
Towards Quantitative Modeling of Task
Confirmations in Human-Robot Dialog

Junaed Sattar and Gregory Dudek

Abstract— We present a technique for robust human-robot
interaction taking into consideration uncertainty in input and
task execution costs incurred by the robot. Specifically, this
research aims to quantitatively model confirmation feedback,
as required by a robot while communicating with a human
operator to perform a particular task. Our goal is to model
human-robot interaction from the perspective of risk minimiza-
tion, taking into account errors in communication, risk involved
in performing the required task, and task execution costs. Given
an input modality with non-trivial uncertainty, we calculate the
cost associated with performing the task specified by the user,
and if deemed necessary, ask the user for confirmation. The
estimated task cost and the uncertainty measure is given as
input to a Decision Function, the output of which is then used
to decide whether to execute the task, or request clarification
from the user. In cases where the cost or uncertainty (or both) is
estimated to be exceedingly high by the system, task execution
is deferred until a significant reduction in the output of the
Decision Function is achieved. We test our system through
human-interface experiments, based on a framework custom
designed for our family of amphibious robots, and demonstrate
the utility of the framework in the presence of large task costs
and uncertainties. We also present qualitative results of our
algorithm from field trials of our robots in both open– and
closed–water environments.

I. INTRODUCTION

When a human gives instructions to a robot using a
“natural” interface, communication errors are often present.
For some activities the implications of such errors are
trivial, while for others there may be potentially severe
consequences. In this paper, we consider how such errors can
be considered explicitly in the context of risk minimization.
While fully autonomous behaviors remain the ultimate goal
for robotics research, there will always be a prevailing need
for robots to act as assistants to humans. As such, we
focus on the interim, on a control regime between full tele-
operation and complete autonomy, where a semi-autonomous
robot acts as an assistant to a human operator and a robust
interaction mechanism exists between the two. In particular,
whereas many robotic systems operate using only imperative
commands, we wish to enable the system to engage in a
dialog with the user.

This research is a natural extension of previous work on vi-
sual languages for robot control and programming [1], which
has been successfully used to operate the Aqua2 family of
underwater robots [2]. In that work, divers communicate with
the robot visually using a set of fiducial markers, by forming
discrete geometric gestures with a pair of such markers.

Junaed Sattar and Gregory Dudek are with the School of Computer
Science, McGill University, 3480 University Street, Montréal, QC, Canada
H3A 2A7. {junaed,dudek}@cim.mcgill.ca

While this fiducial-based visual control language, RoboChat,
has proven to be robust and accurate, we do not have any
quantitative measure of uncertainty or cost assessment related
to the tasks at hand. The framework we propose here is
designed to be an adjunct to a language such as RoboChat
and provide a measure of uncertainty in the utterances.
Moreover, by providing additional robustness (e.g. through
uncertainty reduction and ensuring robot safety) as a result of
the dialog mechanism itself, a reduced level of performance
is required from the base communication system allowing
for more flexible alternative mechanisms.

Any interaction protocol will carry a certain degree of
uncertainty with it and for accurate human-robot communi-
cation, that uncertainty must be incorporated and accounted
for by a command-execution interface. In the presence of
high uncertainty, large degree of risk, or moderate uncertainty
coupled with substantial risk, the robot should ask for
confirmation. The principled basis for this decision to ask
for confirmation is our concern.

Our current work has been developed for application
specifically, but not exclusively, to the domain of underwater
robotics. In this context, the robot operates in concert with
a human and the primary risk factors are measured as a
function of the difficulties incurred if the robotic system fails,
and as a function of the total length of an experiment. The
longer the diver has to stay underwater the less desirable a
situation it is. In addition, if the robot fails far from the diver
it is much more serious than if it fails nearby. Finally, if the
robot travels far away, it is intrinsically more dangerous due
to reduced visibility, current and other factors. Thus, risk is
primarily described in terms of risk to the human operator
from a more extensive experiment, and risk to the human and
the robot as a result of being separated during a procedure
or as a result of a failure during the execution of a task.

The work described in this paper focuses on two principal
ideas: uncertainty in the input language used for human-robot
interaction, and analysis of cost of the task. We present a
theoretical framework for initiating dialogs between a robot
and a human operator using a model for task costs and
a model of uncertainty in the input scheme. A Decision
Function takes as input both these parameters, and based on
the output of this function, the system prompts the user for
feedback (e.g in the form of confirmation of the commands),
or executes the given command. The cost assessment is a
combination of an external cost in the form of operational
risk, and an internal cost expressed in terms of operational
overhead.

