fix errors in the ordering of activities.
Most of these systems however lack generic programming
mechanisms for specifying branching paths and failsafe
behaviors, and therefore can be used to implement only a
limited subclass of robot plans.



Because the drawbacks of these programming environ-
ments are complementary to each other, we propose to
merge their programming styles together into our Graphical
State Space Programming (GSSP) paradigm. Through a GUI,
GSSP allows users to define waypoints on a map of the world
and to indicate regional constraints (i.e. regions) in the state
space. Separately, programmers can write procedural code
using a standard computer language to implement individual
robot routines and behaviors. After attaching a block of
code either to a waypoint or to a region, GSSP can then
use this geometric information to determine when the code
should be executed. Thus, GSSP preserves the expressiveness
of textual programming and handles geometric constraints
explicitly. In addition, since so many robot behaviors are
tied to specific states or locations, GSSP provides a useful
graphical visualization of the constraint space.

GSSP also integrates implementations of core functional
modules (i.e. sensor processing, pose estimation, and path
planning algorithms) in its back end. This prevents users
from re-implementing the same basic functionalities in every
plan. In addition, users can configure GSSP to incorporate
specific motion controllers (e.g. [2], [3]), which would then
systematically change the robot’s behavior across all plans.
By using this abstraction layer for plans and by decoupling
geometric constraints (e.g. waypoints and regions) from
robot routines, GSSP employs an aspect-oriented approach
for specifying plans, which increases modularity by allowing
the separation of cross-cutting concerns [4]. This in turn has
been shown to directly result in a more understandable and
maintainable codebase [5].

In prior work we showed that the visualization of
waypoint-based programming improves productivity [1]. In
this paper, we extend that work substantially by developing
a richer vocabulary for geometric constraints while retaining
simple visualizations, and describing a robust conflict resolu-
tion mechanism for managing concurrent robot behaviors. In
addition, we examine the system’s usability and performance
through a set of user performance studies and through a
large-scale field study.

II. GRAPHICAL STATE SPACE PROGRAMMING

The Graphical State Space Programming (GSSP)
paradigm is used to specify execution plans for mobile
robots. GSSP employs different programming approaches
to address the two types of routines found in typical plans
– a procedural-style ordering of location-specific tasks (e.g.
“Go to this set of coordinates and take pictures of each
location.”), and a declarative-style grouping of reactive
behaviors (e.g. “When your battery is low, return home
immediately.”). GSSP represents location-specific tasks as
a sequence of waypoints, where each waypoint may be
associated with a set of actions that are executed when
the robot arrives at the corresponding location. In contrast,
GSSP implements reactive behaviors as a set of actions
that are triggered when the state (of the robot and of the
environment) lies within certain regional constraints, which
we refer to as regions. On a basic level, waypoints and

regions are both geometric analogs to Boolean combinations
of inequalities found within conditional (i.e. if-else) clauses.
In reality however, since the robot might need to carry
out waypoint-based routines and region-based behaviors
concurrently, GSSP supplements these conditions with
additional criteria to establish a priority scheme for handling
concurrent execution.

GSSP generates execution plans using a state space repre-
sentation, which decouples the codebase for plans from low-
level, robot-specific hardware instructions. The state space
is the space spanning all parameters relevant to the robot’s
programming, which are commonly called state variables.
State variables comprise of both parameters for the robot,
such as its horizontal position and its battery level, and
parameters of the environment, such as the temperature
and the time of day. State space programming affects the
robot’s behavior by issuing a change of state to the robot
controller, which maps this request into input parameters
for its specific hardware resources. For example, to move a
wheeled vehicle, GSSP first computes the vector between the
robot’s current position and the desired coordinates. When
the robot controller receives this change of state, it then
carries out the request by adjusting the wheel velocities to
steer the vehicle towards the destination. This state space
representation allows the same plans to be executed on-board
different hardware platforms, and is not coupled to motion
planners or controllers.

A. Waypoint-Based Programming

A common structure found in the majority of plans for
mobile robots is a sequential execution flow alternating
between where the vehicle should move to next and which
actions to take at that destination. Although programmers can
readily implement this sequence of location-specific actions
by writing procedural code, GSSP provides the necessary
infrastructure both to minimize the amount of programming
required from the user, and to decouple common control
logic from each plan’s codebase.

