Towards Identification of Best Practice Algorithms in
3D Perception and Modeling

Sebastian Blumenthal and Erwin Prassler and Jan FischeWaltdr Nowak

Abstract— Robots need a representation of their environment
to reason about and to interact with it. Different 3D percepton
and modeling approaches exist to create such a representat,
but they are not yet easily comparable. This work tries to
identify best practice algorithms in the domain of 3D perception
and modeling with a focus on environment reconstruction for
robotic applications. The goal is to have a collection of refc-
tored algorithms that are easily measurable and comparable
The realization follows a methodology consisting of five ses.
After a survey of relevant algorithms and libraries, common
representations for the core data-types Cartesian point, @rte-
sian point cloud and triangle mesh are identified for use in
harmonized interfaces. Atomic algorithms are encapsulatinto
four software components: the Octree component, the Iterave

needed by mobile manipulation planning algorithms. There-
fore in this paper the scope is limited to 3D environment
reconstruction. Object detection techniques are not eaver
here.

The prevalent representation for 3D processing algorithms
are Cartesian point clouds. As mobile manipulation plasner
typically need a triangle set representation of the environ
ment, the processing stages for 3D perception and modeling
aim to create the required triangle mesh of the environment
with sensor data as input. This process has several stages
[1], [2], [3]: depth perceptiosfiltering, registration segmen-
tation, mesh generatioandvisualization(cf. Fig. 1).

Closest Point component, thek-Nearest Neighbors search com-
ponent and the Delaunay triangulation component. A sample
experiment demonstrates how the component structure can be
used to deducebest practice.

. INTRODUCTION

Autonomous robots are complex systems with different
kinds of hardware and software components. A developer,
who has to design a robot for a specific task, faces many
problems: What is the right choice of sensors, actuators or
the robot platform? Which algorithms are the most suitable
for an application? Which of them need to be integrated
and which need to be reimplemented? Nowadays, robots
are often build from scratch because a well established
robot development process missing completely. Arobot
development processould significantly help the developer
and speed up the development time. One important aspect

is that the process should help to get accedsest practice Fig. 1.
involved data-types.

choices for the application.
In the context of this work an algorithm is characterized as
best practicef it performs better than other algorithms, for
a specific task. Depending on the task for a robotic system,
the superior or best algorithm might not be the same. The®
basis for a comparison to identifyest practiceis deduced
by benchmarks .
This work is biased towards 3D perception and modeling
for mobile manipulation applications. It tries to close tiep
between the real world and 3D environment models that are ®
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Overview of 3D perception and modeling processirages and

Depth perceptiordescribes technology to measure dis-
tances in a 3D environment.

A filter is an algorithm that is able to process a data
stream, in this case point cloud data.

Registration also sometimes referred amtchingis the
process of merging data from different viewpoints into
one global, consistent coordinate frame.
Segmentationmeans a spatial partitioning of point
clouds into subsets that belong to different geometric
objects.

The goal of themesh generatiostep is to transform a
3D point cloud into a surface mesh.

Visualization or rendering is the process of displaying
the 3D models. This process can be regarded as optional
but it is useful for visually judging success or failure of
an algorithm or to debug an application.