II. BACKGROUND AND RELATED WORK

This work uses a gesture-like interface to accomplish
human-robot interaction, and this is somewhat related to
visual programming languages. The inference process we use
is based on a Markovian dialog model. Hence, we briefly
comment on prior work, necessarily in a rather cursory
manner, in each of these disparate and rich domains. As this
particular research builds on our past work in vision-based
human-robot interaction, and we briefly revisit those in this
section as well.

Sattar et al. looked at using visual communications, and
specifically visual servo-control with respect to a human
operator, to handle the navigation of an underwater robot [3].
In that work, while the robot follows a diver to maneuver, the
diver can only modulate the robot’s activities by making hand
signals that are interpreted by a human operator on the sur-
face. Application of that work where robot control was purely
“open-loop” motivate this paper. Visual communication has
also been used by several authors to allow communication
between systems, for example in the work of Dunbabin et
al. [4]

The work of Waldherr, Romero and Thrun [5] exemplifies
the explicit communication paradigm in which hand gestures
are used to interact with a robot and lead it through an
environment. Tsotsos et al. [6] considered a gestural interface
for non-expert users, in particular disabled children, based on
a combination of stereo vision and keyboard-like input. As an
example of implicit communication, Rybski and Voyles [7]
developed a system whereby a robot could observe a human
performing a task and learn about the environment.

Fiducial marker systems, as mentioned in the previous
section, are efficiently and robustly detectable under difficult
conditions. Apart from the ARTag toolkit mentioned previ-
ously, other fiducial marker systems have been developed
for use in a variety of applications. The ARToolkit marker
system [8] consists of symbols very similar to the ARTag
flavor in that they contain different patterns enclosed within
a square black border. Circular markers are also possible in
fiducial schemes, as demonstrated by the Fourier Tags [9]
fiducial system.

Gesture-based robot control has been considered exten-
sively in Human-Robot Interaction (HRI). This includes ex-
plicit as well as implicit communication frameworks between
human operators and robotics systems. Several authors have
considered specialized gestural behaviors [10] or strokes on
a touch screen to control basic robot navigation. Skubic et al.
have examined the combination of several types of human
interface components, with special emphasis on speech, to
express spatial relationships and spatial navigation tasks [11].

Vision-based gesture recognition has long been considered
for a variety of tasks, and has proven to be a challenging
problem examined for over 20 years with diverse well-
established applications [12][13]. The types of gestural vo-
cabularies range from extremely simple actions, like simple
fist versus open hand, to very complex languages, such as the
American Sign Language (ASL). ASL allows for the expres-

sion of substantial affect and individual variation, making it
exceedingly difficult to deal with in its complete form. For
example, Tsotsos et al.[14] considered the interpretation of
elementary ASL primitives (i.e. simple component motions)
and achieved 86 to 97 per cent recognition rates under
controlled conditions. While such rates are good, they are
disturbingly low for open-loop robot-control purposes.

While our current work looks at interaction under un-
certainty in any input modality, researchers have investi-
gated uncertainty modeling in human-robot communication
with specific input methods. For example, Pateras et al.
applied fuzzy logic to reduce uncertainty to reduce high-
level task descriptions into robot sensor-specific commands
in a spoken-dialog HRI model [15]. Montemerlo et al. have
investigated risk function for safer navigation and environ-
mental sampling for the Nursebot robotic nurse in the care
of the elderly [16]. Bayesian risk estimates and active learn-
ing in POMDP formulations in a limited-interaction dialog
model [17] and spoken language interaction models [18]
have also been investigated in the past. Researchers have
also applied planning cost models for efficient human-robot
interaction tasks [19] [20].

III. METHODOLOGY

In a typical human–robot interaction scenario, the human
operator instructs the robot to perform a task. Tradition-
ally this takes place using a pragmatic interface (such as
keyboards or mice), but the term “human-robot interaction”
usually implies more “natural” modalities such as speech,
hand gestures or physical body movements. Our approach
is, in principle, independent of the specific modality, but
our experimental validation described later in the paper uses
gestures. The essence of our approach is to execute costly
activities only if we are certain they have been indicated. For
actions that have low cost, we are willing to execute them
even when the level of certainty is low, since little is lost if
they are executed inappropriately.