GSSP allows the user to visually drop and connect sets of
waypoints on a map of the robot’s state space, as shown in
Fig. 2. Waypoints can be specified only for writable state
variables, which are parameters that the robot’s actuators
can affect. A waypoint for one or two state variables can
be visualized as a point on either a 1-D grid bar or a 2-D
map. One of the most important maps for terrestrial and
aerial vehicles is the top-down view of the environment,
which depicts the x and y state variables. Another useful map
that can be displayed in GSSP is the combined configuration
space of all the joints of a robotic arm.

GSSP can couple different state variables together, which
enforces waypoints to be specified only within their joint
space. For example, it is often desirable to couple the x
and y state variables for outdoor wheeled robots to prevent
the user from creating a waypoint in y without providing
the accompanying x values. On the other hand, this state
coupling might not be as useful for wall-climbing robots.



Fig. 2. Our GSSP implementation can visualize a state variable as a 1-D
grid bar, and a pair of state variables as a 2-D grid map. Although regions
can be defined on any state variables, waypoints can be specified only for
writable state variables, i.e. those that the robot’s actuators can affect.

Once a set of waypoints is created, the user can attach
procedural code, written in a standard computer language,
to any individual waypoint. Each block of code indicates
the actions that the robot should execute when it arrives
at the associated location. The user can explicitly initiate a
waypoint set by writing a special function call and attaching
it to either a region or waypoint. For example, to merge two
separate paths, the user can trigger one waypoint set through
a function call attached to a waypoint in the other set.

B. Region-Based Programming

Although the execution flow is relatively simple when
programming waypoint-based actions procedurally, the logic
can become drastically more complex when declarative-style
reactive behaviors are added to the robot’s programming.
Building reactive routines to cope with unexpected events
and state anomalies is an inherently declarative task – these
behaviors describe what the robot should do when something
does not go according to the original plan, but not how these
actions should be integrated into the program ordering.

1) Triggering Regions: GSSP allows the user to define
triggering conditions for reactive robot behaviors by drawing
rectangular regions in the state space, as illustrated by Fig. 2.
A region depicts a set of constraints applied to one or
more state variables. A constraint can either take the form
as an equality (e.g. x = 10 m), a one-sided inequality (e.g.
battery < 25 %), or, most frequently, a two-sided inequality
(e.g. 0 m < y ≤ 50 m). Unlike waypoints, which can be
specified for writable state variables only, the user can define
regional constraints on any variables or parameters. As a
concrete example, the user can prevent an aerial vehicle from
losing stability in a windy environment by writing code to
reduce its altitude and attaching that code to a triggering
region of the form windSpeed > 20 m/s.

Since high-dimensional regions only depict intersections
of constraints, GSSP complements this by allowing the
user to combine multiple constraints using arbitrary Boolean

logic. A Boolean region is defined as the composite of multi-
ple regions via their intersection (i.e. AND), their union (i.e.
OR), or their negation (i.e. NOT). Aside from being used to
combine constraints on multiple parameters, Boolean regions
can also depict complex geometric shapes. For example, if
a terrestrial robot is on patrol duty around a rectangular
building, the operator can construct a rectangular ring-shaped
area containing the patrol route and instruct the robot to take
pictures every so often when it is within this area. Although
both (simple) regions and Boolean regions can be used to
specify multi-dimensional constraints, the former interface
provides a useful geometric visualization, whereas the latter
is syntactically more expressive.

GSSP provides a unified scheme for managing region-
based behaviors. In particular, when a triggering region is
satisfied, GSSP will attempt to initialize an instance of
the attached code block. This scheme also forbids having
more than one instance of each code block at any time
during execution. This simplifies the conceptual model of
our system by avoiding concerns related to thread safety.

2) Properties of Regions: By default, GSSP will spawn
a new instance of a code block immediately if its triggering
region is satisfied and if there are no existing instances for
this code block. The user can specify a repetition count to
limit the total number of times that the code block can be
instantiated, and the user can also provide a time interval
to delay the execution timing between consecutive code
instances.