There is no strict order of these steps. For instance



registration could be performed after mesh generation.eSorground truth which is only partially solved (for example in
steps can even be skipped completely, depending on thinulation) [9].
application.
For each processing stage, a variety of different algosthm . _ .
and implementations exists. These are typically difficalt t B- Algorithms for 3D perception and modeling
compare or exchange due to a multitude of reasons, includingThe focus of the following survey is on the registration
use of different data structures, incompatible interfaceand the mesh generation process. Filtering and segmentatio
dependency on specific software environments and so anethods are also briefly discussed.
In this paper possible solutions to improve this situatiom a  Filtering: For 3D perception and modeling, there are three
presented. Building upon a more general methodology fanajor filtering techniques for point cloudsoise reduction
determining best practice, existing algorithms covering t size reductionand normal estimation A noise reduction
stages depicted in Fig. 1 are analyzed and refactored badiigr tries to cope with noisy measurements from a depth
on principles from component-based software engineeringperception device. [10] reduce "salt and pepper noise” by
The remainder of this paper is organized as followsa median filter. [11] use smoothing techniques for point
Section Il surveys the related work in the fields of roboticlouds based on estimated normals and a robust hyperplane
benchmarking, algorithms and open source libraries for 3projection. Among other methods, tlixtreedecomposition
perception and modeling in the scope of environment rés a popular method to downsample point cloud data [12].
construction. Section Ill presents the approach to identifFilters fornormal estimatiorcalculate normals for the points
best practiceand Section IV applies it to the field of in a point cloud, such that the normals represent the plane
3D perception and modeling. The paper is closed with aormal of an underlying patch of the surface. Point normals
conclusion in Section V. are required for various algorithms like registration noeth
[13], segmentation [3] and mesh generation algorithms,[14]
IIl. STATE OF THE ART [15] [16]. Most approaches calculate ttheNearest Neigh-
This Section will start with current efforts in benchmark-horhood of a query point and fit some geometric patch to
ing of robots and why it is so difficult to compare differentapproximate the local surface [17], [18], [19], [3]
robotic systems, followed by algorithms for 3D perception Registration: Globalstrategies for registration involve
and modeling and a list of publicly available libraries thhat genetic algorithms like [20], or evolutionary computation
least partially implement the presented algorithms. approaches [21]. As these registration methods are com-
A. Benchmarking in robotics putationally _expensivg they are uncommon_for applica_t_iqns
ela the robotics domain, where (near) real-time capabdlitie

Benchmarking in robotics does not have a well estabhsh_are important. A recent developmeBM3D [22] uses the

met_hodology for experiments yet, th_er_efore related work IIS—Iough transform for global registration. As comprehensive
paying more and more attention to this issue [4]. Benchmarlé-

T . : . xperiments have not been performed yet, it remains unclear
ing in robotics can be roughly categorized intdaog-down P b Y

d abott tive I51. Irtoo-d hes th how competitive this solution is compared to other existing
and abottom-upperspective [5]. Irtop- ownappro?c esthe approaches. Therefore, most efforts have been speletah
robot is investigated as a whole system or a "black box

o . registration techniques.
Examples are robot competitions like RoboCithe DARPA The most prominentocal registration algorithm is the

Iterative Closest Point (ICPpy [23] and [24]. Since then

Yirious improvements have been made that mostly address

task. A more fine-grained benchmarking is achieved in - . .
bottom-ugfashion. Here each single sub-entity is individuallyﬁﬁe correspondence problew finding corresponding point

o : . airs in two point clouds and theigid transformation
evaluated. Sub-entities can be algorithms, devices, atonﬁ b g

. .e?tlmanon problemApproaches to increasebustnesgor
components or complex/composite components. A speci : .
. ; e correspondence problem typically enhance the spatial
problem and open issue is the fact that no common softwa

. . . information of a point by additional information like intsity
interfaces are yet available for these entities [6]. Mostdbe 425], color [26] or point normals [13]. The calculation of

marking efforts have been concentrating on the evaluati cﬂPtinctive features in point clouds to deliver an approaden

loefvilrobotlc system as a whole, rather than on a COMPON&fisial alignment is applied by [27] and [28]. Recently the

_— . . Point Feature Histograms (PFH[29] has been developed,

The definition of performance metrics for benchmarkmgNith an improved version calle@ast Point Feature His-
is a difficult proplem. [61, [.7]’ .[8] start_ed_to develop tograms (FPFH)[30]. [31] improves robustness for the
performance metrics for navigation applications. Anoth_e(r;Orrespondence problem, by computing a rough initial trans

d|ff|Cl_JIty arises f_rom the fact th_at algorithms often eXDIOI.formation guess with afExtended Gaussian Image (EGI)
certain assumptions that are hidden and not made explicit