Whatever the modality, the robot has to determine the
instructions and for most natural interfaces this entails a
substantial degree of uncertainty. The interaction starts with
the human operator providing input utterances to the robot.
The robot estimates a set of actions and generates a plan (in
this case a potential trajectory) needed to perform the given
task using a simulator. The generated action and trajectory is
then evaluated by a cost and risk analysis module, comprised
of a set of Assessors. This module outputs estimated total
cost and together with the uncertainty in the input dialog,
is fed into a Decision Function. If the relationship between
cost and uncertainty is unacceptable then the robot decides to
ask for feedback. Otherwise, the robot executes the instructed
task. A flowchart illustrating the control flow in this process
can be seen in Figure 1.

The core of our approach relies on calculating a prob-
abilistic measure of the uncertainty in the input language,
and also calculating the cost involved in making the robot
perform the task as instructed by the human operator. The

Fig. 1. Control flow in our risk-uncertainty model.

following two subsections describe in detail these two aspects
of our framework.

A. Uncertainty Modeling

To interact with a mobile robot, a human operator has
to use a mode of communication, such as speech, gestures,
touch interface, or mouse input on a computer screen. In
practice, there will almost always be noise in the system
that will introduce uncertainty in the dialog.

In our human-robot interaction framework, utterances are
considered to be inputs to the system. Gestures, gi, are
symbols containing specific instructions to the robot. A
gesture set, G, is made up of a finite number of gestures,
and is thus expressed as

G = g1, g2, · · · gn (1)

Each gesture gi has associated with it a probability p(gi)
of being in an utterance. The robot is aware of the gesture
set G (i.e. the “language” set), and the probabilities pi(g) are
precomputed and is available to the system before interaction
begins with a human operator. This notion of discrete sym-
bols combined with probabilities is commonplace in speech
understanding.

Statements, S, (i.e. sentences) in our framework can be
atomic gestures (e.g. “go left”, or “take picture”), or they
can be compound commands constituted of several atomic
gestures, including repetitions. We assume each gesture is
independently uttered by the operator, and thus the proba-
bility of a sequence of gestures chained together to form a
compound statement simply becomes:

p(S) ≡ p(g1, g2, . . . gn) =
n∏

i=1

p(gi) (2)

Given a table of values for all p(gi), it is trivial to compute
the probability of any given sequence of gestures.

Programs or Tasks are either a smaller subset of or equal
to a set of statements. By definition, we indicate programs to
contain only consistent instructions (i.e. instructions that are
illegal in semantics or syntax). This implies that programs,
P

|P | ⊇ |S| (3)

Each program Pi has a likelihood of occurrence li and
a cost ci associated with it. It is worth noting however,
given the input language, the set of all possible programs
will be reduced, as the inconsistent ones, both syntactically
and semantically, are going to be expunged.

Since there will always exist uncertainty in input observa-
tion, we can model the input language scheme as a Hidden
Markov Model [21], with the actual input gestures becoming
the hidden states of the HMM. An HMM requires three
probability matrices to be specified to estimate the input
utterances, namely:

1) Initial probabilities of the hidden states, Π.
2) Transition probabilities between the hidden states, A.
3) Confusion matrix, or the emission probabilities, B.
For any given input mechanism, we assume the matrices

can be estimated or learned. Once the matrices are available,
the Baum-Welch algorithm can be used to train the HMM
parameters and the Viterbi algorithm can be applied to
estimate the likelihood of the input utterance [22].

B. Cost Analysis

Once the uncertainty is computed, we perform a cost
assessment of the given task. This is performed irrespective
of the uncertainty; i.e. a low uncertainty measure will not
cause the cost calculation task to be suspended. To estimate
the cost of running a program, we use a set of Assessors, that
are applied on the robot state as the task is simulated. After
executing each command in the input statement, the set of
assessors examine the current state of the robot and produce
an estimated value of risk. At the end of the simulation the
overall program cost is a sum of all the assessor’s outputs
over the duration of the simulated program. This sum is
eventually taken into consideration by the Decision Function.

We approach the cost factor from two different per-
spectives; namely the risk associated from the operator’s
perspective, and the cost involved in terms of operational
overhead of the robot while attempting to perform the task.
In conventional dialog models used for confirmation only,
Bayes risk is often applied [23], where the system only
confirms in order to avoid error. Nevertheless, there are often
scenarios where the system should ask for confirmation even
in high-confidence programs because the executing the task
will place the underlying system in a high-risk state. This
implies that Bayes risk cannot be used naively.