When writing routines to address anomalous states and
unexpected events, we often want to stop the recovery
process when the state returns back to normal. For example,
if a terrestrial robot moves out of an operational area, one
way to bring it back is to define a negated region outside the
operational range and attach code that triggers a waypoint
located inside the range. This might lead to an unexpected
result however, because once the waypoint is initiated, GSSP
will ensure that the robot reaches the destination before
resuming other activities. To address this issue, GSSP de-
fines an optional bounding region property for each code
block. During execution, when a bounding region ceases to
be satisfied, GSSP will terminate that corresponding code
instance.

3) Concurrent Behaviors: Arguably the biggest advantage
of using region-based programming is the notion of concur-
rency – by defining multiple region-specific code blocks, the
user can request the robot to perform different actions at
the same time. For example, the user can instruct an UAV
that is flying through a set of waypoints to take pictures
repeatedly within a certain area, by inserting a corresponding
region and then attaching the camera request to that region.
In contrast, to program the same task by writing procedural
code, the user must either implement a separate picture-
taking thread or manually issue the same camera command
at multiple positions in the execution flow. This simple yet
typical example illustrates that declarative programming can
be conveniently used to add behaviors and functionalities to
existing execution plans.



Fig. 3. The main GUI window of our GSSP implementation is used to attach blocks of code, written in a standard computer language, either to a regional
constraint on the state space, or to an entry within a set of waypoints. The user can also configure the priority value and other parameters of each region.
Please refer to our video accompaniment for a demonstration of our GUI.

A critical issue in concurrent programming is the presence
of resource-related conflicts. For example, the user can define
two overlapping regions that request the robot to move to
different locations. This creates a conflict in the execution be-
cause both code instances are attempting to control the same
resource. This type of multi-process resource management
is a well studied concept in operating systems design [6],
and GSSP resolves these conflicts using one of the most
popular schemes available. First, each triggering region (and
thus each code block) is assigned a priority value. Whenever
a code instance requests a state change on an available
resource, GSSP allocates that resource to the code instance
until the state change has been fulfilled. Now consider the
case of a conflict by assuming that code instance A currently
owns a resource R and code instance B requests a state
change on the same resource R. If B has equal or higher
priority than A, then GSSP will pause A and grant R to B.
Otherwise, if B has lower priority than A, then GSSP will
pause B. In both cases, the blocked code instance will be
resumed as soon as the resource R becomes available.

This simple yet powerful conflict resolution scheme is well
suited for our robot application programming domain. For
example, given two sets of waypoints corresponding to a
global path through the environment and a local path used
to explore a certain region, the user can combine these two
trajectories by attaching code that initiates the local path to
one of the waypoints in the global path. Since the local
waypoint set is triggered by the global waypoint set, the
former inherits the same priority value as the latter. When
the local waypoint set is initiated during execution, GSSP
will pause the code instance running the global waypoint
set, let the robot explore the region of interest by following
the local trajectory, and then resume the global path.

GSSP allows the user to establish an order of importance
among different reactive robot behaviors by changing the

priority rating for each corresponding triggering region. This
priority rating does not have an effect on concurrent execu-
tion unless multiple code blocks with different priority values
request the same resource. In this case, our conflict resolution
scheme correctly allocates the resource to the code instance
with the higher priority and pauses all other conflicting code
instances with lower priority. Thus, our priority scheme can
be used to ensure that anomalous states are addressed in order
of urgency, and that normal activities are resumed once the
anomalies have been resolved.

As a concrete example, the user can instruct a robot that
is low on battery to return back to home base, by creating a
high-priority region of the form battery< 10 % and attaching
code to initiate a single waypoint located at home base.
Although GSSP will carry out this failsafe behavior properly,
it will not prevent other concurrent code blocks (as in the
picture-taking example) from further depleting the battery.
To resolve this issue, the user can make a special function
call in the code block that will disable and prevent all code
instances with lower priority from executing. Although this
feature should not be used carelessly, it can assist in the
successful and timely recovery from a dire emergency by
disabling non-essential robot behaviors.

