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Abstract— Robots need a representation of their environment
to reason about and to interact with it. Different 3D perception
and modeling approaches exist to create such a representation,
but they are not yet easily comparable. This work tries to
identify best practice algorithms in the domain of 3D perception
and modeling with a focus on environment reconstruction for
robotic applications. The goal is to have a collection of refac-
tored algorithms that are easily measurable and comparable.
The realization follows a methodology consisting of five steps.
After a survey of relevant algorithms and libraries, common
representations for the core data-types Cartesian point, Carte-
sian point cloud and triangle mesh are identified for use in
harmonized interfaces. Atomic algorithms are encapsulated into
four software components: the Octree component, the Iterative
Closest Point component, thek-Nearest Neighbors search com-
ponent and the Delaunay triangulation component. A sample
experiment demonstrates how the component structure can be
used to deducebest practice.

I. INTRODUCTION

Autonomous robots are complex systems with different
kinds of hardware and software components. A developer,
who has to design a robot for a specific task, faces many
problems: What is the right choice of sensors, actuators or
the robot platform? Which algorithms are the most suitable
for an application? Which of them need to be integrated
and which need to be reimplemented? Nowadays, robots
are often build from scratch because a well established
robot development processis missing completely. Arobot
development processwould significantly help the developer
and speed up the development time. One important aspect
is that the process should help to get access tobest practice
choices for the application.

In the context of this work an algorithm is characterized as
best practiceif it performs better than other algorithms, for
a specific task. Depending on the task for a robotic system,
the superior or best algorithm might not be the same. The
basis for a comparison to identifybest practiceis deduced
by benchmarks.

This work is biased towards 3D perception and modeling
for mobile manipulation applications. It tries to close thegap
between the real world and 3D environment models that are

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. FP7-ICT-231940-BRICS (Best Practice in Robotics).

Sebastian Blumenthal and Walter Nowak are with GPS GmbH,
Nobelstr. 12, 70569 Stuttgart, Germany,{blumenthal,
nowak}@gps-stuttgart.de

Erwin Prassler is with the University of Applied Sciences Bonn-
Rhein-Sieg, Grantham-Allee 20, 53757 Sankt Augustin, Germany,
erwin.prassler@h-brs.de

Jan Fischer is with the Fraunhofer IPA, Nobelstr. 12, 70569 Stuttgart,
Germany,jan.fischer@ipa.fraunhofer.de

needed by mobile manipulation planning algorithms. There-
fore in this paper the scope is limited to 3D environment
reconstruction. Object detection techniques are not covered
here.

The prevalent representation for 3D processing algorithms
are Cartesian point clouds. As mobile manipulation planners
typically need a triangle set representation of the environ-
ment, the processing stages for 3D perception and modeling
aim to create the required triangle mesh of the environment
with sensor data as input. This process has several stages
[1], [2], [3]: depth perception, filtering, registration, segmen-
tation, mesh generationandvisualization(cf. Fig. 1).

Fig. 1. Overview of 3D perception and modeling processing stages and
involved data-types.

• Depth perceptiondescribes technology to measure dis-
tances in a 3D environment.

• A filter is an algorithm that is able to process a data
stream, in this case point cloud data.

• Registration, also sometimes referred asmatching, is the
process of merging data from different viewpoints into
one global, consistent coordinate frame.

• Segmentationmeans a spatial partitioning of point
clouds into subsets that belong to different geometric
objects.

• The goal of themesh generationstep is to transform a
3D point cloud into a surface mesh.

• Visualization, or rendering, is the process of displaying
the 3D models. This process can be regarded as optional
but it is useful for visually judging success or failure of
an algorithm or to debug an application.

There is no strict order of these steps. For instance



registration could be performed after mesh generation. Some
steps can even be skipped completely, depending on the
application.

For each processing stage, a variety of different algorithms
and implementations exists. These are typically difficult to
compare or exchange due to a multitude of reasons, including
use of different data structures, incompatible interfaces,
dependency on specific software environments and so on.
In this paper possible solutions to improve this situation are
presented. Building upon a more general methodology for
determining best practice, existing algorithms covering the
stages depicted in Fig. 1 are analyzed and refactored based
on principles from component-based software engineering.