. and a rotational Fourier function.
to the reader, for examplauning parameters that are not,,_ . . . ,
\{arlous improvements that addressmputational complexity

mentioned. An issue often neglected is the problem 9L, the ICP have been proposed by [32]. A widely used
Ihttp://www.robocup.org/ solution to reduce complexity ih-Nearest Neighbors prob-
2http://www.darpa.mil/grandchallengef/index.asp lems is the usage df-d trees[12]. Approximated versions



of k-d treeshave been developed by [33], [34] and [35].particular the PCE, the VTK®, or the ITK library. Li-
The concept ohierarchical k-meanss used by [36] in their braries that have a focus on mesh generation are Méshlab
vocabulary tree approach. [37] presentmrton ordering CGAL'?, Gmsh3, Qhull*, or OSG®. Most libraries offer
based search which can be parallelized well on multi-coreapabilities for Visualization Algorithms to solve thek-
and multi-processor hardware. Along with the improvementsearest Neighbor search can be found in the AfNkhe
for computational complexity, the computation of thgid FLANN?Y’ or the STANNS? library.

transformation estimatios an important step for the ICP

algorithm: As depicted by [12], fouclosed-formvariants .III. _CC_)NCEPT ] )

exist. Beside the closed form solutiorapproximatedesti- 1€ process of identifyingest practicealgorithms can
mation approaches exist as well, such aslbtcal motion be categorized into different phases [53]. There are five
based method proposed by [38]. steps:Exploration Harmonization Refactoring Integration

A recent development for a local non-ICP based metha@'d Evaluation The goal of this process is to have a
is the probabilisticNormal Distributions Transform (NDT) framework of software components that allows to replace
[39]. A comparison of ICP and NDT [40] concludes that noAtomic elements to easily create a set of benchmarks that
algorithm clearly outperforms the other one. enables to compare and judge the algorithms.

SegmentationCommon segmentation criteria arermals A, Exploration
of the points in a point cloud [1], as demonstrated in [3] in a

kitchen-like environment. Model fitting is performed by [2] domain has to be acquired. A state-of-the-art literatune

as they try tc_> detect buildings in a recon§truct|on proce%y as well as a software library survey has to be conducted.
for large environments. [41] use a sampling technique to

find basic shapes like planes, cylinders, cones and tori B Harmonization

a point cloud. The segmentation algorithm of [42] first The Harmonizationphase tries to find harmonized data-
performs a decomposition of space into regular cubes, thégpes and interfaces for atomic elements. It can be further
planes are detected with the help of the RANSAC principlesubdivided into the three following steps:

Finally a refinement step with a region growing strategy is 1) Identify common data-types Identify the commonly
applied. Further segmentation methods are based on edges |;5e(d data-types, and analyze the commonalities of

In the Explorationphase, knowledge about the algorithmic

[43], curvature estimates [44] or smoothness constradfip [ representations in existing libraries.

Mesh generation:Some algorithms needstimated nor- 2) Identify "black-boxes”: This is the step of de-
mals in the point cloud, for example th@oisson recon- modularizing algorithms into atomic elements. The
structionmethod by [14]. Many approaches for surface mesh most common modules shall be found and represented
generation are based on tBbelaunay triangulation as stand alone software components.

[46] contributes fundamentals for mesh generation algo- 3) Identify common interfaces The atomic elements
rithms by analyzing the properties for common geometric  jgentified in the previous step need to communicate to
representations, including partitions with the Delaunatee other atomic elements. To get access to a component,
rion. The author introduces the strategy to label tetradwesir one has to use a set of interfaces.

into insideandoutsidesimplices. T_his categorizatic_m allows All algorithms and data-types are designed with a potential
to deduce the surface of an object. The algorithms ffORse i mind, for example a mobile manipulation planning
the CRUSTand COCONE family [47], [48], [49] rely on iy oy that needs a 3D model of the environment to create

