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Abstract— While the arctic possesses significant information and horizon line estimation are essential aspects of many
of SCIEI’_]tIfIC valu_e, surprisingly little WOI’lf has focused on  ground-based [3], [4] and aerial [5] robotic systems. Such
developing robotic systems to collect this data. For arctic segmentation allows processing to be focused on just the

robotic data collection to be a viable solution, a method for f sianifi to th ducing th I
navigating in the arctic, and thus of assessing glacial terrain, area of signimcance 1o the rover, reducing the overall com-

must be developed. Segmenting the ground plane from the Putational requirements. Further, foreground segmenmtati
rest of the image is one common aspect of a visual hazard acts as a first pass for obstacle detection; image regions
detection system. However, the properties of glacial images, which differ significantly from the ground plane are prolabl
namely low contrast, overcast sky, and cloud, mountain, and  ,pgiacles. Finally, dynamic elements, such as clouds, that
snow sharing common colors, pose difficulties for most visual . . .

algorithms. A horizon line detection scheme is presented which could negatively ||.”npact. V'SuaI, odometry re§ults can be
uses multiple visual cues to rank candidate horizon segments, removed from consideration, while the horizon itself calphe
then constructs a horizon line consistent with those cues. Weak in estimating the robot's orientation.

cues serve to reinforce a selected path, while strong cues Common segmentation methods use information local to

have the ability to redirect it. Further, the system infers the = o o amined pixel to make segmentation decisions. How-
horizon location in areas that are visually ambiguous. The

performance of the proposed system has been tested on multiple €Ver. the properties of glacial images make local exantnati
data sets collected on two different glaciers in Alaska, and Problematic. Overcast skies, common in glacial environ-
compares favorably, both in terms of time and classification ments, often share the same color range as the ground
performance, to representative segmentation algorithms from plane snow. Further complicating segmentation, the clouds
several different classes. and ground plane often intersect visually, making the de-
|. INTRODUCTION termination of the horizon difficult. When analyzing these

o . . . images, humans tend to scan for visual cues in the form of
Though many scientists believe the condition of the gian{rong horizon line segments. These line segments are then

ice sheets in Greenland and Antarctica are a key to undeftended into image regions where the horizon determimatio
standing global cllmate change, therel|s still |nsuff|.C|éata is more ambiguous. This paper presents a computationally
to accurately predict the future behavior of those ice sheetactaple horizon line extraction process which employs a
Wh|le sgtellltes are able to map the ice sheet elevatlons"’.‘”gﬁnilar strategy to infer the horizon line location in areas
increasing accuracy, data about general weather conslitiqyhich exhibit weak visual cues. Section II briefly describes
(i-e. wind speed, barometric pressure, etc.) must be MedsUhe types of glacial terrain encountered during field triais

at the surface. In order to obtain these measurements, humgjy gitferent glaciers in Alaska. Section Il describes com
expeditions must be sent to these remote and dangerqiign approaches to ground segmentation, while Section IV
areas. Alternatively, a group of autonomous rot')gt|c.rover§etai|s the proposed horizon line extraction algorithme Th
could be deployed to these same locations, mitigating theyrizon line results from the field tests are compared with
cost, effort, and danger of human presence. other existing segmentation methods in Section V. Finally,

Given the arctic possesses significant information of scieRgnclusions and future work are discussed in Section VI.
tific value, surprisingly little work has focused on devetap

robotic systems to collect this data. For arctic roboticadat
collection to be a viable solution, a method for navigating

in the arctic, and thus of assessing glacial terrain, must be The main area of glaciers are largely flat and covered with
developed. Previous work has explored visual methods ghow, though the surface can be influenced by the underlying
assessing glacial hazards [1] and augmenting localizatiQ8rrain and nearby mountains. Visible mountain peaks tend t
sensors [2] as part of a larger navigational system. Intpliche snow-covered as well, making the differentiation betwee
in this work is the ability to segment the foreground terraiRhe passable terrain and the vertical mountain sides difficu
from distant mountains and the sky. Foreground segmentati@yvercast skies, a common condition in glacial areas, share