The remainder of this paper is organized as follows.
Section II surveys the related work in the fields of robotic
benchmarking, algorithms and open source libraries for 3D
perception and modeling in the scope of environment re-
construction. Section III presents the approach to identify
best practiceand Section IV applies it to the field of
3D perception and modeling. The paper is closed with a
conclusion in Section V.

II. STATE OF THE ART

This Section will start with current efforts in benchmark-
ing of robots and why it is so difficult to compare different
robotic systems, followed by algorithms for 3D perception
and modeling and a list of publicly available libraries thatat
least partially implement the presented algorithms.

A. Benchmarking in robotics

Benchmarking in robotics does not have a well established
methodology for experiments yet, therefore related work is
paying more and more attention to this issue [4]. Benchmark-
ing in robotics can be roughly categorized into atop-down
and abottom-upperspective [5]. Intop-downapproaches the
robot is investigated as a whole system or a ”black box”.
Examples are robot competitions like RoboCup1, the DARPA
Grand challenges and the URBAN challenge2. The advantage
is the easier evaluation whether a robot can achieve a given
task. A more fine-grained benchmarking is achieved in a
bottom-upfashion. Here each single sub-entity is individually
evaluated. Sub-entities can be algorithms, devices, atomic
components or complex/composite components. A special
problem and open issue is the fact that no common software
interfaces are yet available for these entities [6]. Most bench-
marking efforts have been concentrating on the evaluation
of a robotic system as a whole, rather than on a component
level.

The definition of performance metrics for benchmarking
is a difficult problem. [6], [7], [8] started to develop
performance metrics for navigation applications. Another
difficulty arises from the fact that algorithms often exploit
certain assumptions that are hidden and not made explicit
to the reader, for exampletuning parameters that are not
mentioned. An issue often neglected is the problem of

1http://www.robocup.org/
2http://www.darpa.mil/grandchallenge/index.asp

ground truth which is only partially solved (for example in
simulation) [9].

B. Algorithms for 3D perception and modeling

The focus of the following survey is on the registration
and the mesh generation process. Filtering and segmentation
methods are also briefly discussed.

Filtering: For 3D perception and modeling, there are three
major filtering techniques for point clouds:noise reduction,
size reductionand normal estimation. A noise reduction
filter tries to cope with noisy measurements from a depth
perception device. [10] reduce ”salt and pepper noise” by
a median filter. [11] use smoothing techniques for point
clouds based on estimated normals and a robust hyperplane
projection. Among other methods, theOctreedecomposition
is a popular method to downsample point cloud data [12].
Filters fornormal estimationcalculate normals for the points
in a point cloud, such that the normals represent the plane
normal of an underlying patch of the surface. Point normals
are required for various algorithms like registration methods
[13], segmentation [3] and mesh generation algorithms [14],
[15] [16]. Most approaches calculate thek-Nearest Neigh-
borhood of a query point and fit some geometric patch to
approximate the local surface [17], [18], [19], [3]

Registration: Global strategies for registration involve
genetic algorithms like [20], or evolutionary computation
approaches [21]. As these registration methods are com-
putationally expensive they are uncommon for applications
in the robotics domain, where (near) real-time capabilities
are important. A recent developmentHSM3D [22] uses the
Hough transform for global registration. As comprehensive
experiments have not been performed yet, it remains unclear
how competitive this solution is compared to other existing
approaches. Therefore, most efforts have been spent onlocal
registration techniques.