III. IMPLEMENTATION

We implemented a graphical editor (as seen in Fig. 3) and
the back end infrastructure for our GSSP paradigm. We used
the Python computer language both for our implementation
as well as for writing procedural code in GSSP. Python is
well suited for our application because of its terse syntax,
because of its versatile platform compatibility, and because
it is supported by many popular robot middleware packages.
Furthermore, since the Python interpreter only evaluates code
during runtime, this allows the user to modify the plan during
execution.
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Fig. 4. Condensed class diagram of our GSSP implementation.

As illustrated by the class diagram in Fig. 4, our system
uses a blackboard model [7] for storing and accessing both
the data in plans as well as the current state of the world.
The meta-controller is responsible for continuously ensuring
the proper execution of the plan, which includes evaluating
regions, managing code block instances (i.e. as task threads),
and resolving resource conflicts. Since code blocks can
trigger waypoint sets, which can then trigger more code
blocks, new task threads inherit the priority value of their
parent thread. After collecting and processing state change
requests on different resources from all executing threads, the
meta-controller then issues a combined state change to the
robot-specific controller, which then addresses this request
using low-level hardware commands.

A. Waypoints and Regions

We defined waypoints and regions using exact numeric
inequalities rather than using fuzzy logic to establish an
intuitive conceptual model. To prevent numerical instabilities
however, we allow the user to specify a proximity distance
for waypoints. Thus, waypoint-based code blocks are equiva-
lent to region-based code blocks with small spherical regions.

In our implementation, a code block’s bounding region
can only be either identical to its triggering region or
disabled. In the former situation, GSSP will terminate a
running code instance when its associated region fails to be
satisfied. Although this approach is somewhat restricted, it
prevents scenarios where the triggering region is satisfied
but the bounding region is not satisfied, which could result
in an infinite loop of initialization followed by immediate
termination of the code block instance.

GSSP automatically attaches a global region (i.e. a region
without any constraints) to every plan, in which the user can
define setup code. By adjusting its frequency and priority
parameters, additional global regions can also be used to
specify idle or default behaviors when no other code in-
stances are running. For example, by attaching code to a
low priority global region that triggers a waypoint located
at home base, the user can ensure that the robot will always
return home after it has completed all other activities.

B. Application Programming Interface

In addition to writing generic Python statements in code
blocks, users can employ special variables and functions
defined by GSSP to query state variables, and to create

or modify waypoint coordinates and region parameters. In
addition, the user can issue a state change to any writable
state variable. Although by default user-defined variables are
limited by scope within their individual code blocks, these
variables can be explicitly promoted into a shared or global
namespace.

Because GSSP provides a robot-independent programming
environment, it often cannot replicate all the available func-
tionalities of the target robotic platform. We address this
deficiency by enabling transparency, meaning that we give
the user access to the robot-specific API when writing code
in GSSP. Unfortunately, because some APIs are available
only in a compiled format, our GSSP system does not
make any assumptions on how these low-level functions are
implemented. As a result, GSSP does not provide resource
management, conflict resolution, or other features for these
low-level function calls. Without careful planning, using
transparency carelessly might result in unexpected execution.
For example, if the user adjusts the wheel velocities through
a low-level function call, this might either deviate the robot
away from the trajectory specified within GSSP, or this
command might be instantly overwritten by a requested state
change. Transparency can greatly improve the expressiveness
of robot plans, but the user must be responsible for ensuring
that these low-level function calls do not conflict or nega-
tively affect the meta-controller’s operations.

Our implementation includes a remote interface that allows
external applications to interact with the meta-controller.
In particular, client instances can request values and issue
state changes by sending text messages through a network
socket. This allows programmers to write interfaces using
any programming language that supports network sockets,
and connect their applications to our GSSP framework. Using
a GSSP code block, the user can launch these clients either
synchronously (i.e. the meta-controller will halt execution
until the client sends a terminal command) or asynchronously
(i.e. the meta-controller will continue executing code in-
stances, and has the ability to pause and forcefully terminate
the client instance). Using this remote interface, we were
able to easily write a client that can steer the robot using the
accelerometer of a smart-phone device.