Delaunay triangulation, as well as.tlaeshapes algorithm gaths or trajectories for the hardware platform. To foster
by [50]. Other approaches that are independent of Delaun }Senness, flexibility and reusability of the refactoredoalg

triangulations have been proposed. [51] presents the 9Wlithms, aseparation of concerns aspired with respect to
the principles ofcoordination configuration computation

based ball-pivoting algorithm. TH&ontal Algorithmby [52]
calculates special points and generates the mesh accordé{mjcommunicatior{54] [55]
The process of modularization, decoupling and abstracting

to a rule set.
C. Open source libraries for 3D perception and modeling {0 more general interfaces certainly involves trade-offs b

. . - . . tween usability or generality and highly coupled or optietz
This section surveys existing open source libraries that tyorg y ony P P

are related to the 3D perception and modeling domain. All 8http://mwww.ros.org/wiki/pcl
libraries are written in C/C++. i?ttpi//ivt-sourceforge-net/
Functionality for algorithms in théiltering, Registration |, "ttP:/www.itk.org/
. . http://meshlab.sourceforge.net/
and Segmentatiosteps can be found in the 6DSLAMthe htip:/www.cgal.org/
MRPT?, the IVT®, the Faif, packages from the RGSin Bhttp:/ww.geuz.orgigmsh/

Lhttp://www.ghull.org/

Shttp://slam6d.sourceforge.net/ LShttp:/iwww.openscenegraph.org/projects/osg
4http://www.mrpt.org/ 18http:/iwww.cs.umd.edu/ ~mount/ANN/
Shttp://ivt.sourceforge.net/ http://people.cs.ubc.cal ~mariusm/index.php/
Shttp://sourceforge.net/projects/openvolksbot/ FLANN/FLANN

"hitp:/www.ros.org/wiki/ 18http://sites.google.com/a/compgeom.com/stann/



algorithms. But as the intention is to findest practice combinations. To overcome this problem we propose to use
algorithms the decoupling has a higher priority over highlyhe decoratorsoftware pattern [56].
optimized algorithms. However, in a robot development pro- Cartesian point cloud:The harmonized Cartesian point
cess an optimization step might follow after the best peacti cloud will essentially consist of a vector of points as this
algorithms have been determined for a specific applicatioris the most common way, among the investigated libraries,
to represent it. Supported operations should include rstrea
ing capabilities similar to the Cartesian point requiretsgn
The Refactoringstep can be characterized fifing black  homogeneous transformations and simple manipulation op-
boxes with life. That means the desired behavior for ansrations such as adding new points.
algorithm must be defined by implementing it. Code should Trjangle meshesThe analysis of the libraries revealed two
be reused from existing libraries. common ways to represent triangle meshes: The first variant
D. Integration uses arimplicit representation with a vector of vertices and

| i f benchmarking the impl ted al a vector of indices. Three consecutive indices, referencin
N preparation ot benchmarking the implemented algoy,q \ertices vector, form a triangle. The advantage is the
rithms, they need to b@tegrated into a test-bed This

; . . memory efficient storage, as vertices do not need to be
test-bed might be a real robot, a simulation framework or y 9

tware f K that dat s to b dfﬁserted multiple times into the mesh if one vertex belongs
sottware Iramework that can prepare data sets 1o be UsedigSqayeral triangles. The disadvantage is that both vectors
input for a benchmark.

have to be carefully maintained while adding or removing
E. Evaluation triangles. Furthermore it is less flexible for future exiens

The final step is theEvaluation or benchmarking of because a triangle might have additional information like

the refactored and harmonized algorithms. Each compone%lor' a val?d.ity flag_, a probability or a texture reference.
implementation serves as a point of variation for the bench- The explicit version uses a vector of triangles, where

marks. These benchmarks can be performed on a real rob%?,Ch triangle (_:onsists of three vertice;. This representat
within a simulation framework or with recorded or artificial MOT€ flexible in the sense that a basic triangle class can be
data sets. extended odecoratedn future developments, similar to the