The most prominentlocal registration algorithm is the
Iterative Closest Point (ICP)by [23] and [24]. Since then
various improvements have been made that mostly address
the correspondence problemof finding corresponding point
pairs in two point clouds and therigid transformation
estimation problem. Approaches to increaserobustnessfor
the correspondence problem typically enhance the spatial
information of a point by additional information like intensity
[25], color [26] or point normals [13]. The calculation of
distinctive features in point clouds to deliver an approximate
initial alignment is applied by [27] and [28]. Recently the
Point Feature Histograms (PFH)[29] has been developed,
with an improved version calledFast Point Feature His-
tograms (FPFH) [30]. [31] improves robustness for the
correspondence problem, by computing a rough initial trans-
formation guess with anExtended Gaussian Image (EGI)
and a rotational Fourier function.
Various improvements that addresscomputational complexity
for the ICP have been proposed by [32]. A widely used
solution to reduce complexity ink-Nearest Neighbors prob-
lems is the usage ofk-d trees[12]. Approximated versions



of k-d treeshave been developed by [33], [34] and [35].
The concept ofhierarchical k-meansis used by [36] in their
vocabulary tree approach. [37] present aMorton ordering
based search which can be parallelized well on multi-core
and multi-processor hardware. Along with the improvements
for computational complexity, the computation of therigid
transformation estimationis an important step for the ICP
algorithm: As depicted by [12], fourclosed-formvariants
exist. Beside the closed form solutions,approximatedesti-
mation approaches exist as well, such as thehelical motion
based method proposed by [38].

A recent development for a local non-ICP based method
is the probabilisticNormal Distributions Transform (NDT)
[39]. A comparison of ICP and NDT [40] concludes that no
algorithm clearly outperforms the other one.

Segmentation:Common segmentation criteria arenormals
of the points in a point cloud [1], as demonstrated in [3] in a
kitchen-like environment. Model fitting is performed by [2],
as they try to detect buildings in a reconstruction process
for large environments. [41] use a sampling technique to
find basic shapes like planes, cylinders, cones and tori in
a point cloud. The segmentation algorithm of [42] first
performs a decomposition of space into regular cubes, then
planes are detected with the help of the RANSAC principle.
Finally a refinement step with a region growing strategy is
applied. Further segmentation methods are based on edges
[43], curvature estimates [44] or smoothness constraints [45].

Mesh generation:Some algorithms needestimated nor-
mals in the point cloud, for example thePoisson recon-
structionmethod by [14]. Many approaches for surface mesh
generation are based on theDelaunay triangulation.

[46] contributes fundamentals for mesh generation algo-
rithms by analyzing the properties for common geometric
representations, including partitions with the Delaunay crite-
rion. The author introduces the strategy to label tetrahedrons
into insideandoutsidesimplices. This categorization allows
to deduce the surface of an object. The algorithms from
the CRUST and COCONE family [47], [48], [49] rely on
Delaunay triangulation, as well as theα-shapes algorithm
by [50]. Other approaches that are independent of Delaunay
triangulations have been proposed. [51] presents the growing
based ball-pivoting algorithm. TheFrontal Algorithmby [52]
calculates special points and generates the mesh according
to a rule set.

C. Open source libraries for 3D perception and modeling

This section surveys existing open source libraries that
are related to the 3D perception and modeling domain. All
libraries are written in C/C++.

Functionality for algorithms in theFiltering, Registration
andSegmentationsteps can be found in the 6DSLAM3, the
MRPT4, the IVT5, the Fair6, packages from the ROS7, in

3http://slam6d.sourceforge.net/
4http://www.mrpt.org/
5http://ivt.sourceforge.net/
6http://sourceforge.net/projects/openvolksbot/
7http://www.ros.org/wiki/

particular the PCL8, the VTK9, or the ITK10 library. Li-
braries that have a focus on mesh generation are Meshlab11,
CGAL12, Gmsh13, Qhull14, or OSG15. Most libraries offer
capabilities for Visualization. Algorithms to solve thek-
Nearest Neighbor search can be found in the ANN16 the
FLANN17 or the STANN18 library.

III. CONCEPT

The process of identifyingbest practicealgorithms can
be categorized into different phases [53]. There are five
steps:Exploration, Harmonization, Refactoring, Integration
and Evaluation. The goal of this process is to have a
framework of software components that allows to replace
atomic elements to easily create a set of benchmarks that
enables to compare and judge the algorithms.

A. Exploration

In theExplorationphase, knowledge about the algorithmic
domain has to be acquired. A state-of-the-art literaturesur-
vey as well as a software library survey has to be conducted.