1) Risk Measurement: Risk encompasses many factors,
including domain specific ones. In our case, the risk model
reflects the difficulty of recovering the robot in the event of
a total systems failure. In addition, the level of risk to the
human operators is a function of time. Examples of high risk
scenarios could be the robot venturing too far from safety,
or drifting too close to the obstacles, or other objects that
pose significant threat to the robot, requiring excessive time
to perform the task, etc. We denote the set of such factors
by A = {α1, α2, . . . αn}. The examples presented here are
by no means exhaustive, but only serve to demonstrate a
possible set of parameters that can be included for measuring
risk.

2) Cost Measurement: This component measures the op-
erational overhead associated with robot operation, over the
duration of the task to be executed. The overhead measures
are a function of factors such as power consumption, battery
condition, system temperature, computational load, total dis-
tance travelled etc. We denote the set of such factors by
B = {β1, β2, . . . βn}. Note that the exact measurement of
these factors is not possible until the task at hand is com-
pleted, hence the initial values obtained are estimates based
on simulation or past system operational benchmarks. One
can apply machine learning methods, supervised learning in
particular, to learn a model of system overhead, although in
this work we do not enforce any particular model.

3) Decision Function: Let f be the risk measurement
function, and ϕ denote the overhead cost measurement
function. Then, overall operational cost, C becomes,

C = f(α1, α2, . . . , αn) + ϕ(β1, β2, . . . , βn) (4)

If we denote the uncertainty measure as P , the Decision
Function ρ can be expressed as,

τ = ρ(C,P) (5)

The function ρ increases proportionally with the cost mea-
sure C and is inversely proportional with P . If τ exceeds a
given threshold, the system prompts the user for clarification,
and the feedback is passed through the uncertainty model and
cost estimation process in a similar fashion. Until the τ falls
below a threshold, the system will keep asking the user to
provide feedback. To estimate the threshold τ , we introduce
the concept of the Confirmation Space.

C. Confirmation Space

Before executing a program with high cost or low like-
lihood, a robot should confirm the desirability of the task
with the user. This ensures that the task is truly requested by
the user and is not erroneously misinterpreted by the robot.
Since asking for feedback from the user is itself not a cost-
free task, any HRI system should ideally want to minimize
the number of confirmation requests. There are three possible
alternatives to choose from, namely,

1) Pick the safest (i.e lowest cost) program and execute
it.

2) Pick the program with the highest likelihood, ignoring
the task cost, and execute it.

3) Pick a combination of the two above, combining high
task likelihood with low cost and execute it.

Clearly, considering cost without regard for likelihood and
vice-versa would be foolhardy, and thus we opt for option 3
above. We generate all possible consistent sentences based
on the observed input (by using the confusion matrix B of
gestures, gi), and pass them through the HMM to obtain
likely observation values. These sentences are also passed
through the task simulator (i.e. set of assessors) to evalu-
ate the cost measures for all of the sentences. When the
inverse of the cost values (i.e safety) are plotted against
the observation likelihoods of these sentences, we obtain the

Safety-Likelihood Graph, as illustrated in the example plot
in Figure 2.

Fig. 2. A pictorial depiction of programs Pi in the Safety-Likelihood
graph. Programs in the non-shaded areas are in the Confirmation Space.

The shaded areas at the extremities indicate regions where
tasks have high certainty and high safety (upper right), and
low likelihood and low safety (lower left). Tasks that fall
outside these areas are in-between these ranges, and are
candidates for requiring confirmations. As such, we label this
region as the Confirmation Space in the Safety-Likelihood
graph.

Once the possible sentences have been generated and their
corresponding likelihoods and costs have been computed, we
take the average cost of these programs and set that as the
value of threshold τ . Next, we pick the most likely program
and compare its likelihood to that of the threshold. If it
exceeds the threshold, we ask for confirmation. Otherwise,
we execute the program as instructed.

IV. EXPERIMENTS AND RESULTS

In order to validate our approach and quantify the per-
formance of the proposed algorithm, we conducted a set
of dialog-based experiments, both on-board and off-board.
In the off-board experiments, a set of users were asked to
program the robot to perform certain tasks, with an input
modality that ensured a non-trivial amount of uncertainty in
communication. Since the key concept in this work involves
a human-robot dialog mechanism, we did not require task
execution for the off-board trials. We performed field trials
on-board on the Aqua2 underwater robot, both in open-water
and closed-water environments, to qualitatively assess the
feasibility of a real-world deployment of the system. Results
and experiences from both sets of experiments are presented
in the following sections, preceded by a brief description of
the input language.