Cartesian point. On the other hand it might be less memory
IV. RESULTS efficient. A harmonized triangle mesh should support both
The methodology proposed in Section Ill has been appliggpresentations. This can be achieved by an abstract class
to the 3D Perception and Modeling domain with a focus oallowing access with a common interface, so a potential user
environment reconstruction. In the following results face can choose which implementation fits most to an application
phase are discussed. A summary of the results gatheredoha problem. However that does not necessarily mean both
the Explorationphase has been already presented in Secti¢fpresentations are always fully exchangeable. A common
II-B and Section II-C. functionality is the streaming support which allows to dasi
read and write data to standard output, files or other im-
plementations of triangle meshes. As an additional feature
The three predominant data-types are Cartesian poings,harmonized triangle mesh should support homogeneous
Cartesian point clouds, and triangle meshes. An in-deptioordinates transformations similar to the Cartesian tpoin
analysis of existing open source libraries (cf. Sectio€)I- clouds.
revealed the following commonalities. o ) )
Cartesian point: Most libraries use a representation withB: Harmonization and refactoring of common algorithms
simple x, y, and z variables as coordinates. Basic matrix For 3D perception and modeling in an environment re-
operation functionality is commonly used among the ineonstruction context, at least the following atomic compo-
vestigated libraries, as the Cartesian point also serves @@nts can be identified: The Octree component, the Iterative
vector of dimensionality three. Thus a harmonized poin€losest Point component, thieNearest Neighbors search
should support simple vector algebra as addition, subtracemponent and the Delaunay triangulation component (cf.
tion and multiplication with a scalar. Streaming support i$ig. 2).
not a commonly available feature. Nevertheless it can be This list does not claim to be complete, but these are the
convenient to have, as it allows to easily dump the outpumost common elements as deduced from Exgloration
for debugging or logging activities, and makes conversiorghase.
to other point representations simpler. A harmonized data- 1) The Octree componentThe Octree algorithm is a
type must preserve flexibility to future extension. Possiblpopular method to reduce point clouds. It is used for voxel
extensions of a point could be color information, estimatetepresentations or for surface mesh generation approaches
normals, weights, probabilities, feature vector desoript The Octree can be regarded as a common atomic element
for distinctive properties or flags if a point is valid orfor 3D perception and modeling applications.
not. It is possible to implement such extensions via class The Octree component has two different rolesrextuc-
inheritance, but with growing requirements the inheriganction filter, and as structureplartition of the space into cubes.
hierarchy would have a combinatorial explosion of possibl&o account for both roles, two separate provided interfaces

C. Refactoring

A. Harmonization of data-types



IoctreeSetup INearestNeighborSetup

I0ctreeReductionFilter , INearestNeighbor , The POInt Correspondence Schomponeﬁhe Compo-
— <<component>> ] O—==me=—g] nent for establishing the point-to-point correspondences
10ctreePartition Octree . . Nearest Neighbor ) d |
o—1 HesrestPoin3aiielghbor needs two point clouds as input data and returns a list of
IiterativeClosestPointSetup ;3;«m‘gmm» corresponding points. The provided interface has just one
> hd g | 8 method that allows to calculate point-to-point correspon-
— " Correspondence .
lkerativeClosestPointetailed | | Peint | IRigidTransEstimation 2 dences. The component does not need to be configured, as
o © g asstarmation 51 it has no parameters, nor does it need a required interface.
) . Estimation . . . .
N As internal realization thé-Nearest Neighbor search com-
Cl DG LD ponent could be used. This is left to the implementation.
Fig. 2. Overview of atomic software components for 3D petioepand The Rigid Transformation Estimation subcomponértie
modeling. Configuration interfaces are marked with gredorco second required interface for the ICP algorithm is provided

by the Rigid Transformation Estimation component. It pro-

vides one interface that has a list of point correspondences
are offered for each functionality. The first functionalent as input and a homogeneous transformation as output pa-
face provides capabilities to reduce point clouds. Therothgameter, in order to store the resulting transformatiore Th
functional interface provides functionality to partitiarpoint  component has no required interfaces and no parameters that
cloud into a set of smaller point clouds. A third providedneed to be configured.