B. Harmonization

The Harmonizationphase tries to find harmonized data-
types and interfaces for atomic elements. It can be further
subdivided into the three following steps:

1) Identify common data-types: Identify the commonly
used data-types, and analyze the commonalities of
representations in existing libraries.

2) Identify ”black-boxes”: This is the step of de-
modularizing algorithms into atomic elements. The
most common modules shall be found and represented
as stand alone software components.

3) Identify common interfaces: The atomic elements
identified in the previous step need to communicate to
other atomic elements. To get access to a component,
one has to use a set of interfaces.

All algorithms and data-types are designed with a potential
user in mind, for example a mobile manipulation planning
library that needs a 3D model of the environment to create
paths or trajectories for the hardware platform. To foster
openness, flexibility and reusability of the refactored algo-
rithms, aseparation of concernsis aspired with respect to
the principles ofcoordination, configuration, computation,
andcommunication[54], [55].

The process of modularization, decoupling and abstracting
to more general interfaces certainly involves trade-offs be-
tween usability or generality and highly coupled or optimized

8http://www.ros.org/wiki/pcl
9http://ivt.sourceforge.net/
10http://www.itk.org/
11http://meshlab.sourceforge.net/
12http://www.cgal.org/
13http://www.geuz.org/gmsh/
14http://www.qhull.org/
15http://www.openscenegraph.org/projects/osg
16http://www.cs.umd.edu/ ˜ mount/ANN/
17http://people.cs.ubc.ca/ ˜ mariusm/index.php/

FLANN/FLANN
18http://sites.google.com/a/compgeom.com/stann/



algorithms. But as the intention is to findbest practice
algorithms the decoupling has a higher priority over highly
optimized algorithms. However, in a robot development pro-
cess an optimization step might follow after the best practice
algorithms have been determined for a specific application.

C. Refactoring

TheRefactoringstep can be characterized byfilling black
boxes with life. That means the desired behavior for an
algorithm must be defined by implementing it. Code should
be reused from existing libraries.

D. Integration

In preparation of benchmarking the implemented algo-
rithms, they need to beintegrated into a test-bed. This
test-bed might be a real robot, a simulation framework or a
software framework that can prepare data sets to be used as
input for a benchmark.

E. Evaluation

The final step is theEvaluation or benchmarking of
the refactored and harmonized algorithms. Each component
implementation serves as a point of variation for the bench-
marks. These benchmarks can be performed on a real robot,
within a simulation framework or with recorded or artificial
data sets.

IV. RESULTS

The methodology proposed in Section III has been applied
to the 3D Perception and Modeling domain with a focus on
environment reconstruction. In the following results for each
phase are discussed. A summary of the results gathered in
the Explorationphase has been already presented in Section
II-B and Section II-C.

A. Harmonization of data-types

The three predominant data-types are Cartesian points,
Cartesian point clouds, and triangle meshes. An in-depth
analysis of existing open source libraries (cf. Section II-C)
revealed the following commonalities.

Cartesian point:Most libraries use a representation with
simple x, y, and z variables as coordinates. Basic matrix
operation functionality is commonly used among the in-
vestigated libraries, as the Cartesian point also serves as
vector of dimensionality three. Thus a harmonized point
should support simple vector algebra as addition, subtrac-
tion and multiplication with a scalar. Streaming support is
not a commonly available feature. Nevertheless it can be
convenient to have, as it allows to easily dump the output
for debugging or logging activities, and makes conversions
to other point representations simpler. A harmonized data-
type must preserve flexibility to future extension. Possible
extensions of a point could be color information, estimated
normals, weights, probabilities, feature vector descriptors
for distinctive properties or flags if a point is valid or
not. It is possible to implement such extensions via class
inheritance, but with growing requirements the inheritance
hierarchy would have a combinatorial explosion of possible

combinations. To overcome this problem we propose to use
the decoratorsoftware pattern [56].

Cartesian point cloud:The harmonized Cartesian point
cloud will essentially consist of a vector of points as this
is the most common way, among the investigated libraries,
to represent it. Supported operations should include stream-
ing capabilities similar to the Cartesian point requirements,
homogeneous transformations and simple manipulation op-
erations such as adding new points.