A. Language Description
The language used for programming the robot is designed

to be easily deployable in a human-robot dialog context
for the Aqua2 robot. For these experiments, we used a
subset of the complete language. The language tokens (ges-
tures) comprised of basic motion commands, commands for
localizing and commands to track and follow an object
of interest. The commands can be optionally followed by
numeric arguments, which denote the number of seconds the
commands should be executed for. In our experiments, the
actual input argument was multiplied by three to prolong the
execution time of the robot. One could use large number of
tokens to address a large space of numeric arguments, but in
theory that space is infinitely large, and a non-trivial subset
of such tokens can impose a significant cognitive burden on
the user. The commands are mostly self-explanatory (as seen
in Tables I and II). The visual following task is a two-step
process – the TUNETRACKER command instructs the robot
to calibrate the vision system to follow the target directly
in front of the robot; the FOLLOW command instructs the
robot to actually start following the target of interest as it
moves away. The numeric argument after FOLLOW is the
duration for which the robot should follow the target. The
system only starts to evaluate the input after it encounters
an EXECUTE command. A common task in the underwater
domain is that of surveillance and inspection. As such, the
commands chosen for the trials instruct the robot to carry
out such surveillance tasks in different trajectories.

B. User Study
We performed a set of user studies to collect quantitative

performance measures of our algorithm. When operating as a
diver’s assistant in underwater environments, the system uses
fiducials to engage in a dialog with the robot. However, in the
off-board bench trials, we employed a simplified “gesture-
only language”, where the users were limited to using
mouse input. We used a vocabulary set of 18 tokens defined
by oriented mouse gestures, and as such each segment is
bounded by a 20o-wide arc. The choice for using mouse
gestures stemmed from the need to introduce uncertainty in
the input modality, while keeping the cognitive load roughly
comparable to that experienced by scuba divers.

To calculate uncertainty in input, we trained a Hidden
Markov Model using commonly used programs given to the
robot (such as those used in previous experiments and field
trials). To estimate task costs, we simulated the programs
using a simulation engine and used a set of assessors that
takes into account the operating context of an autonomous
underwater vehicle. The simulator has been designed to take
into account the robot’s velocity, maneuverability and propul-
sion characteristics to accurately and realistically simulate
trajectories taken by the robot while executing commands
such as those used in our experiments.

In particular, we applied the following assessors during
the user studies:

1) Total distance: The operating cost and risk factors
both increase with total distance traveled by the robot.

The cost associated with the amount of wear is a
function of total travel, and higher travel distances also
increase external operational risks.

2) Farthest distance: The farther the robot goes from
the initial position (i.e. operator’s position), the higher
the chance of losing the robot. In the event that the
robot encounters unusual circumstances which it is
not equipped to handle, the involvement of a human
operator is also a small possibility, thereby increasing
the overall task cost.

3) Execution Time: An extremely long execution time
also carries the overhead of elevated operational and
external risk.

4) Average Distance: While the farthest and total dis-
tance metrics consider extremes in range and travel,
respectively, the average distance looks at the distance
of the robot (from start location) where most of the
task execution time is spent.

Each user were given three programs to send to the system,
and each program was performed three times. A total of
10 users participated in the trials, resulting in 30 trials for
each program, and 90 in all; please refer to Table I for the
programs used for the experiments, and whether confirma-
tions were expected or not. Except for mistakes that created
inconsistent programs, users did not receive any feedback
about the correctness of their program. When a user finished
“writing” a program, she either received feedback notifying
her of program completion, or a confirmation dialog was
generated based on the output of the Decision Function. The
users were informed beforehand about the estimated cost of
the program; i.e. whether to expect to receive a feedback
or not. In case of a confirmation request for Programs 1
and 3, the users were instructed to redo the program. For
Program 2, the users were informed of the approximate
values of the outputs of the assessors. If the values shown in
the confirmation request exceeded the expected numbers by
10%, the users required to reprogram it. Thus, in all cases,
users required to conduct the programming task until the
presence or absence of confirmation dialogs were consistent
with the expected behavior. It is worth noting, however, that
this does not necessarily indicate correctness of the program-
ming, but merely indicates that the Decision Function has
judged the input program (and likely alternatives of that) to
be sufficiently inexpensive and thus safe for execution.