interface is offered in order to decouple the configuration i
from the functional interfaces. For the Octree only the 3) Thek-Nearest Neighbor search componertearest

parametervoxel sizeneeds to be configured. The Octred\€ighbor search operations are for example usedegis-

component does not depend on other modules and thus fieation or normal estimation filteringalgorithms, thus it can
no required interfaces. be seen as a common atomic element for 3D perception and

2) The lterative Closest Point componerk common modeling.
method to register multiple point clouds into one common The component will account for two different roles. The
coordinate frame is the lterative Closest Point (ICP) algdirst one is a generic use case that might want to apply the
rithm. component in a completely different context than robotics,
The ICP algorithm has two major sub-elements: a step thafd the second use case applies Cartesian points with di-
establishepoint correspondenceand a step thagstimates Mension three. The more general interface allows to set a
rigid transformations Both steps can be solved by variousmultidimensional vectodata The query consists of a data
approaches. To be able to exchange atomic parts, both st¥gstor, as well as the parameterand it will return a vector
are encapsulated as subcomponents. These subcomponghtgdices to thek nearest neighbors. The specific interface
are addressed by two required interfaces. for 3D perception and modeling domain uses data that is
The ICP component offers the matching functionality irfi€fined by a point cloud instead of multidimensional data
two provided interfaces. The first, minimal interface neteds Vector. The query consists of Cartesian point, rather than
accept two point cloudsnodelanddata, and calculates the data vector of variable length.
translation and rotation that needs to be applied to the dataBoth interfaces arstateful as most implementations first
so that it is aligned to the model. The rotation and transtati create an appropriate search structure, like for example a
can be summarized in a homogeneous transformation matrgearch tree. Search queries are then accelerated by using
The second interface reveals more internal details to thRat structure. Whenever in thieNearest Neighbor interfaces
user of this component. This interface has getter and seti@e data is set, these search structures are created. The
methods for thedata and the model point cloud and a configuration interface allows to get thdimensionand to
method that invokes only one iteration of the ICP and returnset and get an optional parametaaximalDistanceor the
the error. It allows to define new termination criteria ormaximal allowed distance to regard an element as neighbor.

it enables a system scheduler to invoke this component ) ]
iteratively according to a scheduling policy. This second 4) The Delaunay Triangulation componerithe Delau-

interface isstatefulthat means the results rely on previoud'@ Triangulation algorithm is commonly used as atomic
states. This implies aontracton the interface: to correctly €lémentamong the mesh generation algorithms. For example

use this interface first setata and mode| then invoke the the algorithms of theCRUSTand COCONE family or the
next iteration, as often as desired. a-shapes method, depend on this triangulation (cf. Section

The first provided interface istateless that means the II-B).
behavior is always the same, while the behavior of the secondThe primary role of the Delaunay Triangulation compo-
interface depends on the history of preceding events [5Hent is to create a triangulation from a point cloud. The
Both interface types are clearly separated. There is an addésult of a 3D triangulation is a set of tetrahedrons. All
tional interface that fulfills theonfigurationrole. It allows to  triangulations obey th®elaunay propertyand do not need
manipulate the convergence threshold, the maximum numbemny further parameters. That is why there is no configuration
of iterations and to configure the required subcomponentsinterface for this component.



C. Framework integration Timings of ICP
450000 T T T T
[processing time'with SVD ' [—

The implementations of the proposed data-types and com- sooogo | ESngmewih QUAT | e
ponents have been integrated into a library caB&ICS3D. rocessing time wih ARX 1
It supports loading datasets like depth images or point ‘
cloud data and realizes visualization capabilities witk th 300000 | -
OSG library. The BRICS3D library will be published as ‘
an open source libraty, such that the components can be
reused in robotic applications as well as new custom defined ‘
benchmarks can be performed. 150000 s

350000 [~ -

250000 [— | —

Timing [ms]