Triangle meshes:The analysis of the libraries revealed two
common ways to represent triangle meshes: The first variant
uses animplicit representation with a vector of vertices and
a vector of indices. Three consecutive indices, referencing
the vertices vector, form a triangle. The advantage is the
memory efficient storage, as vertices do not need to be
inserted multiple times into the mesh if one vertex belongs
to several triangles. The disadvantage is that both vectors
have to be carefully maintained while adding or removing
triangles. Furthermore it is less flexible for future extension,
because a triangle might have additional information like
color, a validity flag, a probability or a texture reference.

The explicit version uses a vector of triangles, where
each triangle consists of three vertices. This representation is
more flexible in the sense that a basic triangle class can be
extended ordecoratedin future developments, similar to the
Cartesian point. On the other hand it might be less memory
efficient. A harmonized triangle mesh should support both
representations. This can be achieved by an abstract class
allowing access with a common interface, so a potential user
can choose which implementation fits most to an application
or a problem. However that does not necessarily mean both
representations are always fully exchangeable. A common
functionality is the streaming support which allows to easily
read and write data to standard output, files or other im-
plementations of triangle meshes. As an additional feature
a harmonized triangle mesh should support homogeneous
coordinates transformations similar to the Cartesian point
clouds.

B. Harmonization and refactoring of common algorithms

For 3D perception and modeling in an environment re-
construction context, at least the following atomic compo-
nents can be identified: The Octree component, the Iterative
Closest Point component, thek-Nearest Neighbors search
component and the Delaunay triangulation component (cf.
Fig. 2).

This list does not claim to be complete, but these are the
most common elements as deduced from theExploration
phase.

1) The Octree component:The Octree algorithm is a
popular method to reduce point clouds. It is used for voxel
representations or for surface mesh generation approaches.
The Octree can be regarded as a common atomic element
for 3D perception and modeling applications.

The Octree component has two different roles: asreduc-
tion filter, and as structuredpartition of the space into cubes.
To account for both roles, two separate provided interfaces



<<component>>

Octree

<<component>>

Iterative Closes

Point

<<component>>

Delaunay triangulation

<<component>>

Nearest Neighbor

<<component>>

Rigid Transformation

Estimation

<<component>>

Point

Correspondence

IIterativeClosestPointSetup

IIterativeClosestPointDetailed

IIterativeClosestPoint

IOctreeSetup

IOctreePartition

IOctreeReductionFilter

IDelaunayTriangulation

INearestNeighborSetup

INearestPoint3DNeighbor

INearestNeighbor

IRigidTransEstimation

IPointCorrespondence

<<might use>>

Fig. 2. Overview of atomic software components for 3D perception and
modeling. Configuration interfaces are marked with green color.

are offered for each functionality. The first functional inter-
face provides capabilities to reduce point clouds. The other
functional interface provides functionality to partitiona point
cloud into a set of smaller point clouds. A third provided
interface is offered in order to decouple the configuration
from the functional interfaces. For the Octree only the
parametervoxel sizeneeds to be configured. The Octree
component does not depend on other modules and thus has
no required interfaces.

2) The Iterative Closest Point component:A common
method to register multiple point clouds into one common
coordinate frame is the Iterative Closest Point (ICP) algo-
rithm.

The ICP algorithm has two major sub-elements: a step that
establishespoint correspondencesand a step thatestimates
rigid transformations. Both steps can be solved by various
approaches. To be able to exchange atomic parts, both steps
are encapsulated as subcomponents. These subcomponents
are addressed by two required interfaces.

The ICP component offers the matching functionality in
two provided interfaces. The first, minimal interface needsto
accept two point clouds:modelanddata, and calculates the
translation and rotation that needs to be applied to the data
so that it is aligned to the model. The rotation and translation
can be summarized in a homogeneous transformation matrix.
The second interface reveals more internal details to the
user of this component. This interface has getter and setter
methods for thedata and the model point cloud and a
method that invokes only one iteration of the ICP and returns
the error. It allows to define new termination criteria or
it enables a system scheduler to invoke this component
iteratively according to a scheduling policy. This second
interface isstateful that means the results rely on previous
states. This implies acontracton the interface: to correctly
use this interface first setdata and model, then invoke the
next iteration, as often as desired.