IV. EMPIRICAL VALIDATION

We integrated our GSSP system with the control software
for an unmanned aerial vehicle (UAV). We conducted field
trials to assess the usability and efficiency of our graphical
programming paradigm within a field deployment setting.
We also conducted an elaborate user study in a controlled
environment to quantitatively measure the performance dif-
ference between GSSP and procedural text-based program-
ming.

A. Field Trial

Our UAV, shown in Fig. 1, is a rigid body fixed-wing air-
craft commercially available from Procerus R© Technologies.
Its 1 meter wingspan is built using expanded polypropylene
foam, which is useful for absorbing the collision impact
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Fig. 5. (a) An execution plan that evaluates the priority system, and (b) the
resulting flight trajectory for an UAV. The triangle-shaped waypoint set is
attached to the larger region (with high priority) whereas the circle-shaped
set is connected to the smaller region (with low priority).

during touchdown. A brushless electric motor powered by
lithium polymer batteries can drive the plane at average
ground speeds of 14 m/s and for durations of up to
30 minutes. An on-board autopilot micro-processor receives
instructions from the ground control software wirelessly.
The autopilot is connected to various sensors, including an
accelerometer, a gyroscope, a pitot tube (i.e. pressure and
wind speed sensor), and a GPS device. The UAV can operate
in many modes ranging from joystick-based manual control
to fully autonomous waypoint-based navigation.

We ran our Python GSSP software within a Linux envi-
ronment on-board a 1.66 GHz dual core notebook computer.
Our software communicates with the UAV through the
proprietary ground control software.

Fig. 5(a) depicts a large and low priority region attached
to a triangle-shaped waypoint set, and a smaller region with
higher priority attached to a circle-shaped waypoint set. The
recorded flight path in Fig. 5(b) shows that the UAV started
travelling through the triangular waypoint set, but then im-
mediately switched to the circular trajectory upon entering
the high priority region. After successfully completing the
circular trajectory, the vehicle resumed its previous course,
and finally completed the triangular waypoint set.

We also executed another plan that allowed the human
operator to control the plane using arrow keys through the
remote interface. To ensure that the robot does not fly too far
away from home base however, our plan contained a high
priority negative region that restricted the operational range
by forcing it to go towards home back. During flight, as soon
as the operator steered the vehicle outside of the operational
bounds, GSSP disabled the remote interface and turned the
robot around towards home base. The user regained control
of the plane when it returned within the specified boundaries.
In all of our executed plans including the aforementioned
two, we instructed the UAV to continuously take pictures
using its on-board camera while carrying out other activities.

Our field tests confirmed the successful operation of all the
major aspects of GSSP, including region priority, resource-
related conflict resolution, concurrent behaviors, and external
control using the remote API. We were also able to demon-
strate that GSSP can be used to quickly modify plans and
generate new plans during field trials.

B. User Study Setup

We conducted a controlled user study to evaluate and
compare the performance between GSSP and text-based
procedural programming when specifying typical robot plans
comprising of both location-specific tasks and reactive fail-
safe behaviors. In a controlled environment, we asked the
participants to implement five robot tasks first using GSSP,
and then by writing pure Python code. These tasks consist of
following a set of waypoints, carrying out several location-
specific actions, and three failsafe behaviors in response
to different anomalies. We then asked the participants to
implement a different plan with a similar set of five other
tasks, this time only using GSSP.

Prior to the programming sessions, we provided a 15 min
training session in which we explained the concepts behind
GSSP and demonstrated our GUI. We also provided a
condensed Python documentation of a robot library, as well
as sample code outlining basic Python structures and syntax.

We recruited 16 male and female participants ranging from
19 to 52 years old for this user study, each with varying
degrees of prior robot control and general programming
knowledge. We categorize the participants as follows based
on their level of prior experience with robot programming:

• Regular Users: 11 individuals without prior experience
with programming robots, and with minimal formal
training in writing code in general;

• Expert Users: 4 individuals with prior experience pro-
gramming robots by writing text-based procedural code;

• Developer: the developer of our GSSP implementation.
As in other user studies, results from the “developer” cat-
egory of users do not exemplify typical performance, but
rather serve as a baseline used to compare with other results.