. . . the same color range as the ground plane snow. Further
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II. GLACIAL ENVIRONMENTS



///} ?‘j‘: % T ~ boundaries of this peak is then used to separate the region
Wit e 5y S ﬁbﬂ N P of interest from unwanted objects and areas. This technique
T e _ “a‘y'_ R ,\%'\’ TR represents the only known prior art in the area of glacial
;éti:@@ ‘,, ~ foreground segmentation.

/}/,; g —r 3 ¢ Generic image segmentation algorithms can also be ap-
~F ; =@m@>‘*l_ plied to the foreground segmentation problem. The Mu-
e F = = CAR project at the University of the Bundeswehr Munich

, : ¢ ¢ J} uses heuristic criteria to separate roadway pixels from its
,4 i :ﬁ; \‘L‘*h surroundings [7]. Similar color-based segmentation nagho
. R have been used successfully as elements of robotic ground
, & plane segmentation systems [3], [4], [8]. Others find the ad-

‘ X ) dition of texture information to be useful in the segmeimtati

process [9], [10]. Region growing methods are common in

e segmentation algorithms, as they allow flexibility in thaedi
ey test condition. Additionally, the output consists of cootesl
(@) regions, an advantage over thresholding and other pet-pixe
evaluation methods.

In the case of region growing, a merging criteria must
be supplied which ultimately determines the system per-
formance. Manually tuning these threshold values can be
tedious. In contrast, the road segmentation method used by

B Stanley, the DARPA Grand Challenge entry from Stanford,
(b) (©) (d) : : :
uses a learned Gaussian mixture model to classify each
Fig. 1: (a) A map of the relative positions of the various tesfmage pixel by color [11], avoiding the need to set hard
sites on Mendenhall Glacier during the June 2008 and Majits. Similarly, a water-sky segmentation system usesrco
20009 field tests. Test site on Lemon Creek Glacier is n@ind various texture measurements to successfully labal eac
shown. (b)-(d) Sample images from Lemon Creek Glaciggixel, a problem visually similar to the glacial segmeruati
and Mendenhall Glacier showing obscured horizons. Froblem under consideration [12].
clarity, the horizon line is indicated on each sample image. Fig. 2 illustrates a selection of these methods applied to
a sample glacial image. The adaptive histogram threshold
method successfully includes the ground region, but is lenab

In June 2008 and May 2009, field trials were conducted of differentiate it from the sky. This leads to excessiveerr
Mendenhall Glacier and Lemon Creek Glacier near Juneaj, the segmentation. The region growing method using color
Alaska. Low cloud elevations limited travel to the glacierand texture information achieves slightly better perfanoey
surface in 2008, but favorable weather conditions in 2008ince the output consists of a single connected region.
allowed multiple tests sites to be utilized. Fig. 1 shows thejowever, a single classification error at the horizon bomnda
location of each test site on the glacier, as well as images g&n allow the output region to grow into the sky. Finally, the
the typical terrain. learning method, which uses a variety of image properties,

At each test site, a set of salient still images were acquireguch as smoothness, uniformity, and entropy, to classifit ea
and video sequences were recorded from a camera on-bopgigel using a Gaussian mixture model, still produces an
a custom, weather-hardened robotic platform. Individuat m unacceptably large classification error.
neuvers included small closed loops on flat terrain, long
linear runs up significant terrain inclines, and switchtsack
running down the side of mountain peaks. In total these All of the previous methods mentioned use information
recordings represent over 50,000 individual frames, aridcal to the examined pixel to make segmentation decisions.