The first provided interface isstateless, that means the
behavior is always the same, while the behavior of the second
interface depends on the history of preceding events [57].
Both interface types are clearly separated. There is an addi-
tional interface that fulfills theconfigurationrole. It allows to
manipulate the convergence threshold, the maximum number
of iterations and to configure the required subcomponents.

The Point Correspondence subcomponent:The compo-
nent for establishing the point-to-point correspondences
needs two point clouds as input data and returns a list of
corresponding points. The provided interface has just one
method that allows to calculate point-to-point correspon-
dences. The component does not need to be configured, as
it has no parameters, nor does it need a required interface.
As internal realization thek-Nearest Neighbor search com-
ponent could be used. This is left to the implementation.

The Rigid Transformation Estimation subcomponent:The
second required interface for the ICP algorithm is provided
by the Rigid Transformation Estimation component. It pro-
vides one interface that has a list of point correspondences
as input and a homogeneous transformation as output pa-
rameter, in order to store the resulting transformation. The
component has no required interfaces and no parameters that
need to be configured.

3) The k-Nearest Neighbor search component:Nearest
Neighbor search operations are for example used byregis-
tration or normal estimation filteringalgorithms, thus it can
be seen as a common atomic element for 3D perception and
modeling.

The component will account for two different roles. The
first one is a generic use case that might want to apply the
component in a completely different context than robotics,
and the second use case applies Cartesian points with di-
mension three. The more general interface allows to set a
multidimensional vectordata. The query consists of a data
vector, as well as the parameterk, and it will return a vector
of indices to thek nearest neighbors. The specific interface
for 3D perception and modeling domain uses data that is
defined by a point cloud instead of multidimensional data
vector. The query consists of Cartesian point, rather than
data vector of variable length.

Both interfaces arestateful, as most implementations first
create an appropriate search structure, like for example a
search tree. Search queries are then accelerated by using
that structure. Whenever in thek-Nearest Neighbor interfaces
the data is set, these search structures are created. The
configuration interface allows to get thedimensionand to
set and get an optional parametermaximalDistancefor the
maximal allowed distance to regard an element as neighbor.

4) The Delaunay Triangulation component:The Delau-
nay Triangulation algorithm is commonly used as atomic
element among the mesh generation algorithms. For example
the algorithms of theCRUSTand COCONE family or the
α-shapes method, depend on this triangulation (cf. Section
II-B).

The primary role of the Delaunay Triangulation compo-
nent is to create a triangulation from a point cloud. The
result of a 3D triangulation is a set of tetrahedrons. All
triangulations obey theDelaunay property, and do not need
any further parameters. That is why there is no configuration
interface for this component.



C. Framework integration

The implementations of the proposed data-types and com-
ponents have been integrated into a library calledBRICS3D.
It supports loading datasets like depth images or point
cloud data and realizes visualization capabilities with the
OSG library. The BRICS3D library will be published as
an open source library19, such that the components can be
reused in robotic applications as well as new custom defined
benchmarks can be performed.

D. Evaluation

This section presents a sample benchmark of the ICP
component. It has been selected because it is a popular core
component for environment reconstruction applications. This
benchmark serves as a representative sample to illustrate the
concept of benchmarking on a component-based level. The
used performance metric is the computational time which
can bee seen as thecost of the computation. This metric is
only one among others likeutility or reliability, but further
experiments are beyond the scope of this paper.

Four implementations of the point correspondence com-
ponents are used. All are based on thek-Nearest Neighbors
component. The first uses ak-d tree [12], the second uses
the ANN [33], the third theFLANN [35] and the last the
STANN[37] library. The rigid transformation estimation im-
plementation comprise anSVDbased, a Quaternion (QUAT)
based, a helical motion estimation (HELIX) and a linear
approximation (APX) based solution [12].