C. Field Trials

We performed field trials of our system on-board the
Aqua2 underwater robot, in both open-water and closed-
water environments. In both trials, the robot was visually
programmed with the same language set used for the user
studies, using ARTag [24] and ARToolkitPlus [8] fiducials
used as input tokens; see Tab. II for the programs used in the
field trials. The assessors used for the user studies were also
used in the field trials; in addition, we provided an assessor to
take into account the depth of the robot during task execution.
Because of the inherent difficulty in operating underwater,
the trials were not timed. Users were asked to do each

(a) Divers programming Aqua2 during pool trials.

(b) A diver programming Aqua2 during an HRI trial held at a lake in central
Québec.

(c) Example of command acknowledgement given on the LED screen of
the the Aqua2 robot during field trials.

Fig. 3. Field trials of the proposed algorithm on board the Aqua2 robot.

program once. Unlike in the user study, where there were
no execution stage, the robot performed the tasks that it was
programmed to do, when given positive confirmation to do
so. In all experimental cases, the robot behaved consistently,
asking confirmations when required, and executing tasks
immediately when the tasks were inexpensive to perform.
Unlike the user study, where the users had no feedback, the
field trial participants were given feedback in the form of
symbol acknowledgement using a LED display at the back
of the robot (as seen on Figure 3(c)). Also unlike the user
studies, the field trial users were given access to a command
to delete the program and start from the beginning, in case
they made a mistake. For a demonstration of our system

ID Sequence Confirm?
1 FORWARD, 3, PICTURE, LEFT, 3, PICTURE, UP,

GPSFIX, GPSBEARING, EXECUTE
No

2 FORWARD, 9, LEFT, 6, FORWARD, 9, MOVIE, 9,
RIGHT, 3, SURFACE, STOP, GPSFIX, EXECUTE

Yes

3 LEFT, 6, RIGHT, 3, MOVIE, 3, TUNETRACKER,
FOLLOW, 6, UP, GPSFIX, EXECUTE

No

TABLE I
PROGRAMS USED IN THE USER STUDY.

ID Sequence Confirm?
1 FORWARD, 9, LEFT, 5, FORWARD, 9, LEFT 5,

STOP, MOVIE, 9, EXECUTE
Yes

2 FORWARD, 5, LEFT, 3, FORWARD, 5, LEFT 3,
FORWARD, 5, LEFT 3, STOP, EXECUTE

No

3 SWIMCIRCLE, 3, STOP, EXECUTE No
4 SWIMCIRCLE, 3, FORWARD, 5, PICTURE, LEFT,

2, PICTURE, FORWARD, 3, PICTURE, RIGHT, 2,
PICTURE, SURFACE, STOP, EXECUTE

Yes

5 TUNETRACKER, FOLLOW, 9, SURFACE, STOP,
EXECUTE

Yes

TABLE II
PROGRAMS USED IN THE FIELD TRIALS.

in action during field trials, we draw the reader’s attention
to the accompanying video clip, which demonstrates the
visual programming mode for Aqua2, and task executions,
including a target following mode. In case the tracked object
is out of the field of view, the tracking algorithm we use
allows the robot to attempt to reacquire the target, and this
can be seen in the video clip. However, a detailed description
of the target following and other robot behaviors are outside
the scope of this paper, and thus will not be discussed further.

D. Results

From the user studies, it was observed that in cases where
the programs were correctly entered, the system behaved
consistently in terms of confirmation requests. Program 2
was the only one that issued confirmations, while Programs
1 and 3 only confirmed that the task would be executed
as instructed. As mentioned in Sec. IV-B, the users were
not given any feedback in terms of program correctness.
Thus, the programs sent to the robot were not accurate in
some trials; i.e. the input programs did not match exactly the
programs listed in Tab. I. In case of mistakes, the Decision
Function evaluated the input program and most likely alter-
natives, and only allowed a program to be executed (without
confirmation) if and only if the task was evaluated to be less
costly.

The cost of feedback, not unexpectedly, is the required
time to program the robot. As seen in Figure 4(a), all
three programs took more time to program on average with
confirmations (top bar in each program group). From the
user studies data, we see that the time cost is in the order of
approximately 50% of the time required to program without
any reconfirmations. Although the users paid a penalty in
terms of programming time, the absence of safety checks
meant a greater risk to the system and higher probability

(a) Programming times, all users combined.

(b) Programming attempts and generated confirmations, all users combined.