IV. HORIZON LINE EXTRACTION

account for over a kilometer of traversal distance. However, the properties of glacial images make local ex-
. B amination problematic. Overcast skies, common in glacial
- BACKGROUND environments, often share the same color range as the ground

Little direct research exists in the area of glacier imagplane snow. Fig. 3 shows an example of this phenomenon
processing. One project, sponsored by the Association of which a section of the ground-cloud boundary has been
European Research Establishments in Aeronautics (EREA)agnified. Using only the information within the magnified
uses vision to extract the foreground from glacial imageboxed, it is difficult, if not impossible, to find the true hoon
as part of an automated snowcat convoy system [6]. It ine. When analyzing these images, humans tend to look
assumed that the majority of the image is filled with thdor strong horizon line segments somewhere in the image.
snowy region. Consequently, in the histogram of the imag&hese segments are then assumed to extend into the more
the largest peak should be associated with the grayscambiguous regions. Using this type of strategy, a ground
values of this region. An adaptive threshold based on treegmentation method has been devised.



segment length constraint is enforced to remove the large
number of noise-induced edges. A set of heuristic proertie
are then calculated for each remaining candidate segment,
designed to test the likelihood that the candidate is dgtual
part of the true horizon line. These properties are summeyriz

in the following.

Segment Length

Longer line segments are more likely to be part of larger
structures, such as the horizon or mountain boundaries, and
less likely to come from localized surface texture. Eq. (1)
weights longer segments more heavily.

Wien = Lengthsegment/Widthimage (1)

(@ ‘ (b)

Color Below Segment

If a segment is part of the horizon line, then the region
below the line segment should be statistically similar to
the foreground seed region. A pixel intensity histogram
is constructed from an ared3, immediately below each
Fig. 2: (a) A sample image of Lemon Creek Glacier duringandidate. Using this histogram, the quartile intensityies
overcast weather with the horizon line indicated by a regre calculated and compared to the seed region statisties. T
arrow. (b)-(d) The classification results of adaptive lgsén  normalized euclidean distance between the quartile vaifies
thresholding, region growing, and Gaussian mixture modehe seed region and the quartile values of the area below the

algorithms reSpeCtively. Each method prOdUCGS a Iarge Claﬁ]e Segment is used to We|ght each Segment in (2)
sification error due to the similar color and texture projesrt

of the snow and overcast sky. Whelow =1 —a - [|@p — Qs|| )

whereQ); represents the vector of quartile boundary intensi-
ties, @ is a normalization constant set to the inverse of the
maximum quartile boundary differencs,is the seed region,

and B is a small area below the current candidate segment.

Color Above Segment

If the segment is part of the horizon line, then the area
above the line should be statistically different from the
foreground seed region. In a similar fashion to the ‘Color
. . . . Below Segment’ property, the euclidean distance between
Fig. 3: A sample image of Lemon Creek Glacier during,e quartile values of the seed region and the quartile salue

overcast weather with an enlarged region including a sectiqy e region,/, above the line segment is calculated. The
of the horizon. The horizon line can be seen in the Who'ﬁroperty weight is given by (3).

image, but nearly invisible in the enlarged section.
Wabove = ﬁ . ||QU - QS” (3)

where); represents the vector of quartile boundary intensi-
First, a set of nonparametric rank-order statistics aregen ties, 3 is a normalization constant set to the inverse of the
ated within a seed regioss, By constructing a pixel intensity maximum quartile boundary differencg,is the seed region,
histogram of this region, the median intensity, quartilliea, andU is a small area above the current candidate segment.
and center95% range can be efficiently calculated. TheCoIor Column
region S itself is formed by a static trapezoid in the bottom Line segments are often generated at the upper edge of

third of the image. This region, which is directly in fromsnow-covered mountain peaks, or at cloud-sky boundaries.

of the rover, 1S co.nsujer.ed likely to contain grognd Plangis results in snow-colored pixels directly below a line
data. This method is similar to the obstacle detection eyStesegment even though a section of non-white pixels exists

presented.in [13]. ) between the line segment and the ground. By weighting
Strong line segments are then extracted from the imaggach line segment by the percent of white pixels between