The benchmarks have been performed with theStanford
Bunny20 data setsbun000.plyand bun045.ply. The param-
eters of the ICP are set as follows: convergence threshold
which defines the minimum convergence slope is0.00001,
the maximal point-to-point distance is50 and the maximal
amount of iterations is set to100. The benchmarks are
performed on an off-the-shelf laptop with 2GHz dual core
processor and 3GB memory. The operating system is an
Ubuntu 9.10 with Kernel version 2.6.31-20. The source code
is compiled with the gcc compiler version 4.4.1 with debug
flags enabled. Every matching process was repeated 10 times.
All algorithm combinations converge after20 to 30 iterations
and result in a remaining RMS error of approximately0.002.
The mean values for the computational time are depicted in
Fig. 3.

Independent of the used rigid transformation estimation
algorithms, the k-d tree and the ANN point-to-point corre-
spondence implementation outperforms the other algorithms.
The STANN implementation is by far the slowest approach.
As the used test-bed offers only limited parallel computing
hardware, the STANN library was not able to demonstrate
its full potential.

The selection of the rigid transformation estimation has
only a minor influence on the timing behavior, whereas the
choice of the point correspondences algorithm has a major
impact.

19http://www.best-of-robotics.org/
20http://graphics.stanford.edu/data/3Dscanrep/
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Fig. 3. Benchmark results for the Iterative Closest Point algorithm

The benchmark results are only valid for the used test-bed
and the used test data. Furthermore, the effects of wrapping
and adopting the implementations are neglected, still it shows
that it is possible to get access to best practice algorithms
by decomposition into atomic components and benchmarking
those.

V. CONCLUSION

This paper has presented a methodology to identifybest
practicealgorithms in robotics. This methodology has been
applied to the domain of 3D perceptions and modeling with a
focus on environment reconstruction. One important aspect
was the application of software engineering principles, in
particular software components, to refactor existing algo-
rithms into common atomic and reusable elements. These
elements can be benchmarked to deduce thebest practice
algorithms for a specific task with implementations provided
by the BRICS3D open source library. An open issue that
remains for future work is the implementation of more
components for 3D perception and modeling. This work has
covered only a subset of all available algorithms. Currently
thesegmentationstage as well as object detection techniques
are not yet addressed. Normal estimation, noise reduction,
alternative registration methods like NDT or HSM3D and
mesh generation with theα-shapes algorithm are subject for
future implementation.

The ability to makebest practicechoices of algorithms for
a specific robotic task, in early stages of a robot development
process, in combination with reuse of software components,
reduces the efforts to develop software for robotics applica-
tions.

VI. ACKNOWLEDGMENTS

The authors would like to thank Davide Brugali, Luca
Gherardi and Herman Bruyninckx for iteratively reviewing
the source code and providing design guidelines. Thanks to
Alexey Zakharov for his valuable comments.



REFERENCES

[1] G. Hirzinger, T. Bodenmüller, H. Hirschmüller, R. Liu, W. Sepp,
M. Suppa, T. Abmayr, and B. Strackenbrock, “Photo-realistic 3d
modelling-from robotics perception towards cultural heritage,”Record-
ing, Modeling and Visualization of Cultural Heritage, p. 361, 2006.

[2] S. You, J. Hu, U. Neumann, and P. Fox, “Urban site modelingfrom
lidar,” Lecture Notes in Computer Science, pp. 579–588, 2003.

[3] R. Rusu, Z. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards 3d
point cloud based object maps for household environments,”Robotics
and Autonomous Systems, vol. 56, no. 11, pp. 927–941, 2008.

[4] F. P. Bonsignorio, J. Hallam, and A. P. del Pobil, “Good experimental
methodologies in robotics: State of the art and perspectives,” in Proc.
of the Workshop on Performance Evaluation and Benchmarkingfor
Intelligent Robots and Systems, IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2007.
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[50] H. Edelsbrunner and E. Mücke, “Three-dimensional alpha shapes,” in
Proceedings of the 1992 workshop on Volume visualization. ACM,
1992, p. 82.

[51] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, G.Taubin,
et al., “The ball-pivoting algorithm for surface reconstruction,” IEEE
Transactions on Visualization and Computer Graphics, vol. 5, no. 4,
pp. 349–359, 1999.
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