(c) Mistakes with respect to program length, all users combined.

Fig. 4. Results from user studies, timing 4(a), confirmations 4(b) and
mistakes 4(c).

of task failures. This was illustrated in all cases where the
system issued a confirmation request; an example of which
is demonstrated in a trial of program 3 by user 2. The input
to the system was given as “LEFT 9 RIGHT 3 MOVIE
3 FOLLOW FOLLOW 9 UP GPSFIX EXECUTE”, where
the mistakes are in bold. The system took note of the change
in duration from 6× 3 = 18 seconds to 9× 3 = 27 seconds
on two occasions, but more importantly, the FOLLOW com-
mand was issued without a TUNETRACKER command. This,
and the change in parameters to the higher values prompted
the system to generate a confirmation request, which helped
the user realize that mistakes were made in programming.
A subsequent reprogramming fixed the mistakes and the
task was successfully accepted without a confirmation. The
distribution of confirmation requests and total number of
attempts to program is shown in Figure 4(b).

One of the tangential issues in the study was the effect of
long programming sequences on mistakes made by the users;
i.e. whether more mistakes were made in longer programs.
While this might seem like an obvious conclusion, we did
not observe that behavior in the user trials, as demonstrated
in Fig, 4(c). More detailed analysis and further experiments
are required to obtain a definitive answer to this issue.

During the field trials, we were not able to collect quantita-
tive data, but the system consistently generated confirmations
based on the expensiveness of the task. In the underwa-
ter environment, where divers are cognitively loaded with
maintaining dive gear and other life-support tasks, having
feedback on input and the ability to start over proved to
be especially important. These two features relieved some
of the burden of programming, and also ensured correct
task execution by the robot, as the diver could restart
programming in case of mistakes.

V. CONCLUSIONS

This paper has presented an approach to human-robot
dialog in the context of obtaining assurance prior to actions
that are both risky and uncertain. Our model for risk is
slightly unconventional in that it expresses the risk of a
system failure and the associated recovery procedure that
may be needed on the part of a human operator. Our model
of dialog uncertainty is a direct product of the HMM used
for recognition, and by simulating the program and likely
alternatives that this observation encodes, we can obtain an
estimate of the risk involved in executing the action. By
seeking confirmation for particularly costly actions when
they are also uncertain, we have demonstrated experimentally
that this achieves an reduction in overall cost of action
while requiring a relatively small number of confirmatory
interactions.

In our current framework we do not combine of failure-
based risk model with a cost function based on Bayes Risk.
This appears to be a challenging undertaking due to the
intrinsic complexity of the computation required, but it would
be an appealing synthesis that would capture most of the
key aspects of our problem domain. It remains an open
problem for the moment. We are also interested in evaluating

the interaction mechanism across a wider user population
and a larger range of dialog models, across multiple robotic
platforms, including terrestrial and aerial vehicles. This study
is ongoing and new results are expected on a continual basis.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of
Professors Joelle Pineau and Nicholas Roy, for their invalu-
able suggestions and ideas provided during the research. We
also thank Yogesh Girdhar, Dr. Ioannis Rekleitis and all
members of the McGill Mobile Robotics Lab for assisting
with the validation experiments.

REFERENCES

[1] G. Dudek, J. Sattar, and A. Xu, “A visual language for robot control
and programming: A human-interface study,” in Proceedings of the
International Conference on Robotics and Automation ICRA, (Rome,
Italy), April 2007.

[2] G. Dudek, M. Jenkin, C. Prahacs, A. Hogue, J. Sattar, P. Giguère,
A. German, H. Liu, S. Saunderson, A. Ripsman, S. Simhon, L. A.
Torres-Mendez, E. Milios, P. Zhang, and I. Rekleitis, “A visually
guided swimming robot,” in Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), (Edmon-
ton, Alberta, Canada), August 2005.

[3] J. Sattar, P. Giguere, G. Dudek, and C. Prahacs, “A visual servo-
ing system for an aquatic swimming robot,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
(Edmonton, Alberta, Canada), pp. 1483–1488, August 2005.

[4] M. Dunbabin, I. Vasilescu, P. Corke, and D. Rus, “Data muling over
underwater wireless sensor networks using an autonomous underwater
vehicle,” in International Conference on Robotics and Automation,
ICRA 2006, (Orlando, Florida), May 2006.

[5] S. Waldherr, S. Thrun, and R. Romero, “A gesture-based interface for
human-robot interaction,” Autonomous Robots, vol. 9, no. 2, pp. 151–
173, 2000.