A Canny edge detector [14] is used to find dominate imagg,e segment and the bottom of the image, these types of

edges. The upper Canny threshold value is selected dynamigments may be removed. The exact weight calculation
cally to classify20% of image pixels as edges, with the lower athod is given in (5).

threshold set to a fixed0% of the upper threshold value. ] o
Each edge is then simplified to be piecewise linear using  4(;, j) — { L Qs[1] < 1(i,j) < Qs3] @)
the Ramer-Douglas-Peucker algorithm [15]. A minimum 0  otherwise




€2 Heightimage

Weotumn = % Z Z A(Zvj) (5)

I=T1  j=Yseq (1)

where L is the total number of pixels below the candidate
segment,(x1,y;) and (z2,y2) are the end points of the
current candidate segment, the functign,(x) returns the
y-value of the candidate segmentatQs[1] andQs[3] are
the first and third quartile boundary intensities of the seec
region, respectively, and(i, j) is the image intensity. (a) (b)
Distance From Predicted Horizon

The position of the horizon location can be estimated
using the current pose estimate of the camera, assumir
a flat ground plane. The distance from this estimate to
candidate segment is used as a measure of the likelihood tl
candidate is part of the horizon. A Gaussian kernel centere
on the horizon estimate is used as the weight, shown i
(6). An appropriate variance for the Gaussian kernel cat
be estimated by multiplying the horizon position uncertiain () (d)

caused by the uncertainty of the robot pose, with the horizqg 4. () The sample image of Lemon Creek Glacier with
position uncertainty caused by t_he terrain variation frow t the horizon line indicated by a red arrow. (b) The major
assumed ground plane. If no prior knowledge of the terraigyyeg are extracted, and (c) approximated by piecewisar line
is available, a wide Gaussian should be used. segments. Heuristic cues weight each segment, indicated

1 & ] ] by the color intensity. (d) Original segments (green) are

Waist = 7 Z G (Yest (1) = Yseq (1) 6)  connected to form the horizon estimate.
1=

where the functiory,.,(x) returns the y-value of the candi-
date segment at, y.s:(z) returns the y-value of the horizon
estimate at;, G, (x) is a Gaussian kernel function with zero S = segments|arg maz;(segments[j|.weight)]
mean and variance;?. for i =1to N do

. — . C= tsfi
A combined weight is calculated for each candidate seg- Py (_S?gn;ezcig -0+ S.intercept)

ment as the product.of the irldividu_al weights described Py« (0,C.slope - 0 + Clintercept)

above. The top scoring candidate is selected as a seed Dyey - ||Py — S.leftpt]]

segment for the horizon line. A greedy search is then Dy « ||P, — C.right_pt||

conducted to find additional horizon line segments starting Dy« ||C.right_pt — S.deftpt]]

at each endpoint of the seed segment. A reference cost for C.cost — PitDz _ O peight

the current seed segment is calculated as the distance Ofend for Drey

extending the segment to the image edge. An alternative cost

is also generated for each candidate segment by calculating

the distance between the seed segment and the candidate

segment plus the distance of extending the candidate segm#éte correct horizon line difficult, even for human observers

to the image edge, normalized by the reference distancs. THespite this, the horizon line extraction process is able to

cost is then offset by the candidate segment’s weight. lidentify a reasonable horizon in both images. The second two

this way, candidate line segments that exhibit weak visudnages are from the same data set, acquired several seconds

cues serve to reinforce the path of stronger segments, wh@art. As the camera pans to the right, the horizon weakens to

segments with strong visual cues have the ability to retirethe point of becoming invisible. In fig. 5d the desired honizo

the path of the horizon. The segment with the lowest co&@s become too weak for successful detection. Despite the

solution then becomes the seed segment, and the processfaéure, the performance degraded gracefully, revertmthe

peats until the image edge is reached. Fig. 4 demonstrates fIeXt, stronger boundary line.