To quantitatively assess each participant’s performance
when using GSSP and when writing pure Python code, we
employed the following three metrics:

• Elapsed Time: the time interval between when the
user begins programming the plan, until when the user
declares that all five tasks have been addressed;

• Typographical Errors: individual keywords, waypoints
or regions that are specified incorrectly, but adjusting
these elements would result in correct execution;

• Task Errors: after correcting all typographical errors, the
number of tasks that were not implemented correctly.

We argue that the last metric provides an assessment on how
well each user understands the concepts of GSSP and of
textual robot programming.

C. User Study Results

We observe that all participants required noticeably more
time (Fig. 6) and committed far more typos (Fig. 7(a)) when
writing pure Python code compared to using GSSP. Arguably
the dominant contributing factor to this performance gap is
the fact that we provided the meta-controller infrastructure
in GSSP, whereas users had to explicitly address geomet-
ric constraints, concurrent execution, and priority schemes
during the text-based programming session. This resulted in
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Fig. 7. Average number of typographical errors (a) and average number of
task errors (b) present for the procedural code session (Code 1) and for the
two GSSP plans (GSSP 1 and GSSP 2). Note: the developer did not make
any task errors during all three sessions.

drastically different codebase sizes, which explains the gaps
in elapsed time and in the number of typographical errors.

In addition to manually implementing features of the meta-
controller, another challenge for users during the textual
programming session is to embed the three reactive failsafe
behaviors into the execution ordering. The participants used
different approaches to emulate reactive behaviors by writing
procedural code, some of which were more successful than
others. As shown in Fig. 7(b), both the regular users and the
expert users made significantly more task errors on average
during their textual programming session.

Upon closer inspection of the elapsed time results, we
observe that even the first GSSP session is characterized by
a two-fold speed improvement over the textual programming
session on average, whereas the second GSSP session further
widens the gap with an average four-fold speed improvement
over the text-based session. This is particularly striking since
GSSP is a completely novel interaction paradigm for all users
except the developer, while all users have some familiarity
with the creation of textual descriptions of process flow (even
if outside the robot programming context). These perfor-
mance gaps are also present in the variance of the dataset,
suggesting that not only did the participants individually
exhibit comparable speed improvements between the three
sessions, but the consistency of the elapsed time across
participants are ordered with a similar proportionality.

One expert user achieved comparable results to that of the
developer for all three metrics and during all three sessions.

In addition, although the standard deviation beams in Fig. 6
indicate that the elapsed times for expert users varied greatly
during the textual programming session and remarkably less
so during the first GSSP session, all expert users completed
the second GSSP session almost as fast as the developer.
These results suggest that users with prior programming
experience are able to quickly adapt to GSSP and make
effective use of its various features, arguably because the
concepts presented by GSSP are readily predictable by
programmers. Thus, these results support our belief that
GSSP offers an intuitive interface for programmers.

Regular users showed the most pronounced improvements
between the textual programming and GSSP sessions. In fact,
the span of elapsed times for expert users writing Python
code is worse than the span of elapsed times for regular users
during their first GSSP session. This illustrates that people
with minimal programming experience can specify robot
tasks using GSSP with comparable speeds to veteran robot
programmers writing textual code, which suggests that the
concepts behind GSSP are accessible by a broad audience.

Both the average number of typos and of task errors are
noticeably smaller for the two GSSP sessions when com-
pared to the text-based programming session, as shown in
Fig. 7. On the other hand, the results indicate a slight increase
in the average number of task errors when comparing the
first GSSP session to the second one, for both types of
users. Anecdotally, we observed that all participants were
exhausted after the Python programming session, and thus
carried out the second GSSP session in a hurried an annoyed
mood, resulting in more errors. This suggests that textual
programming interfaces can be more taxing psychologically
than our GSSP system when programming robot plans.

Our experimental results indicate that GSSP is noticeably
better suited for programming the class of robot actions
and behaviors used in our tests, as compared to writing
procedural code alone. The extent to which these results
generalize to all robot programming, and to large-scale
programming, is a question for future research.