200000 |~ =

100000 (— —

D. Evaluation

This section presents a sample benchmark of the ICP o F I
component. It has been selected because it is a popular core 0 e
component for environment reconstruction applicatioss T Algorithm
benchmark serves as a representative sample to illustrate t
concept of benchmarking on a component-based level. The
used performance metric is the computational time which
can bee seen as tlestof the computation. This metric is

Fig. 3. Benchmark results for the lterative Closest Poigbathm

only one among others likatility or reliability, but further The benchmark resuilts are only valid for the used test-bed
y 9 y Y, and the used test data. Furthermore, the effects of wrapping

experlm_ents are beyond the Scope of this paper. and adopting the implementations are neglected, stilldivsh
Four implementations of the point correspondence com-

. that it is possible to get access to best practice algorithms
ponents are used._ All are based on hdlearest Neighbors by decomposition into atomic components and benchmarking
component. The first useslad tree[12], the second uses those
the ANN [33], the third theFLANN [35] and the last the '

STANNJ[37] library. The rigid transformation estimation im-
plementation comprise @VDbased, a QuaternioQUAT) V. CONCLUSION
based, a helical motion estimatioMELIX) and a linear

approximation APX) based solution [12]. . practice algorithms in robotics. This methodology has been
The benchmarks have been performed with 8tanford . . : . )
applied to the domain of 3D perceptions and modeling with a

Bunny™ data setsbun000.plyand bun045.ply The param- focus on environment reconstruction. One important aspect
eters of the ICP are set as follows: convergence threshold’ ) P P

which defines the minimum convergence slopd 0001, was the application of software engineering principles, in

the maximal point-to-point distance &® and the maximal particular software componentdo refactor existing algo-
amount of iterations is set t00. The benchmarks are rithms into common atomic and reusable elements. These

performed on an off-the-shelf laptop with 2GHz dual coreelements can be benchmarked to deducettbst practice

processor and 3GB memory. The operating system is arl190r|thms for a specific task with implementations prodide

Ubuntu 9.10 with Kernel version 2.6.31-20. The source coc;% thg BRICS3D open source I|brary. An open Issue that
remains for future work is the implementation of more

is compiled with the gcc compiler version 4.4.1 with debu . . .
flags enabled. Every matching process was repeated 10 timq(:a%mponemS for 3D perception and modeling. This work has

All algorithm combinations converge aft2d to 30 iterations covered only a subset of all avallaple algorlthms. Cur;.entl
. . : the segmentatiostage as well as object detection techniques
and result in a remaining RMS error of approximate02.

The mean values for the computational time are depicted &€ not yet addressed. Normal estimation, noise reduction,
Fig. 3 P P Slternative registration methods like NDT or HSM3D and
9. 3 . . ... mesh generation with the-shapes algorithm are subject for
Independent of the used rigid transformation est|mat|oP X :
uture implementation.

algorithms, the k-d tree and the ANN point-to-point corre- The abilitv t Kebest ticehoi ¢ alaorithms f
spondence implementation outperforms the other algosthm € abllity to makebest practicecholces of aigorithms tor
specific robotic task, in early stages of a robot developmen

The STANN implementation is by far the slowest approacI‘F.‘ i binati ith t sof
As the used test-bed offers only limited parallel computingrocess’ In combination with reuse of soitware cpmpone_nts,
hardware, the STANN library was not able to demonstrateeduces the efforts to develop software for robotics applic
its full potential. tions

The selection of the rigid transformation estimation has
only a minor influence on the timing behavior, whereas the VI. ACKNOWLEDGMENTS
choice of the point correspondences algorithm has a major

impact.

This paper has presented a methodology to idertégt

The authors would like to thank Davide Brugali, Luca
Gherardi and Herman Bruyninckx for iteratively reviewing
http://www.best-of-robotics.org/ the source code and providing design guidelines. Thanks to
20http://graphics.stanford.edu/data/3Dscanrep/ Alexey Zakharov for his valuable comments.
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