major steps in constructing the horizon, while Algorithm 1 From a computation standpoint, most of the operations

lists the calculation of the candidate segment cost. are applied per-segment, not per-pixel. This means that the
Fig. 5 shows examples of the produced horizon lineomputation time is proportional to the number of candidate

under different conditions. The first two image sampletine segments, not the image size. Further, most of the

show a similar scene under differing weather conditions. loperations require only a histogram of a small area, which

both images, a weak horizon line exists with snow-covered an inexpensive calculation. The resulting algorithm is

mountains immediately behind. This causes the horizon tapable of running in real time, with computation times of

visually blend with the background, which makes findindess than 30ms on a 640x480 image.

—

Algorithm 1 Candidate segment cost calculation
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Fig. 6: Classification performance results for adaptive his
Fig. 5: Typical results of the horizon line extraction prese togram thresholding (AHT), region growing (RG), machine
on images acquired on Mendenhall Glacier and Lemon Cregkarning using a Gaussian mixture model (GMM), statisti-
Glacier. Top graphic shows the original image, while theal region merging (SRM), and the proposed horizon line
bottom shows a truncated section with the extracted horizatraction process (HL). Each algorithm was tested against
line. The desired horizon is indicated on the original image100 hand-labeled images from each of six field test locations

V. RESULTS operation that employs global information to produce more

To evaluate the effectiveness of the proposed region efccurate boundary locations [8]. However, the use of global
traction algorithm, continuous segments of recorded vidggformation entails performing a per-pixel sort, a numaitic
from each of the field trials were selected. The horizogxpensive operation. The results of each test location are
line extraction algorithm (HL) was applied to each videcsummarized in Fig. 6 in the form of boxplots. Boxplots are a
segment, and the resulting region mask was recorded. ¥@nvenient graphical method of comparing statistical ltesu
compare the results, images from each video segment hat@t may not be normally distributed [16]. The box center-
been hand labeled, indicating the area of traversable foréne indicates the median score, while the upper and lower
ground. It should be noted that in some images the lineorder indicate the first and third quartile boundaries.
between traversable foreground and background is somewha#s illustrated in Fig. 6, AHT and GMM consistently
arbitrary. An effort was made to choose a consistent linecore the worst of the methods investigated. These methods
between sequential images. Ultimately, this ambiguitgtsxi analyze each pixel without any consideration for the pixel
only over a small vertical range of pixels in the image, andbcation. Consequently, large portions of the sky tend to be
should not unduly affect the measured performance. Due taisclassified. In contrast, RG and SRM only consider pixels
the manpower required to hand label images, only 100 framasighboring the current region. Since these algorithmsewer
were selected from each video segment, uniformly spacéuitialized within the foreground, they are more likely tag
through time. The algorithm results are then compared to tlg@nfined to the foreground. SRM uses global information
hand labeled images, with the number of incorrectly labeledhen selecting the next candidate pixel to merge, explginin
pixels counted for each frame. For comparison, the methodlse improved performance over the standard RG algorithm.
of adaptive histogram thresholding (AHT), region growing To test the execution time of each algorithm, a single
(RG), Gaussian mixture model (GMM), and statistical regio40x480 test image was loaded into memory. Each algo-
merging (SRM), were also evaluated in the same manne&ithm then processed the test image 1000 times, and the
The SRM algorithm is a more advanced region growinglapsed processing time was recorded. The resulting averag



TABLE I: Algorithm Execution Times performance benefit, if any, of incorporating an adaptive da

fusion system into the horizon classification process. Addi

Algorithm Execution Performance tionally, this system operates on raw images. Recent work
(Average Time Per Frame) in contrast enhancement and dehazing [18] may serve as a

Adaptive Histogram Threshold 0.0074 s useful preprocessing step, particularly in overcast dr.

Region Growing 0.0229 s

Gaussian Mixture Model 0.2677 s ACKNO_WLEDGMENTS ) )
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