[6] J. K. Tsotsos, G. V. S. Dickinson, M. Jenkin, A. Jepson, E. Milios,
F. Nuflo, S. Stevenson, M. B. adn D. Metaxas, S. Culhane, Y. Ye, ,
and R. Mannn, “PLAYBOT: A visually-guided robot for physically
disabled children,” Image Vision Computing, vol. 16, pp. 275–292,
April 1998.

[7] P. E. Rybski and R. M. Voyles, “Interactive task training of a mobile
robot through human gesture recognition,” in IEEE International
Conference on Robotics and Automation, vol. 1, pp. 664–669, 1999.

[8] I. Poupyrev, H. Kato, and M. Billinghurst, ARToolkit User Manual
Version 2.33. Human Interface Technology Lab, University of Wash-
ington, Seattle, Washington, 2000.

[9] J. Sattar, E. Bourque, P. Giguere, and G. Dudek, “Fourier tags:
Smoothly degradable fiducial markers for use in human-robot interac-
tion,” Computer and Robot Vision, vol. 0, pp. 165–174, 2007.

[10] D. Kortenkamp, E. Huber, and P. Bonasso, “Recognizing and inter-
preting gestures on a mobile robot,” in 13th National Conference on
Artifical Intelligence, 1996.

[11] M. Skubic, D. Perzanowski, S. Blisard, A. Schultz, W. Adams,
M. Bugajska, and D. Brock, “Spatial language for human-robot
dialogs,” IEEE Transactions on Systems, Man and Cybernetics, Part
C, vol. 34, pp. 154–167, May 2004.

[12] R. Erenshteyn and P. L. R. F. L. M. G. Stern, “Recognition approach
to gesture language understanding,” in 13th International Conference
on Pattern Recognition, vol. 3, pp. 431–435, August 1996.

[13] V. Pavlovic, R. Sharma, and T. S. Huang, “Visual interpretation
of hand gestures for human-computer interaction: A review,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 19,
no. 7, pp. 677–695, 1997.

[14] K. Derpanis, R. Wildes, and J. Tsotsos, “Hand gesture recognition
within a linguistics-based framework,” in European Conference on
Computer Vision (ECCV), pp. 282–296, 2004.

[15] C. Pateras, G. Dudek, and R. D. Mori, “Understanding referring
expressions in a person-machine spoken dialogue,” in International
Conference on Acoustics, Speech, and Signal ProcessingICASSP.,
vol. 1, 1995.

[16] M. Montemerlo, J. Pineau, N. Roy, S. Thrun, and V. Verma, “Experi-
ences with a mobile robotic guide for the elderly,” in Proceedings of
the 18th National Conference on Artificial Intelligence AAAI, pp. 587–
592, 2002.

[17] F. Doshi, J. Pineau, and N. Roy, “Reinforcement learning with limited
reinforcement: Using Bayes risk for active learning in POMDPs,” in
Proceedings of the 25th international conference on Machine learning,
pp. 256–263, ACM New York, NY, USA, 2008.

[18] F. Doshi and N. Roy, “Spoken language interaction with model
uncertainty: an adaptive human-robot interaction system,” Connection
Science, vol. 20, no. 4, pp. 299–318, 2008.

[19] K. Krebsbach, D. Olawsky, and M. Gini, “An empirical study of
sensing and defaulting in planning,” in Artificial intelligence planning
systems: proceedings of the first international conference, June 15-17,
1992, College Park, Maryland, p. 136, Morgan Kaufmann Pub, 1992.

[20] D. Kulic and E. Croft, “Safe planning for human-robot interaction,”
in 2004 IEEE International Conference on Robotics and Automation,
2004. Proceedings. ICRA’04, vol. 2, 2004.

[21] L. Rabiner et al., “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[22] L. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization
technique occurring in the statistical analysis of probabilistic functions
of Markov chains,” The Annals of Mathematical Statistics, pp. 164–
171, 1970.

[23] T. Misu and T. Kawahara, “Bayes risk-based dialogue management for
document retrieval system with speech interface,” Speech Commun.,
vol. 52, no. 1, pp. 61–71, 2010.

[24] M. Fiala, “Artag, a fiducial marker system using digital techniques,”
in CVPR ’05: Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05)
- Volume 2, (Washington, DC, USA), pp. 590–596, IEEE Computer
Society, 2005.