V. CONCLUSION

We have described a software programming paradigm
called Graphical State Space Programming (GSSP) to specify
execution plans for mobile robots. Using our software imple-
mentation, we can specify an ensemble of location-specific
and state-specific actions, an execution ordering through
these actions, and reactive robot behaviors for addressing
anomalies. While our examples are largely related to physical
locations as the key states of interest, our framework can be
used to describe general robot plans.

Using the GSSP methodology has several distinct advan-
tages over conventional programming: it provides visualiza-
tion for both state-dependent actions and constraint regions,
it facilitates the arbitrary Boolean composition of multiple
constraints, and it provides a mechanism for prioritization
and concurrency control. Equally important from a software
engineering standpoint, GSSP allows for a degree of “sepa-
ration of concerns” by segregating different code blocks.



We evaluated the usability of the system using both a
controlled user study, and a field trial with a robot aircraft.
GSSP appears to greatly improve the efficiency of code de-
velopment for the typical robot plans that we have examined.
Despite these results, it remains to be seen how well GSSP
will scale for large and complex robot plans.

In future work we are examining extensions to our conflict
resolution mechanism that are more suited to the nature
of robot programming. We are also evaluating alternative
methods for specifying priority to can better cope with the
scalability of robot plans. Finally, we plan to conduct more
elaborate experiments to further characterize the quantitative
nature of the performance gain of GSSP over various tradi-
tional robot programming approaches.

VI. RELATED WORK

Text-based systems are among the most popular methods
for programming robot behaviors. Numerous research groups
and corporations have developed libraries and middleware
using standard computer languages to provide a common
application programming interface (API) for different classes
of robots [8], [9]. Prominent examples of robot abstrac-
tion systems using the procedural programming style in-
clude Player/Stage/Gazebo [10], the Robot Operating System
(ROS) [11], and Microsoft’s Robotics Developer Studio
(RDS) [12]. Both GSSP and text-based programming en-
vironments provide abstraction layers for specifying general
robot behaviors in a hardware-independent manner, although
GSSP further increases the modularity of the codebase by
explicitly decoupling geometric constraints.

Kanayama and Wu developed a text-based programming
approach [13] that is designed for programming motion tra-
jectories and location-specific tasks. Their Motion Descrip-
tion Language (MDL) establishes a standardized, procedural-
style method for describing motion geometry. This text-based
approach for programming motion paths nicely complements
the visual interface for specifying waypoints in GSSP.

Another class of text-based methods (e.g. [14], [15], [16])
uses the declarative programming style to specify behaviors
that the robot should exhibit in reaction to different states
of the environment. Because the order of execution is not
specified, these systems can program general behaviors such
as wall following using minimal amount of code [8]. The
region-based programming nature of GSSP is a graphical
analog of these declarative text-based methods.

Various robot abstraction systems include graphical pro-
gramming interfaces that visualize the execution and data
flow. Systems such as Microsoft’s Visual Programming Lan-
guage (VPL) [17] and the Lego Mindstorm NXT-G soft-
ware [18] visually represent variables, robot commands and
other programming constructs as interconnected blocks to
depict a flowchart of the codebase. GSSP similarly provides
a visualization of the execution flow, although it also embeds
geometric data by overlaying the information on top of a map
of the environment.

Graphical interfaces for specifying waypoints and issuing
commands can be found in a number of robot control

systems (e.g. [19], [20]). Because most of these GUIs do not
require the user to write code, they allow people without any
programming experience to control robots. Unfortunately,
this comes at the sacrifice of useful programming constructs
such as conditional triggers and arbitrary path loops. GSSP
addresses this deficiency by merging GUI-based control
with text-based programming into a single comprehensive
framework.

Fuzzy logic also uses state-space models to explicitly
describe controller functionality. GSSP, however, places em-
phasis on the graphical depiction of state space constraints
and on the separation of code (i.e. separation of concerns)
to enhance programmer efficiency. In contrast, fuzzy logic
systems focus on the use of continuous functions of the state
to identify the level of activity of various control parameters.
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